
ContentsContents

 Manufacture
 Desktop manufacturing

 Deployment guides and walkthroughs
 OEM deployment of Windows 10 for desktop editions

 Plan your Windows deployment
 Get the tools you need for this lab
 OEM deployment lab
 Sample scripts

 System builder deployment of Windows 10 for desktop editions
 OEM Windows Desktop Deployment and Imaging Lab

 Planning images for different audiences
 Get the tools needed to customize Windows
 Lab 1: Install Windows PE
 Lab 2: Deploy Windows using a script
 Lab 3: Add device drivers (.inf-style)
 Lab 4: Add languages
 Lab 5: Add updates and upgrade the edition
 Lab 6: Add universal Windows apps
 Lab 7: Change settings, product keys, scripts with an answer file
 Lab 8: Add branding and license agreements (OOBE.xml)
 Lab 9: Make changes from Windows (audit mode)
 Lab 10: Add desktop apps with siloed provisioning packages
 Lab 11: Add Start tiles and taskbar pins
 Lab 12: Update the recovery image
 Lab 13: Shrink your image size

 Manufacturing Windows Engineering Guide
 Windows 10 in S mode

 Planning a Windows 10 in S mode deployment
 Manufacturing environment



 Manufacturing mode
 Enable S mode
 Windows 10 in S mode deployment lab

 Work with Windows images
 WIM vs. VHD vs. FFU: comparing image file formats
 Windows Full Flash Update (FFU) images
 Capture and apply an image

 Create and Manage a Windows Image Using DISM
 Capture Images of Hard Disk Partitions Using DISM
 Create a WIM for Multiple Architecture Types Using DISM
 Split a Windows image file (.wim) to span across multiple DVDs
 Append a Volume Image to an Existing Image Using DISM
 Create a Data Image Using DISM
 Apply Images Using DISM
 Capture and Apply Windows, System, and Recovery Partitions

 Modify an image
 Service a Windows image using DISM
 Mount and Modify a Windows Image Using DISM
 Repair a Windows Image

 Configure a Windows Repair Source
 Prepare a PC

 Hard Drives and Partitions
 UEFI/GPT-based hard drive partitions
 BIOS/MBR-based hard drive partitions
 Configure More than Four Partitions on a BIOS/MBR-Based Hard Disk
 Configure Multiple Hard Drives
 BitLocker Drive Encryption
 Hard Disk Location Path Format
 Windows and GPT FAQ

 Secure Boot
 Windows Secure Boot Key Creation and Management Guidance
 Secure Boot Key Generation and Signing Using HSM (Example)



 UEFI Validation Option ROM Validation Guidance
 Disabling Secure Boot
 Secure Boot isn't configured correctly: troubleshooting
 BCD System Store Settings for UEFI
 Validating Windows UEFI Firmware Update Platform Functionality

 Boot and Install Windows
 Boot to WinPE

 Download WinPE (Windows PE)
 Create bootable WinPE media
 WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)

 Boot to UEFI Mode or Legacy BIOS mode
 Windows Setup: Installing using the MBR or GPT partition style
 Boot from a DVD
 Install Windows from a USB Flash Drive
 Deploy a Custom Image
 Deploy Windows with a VHD (Native Boot)

 Boot to VHD (Native Boot): Add a Virtual Hard Disk to the Boot Menu
 Windows Setup Installation Process

 Install Windows 10 using a previous version of Windows PE
 Windows Setup Automation Overview
 Automate Windows Setup
 Run custom actions during a feature update
 Add a Custom Script to Windows Setup

 Customize
 Understanding Servicing Strategies
 Audit Mode

 Run Audit Mode in the Factory
 Boot Windows to Audit Mode or OOBE
 Enable and Disable the Built-in Administrator Account
 Sysprep

 Sysprep Process Overview
 Sysprep (Generalize) a Windows installation



 Use Answer Files with Sysprep
 Sysprep Command-Line Options
 Sysprep Support for Server Roles

 Apps
 Siloed provisioning packages (SPPs)
 Create a provisioning package with Windows desktop applications
 Sideload Apps with DISM
 Preinstall Apps Using DISM
 Export or Import Default Application Associations
 Microsoft .NET Framework 3.5 Deployment Considerations

 Deploy .NET Framework 3.5 by using Group Policy Feature on Demand setting
 Deploy .NET Framework 3.5 by using Deployment Image Servicing and

Management (DISM)
 Enable .NET Framework 3.5 by using Windows PowerShell
 Enable .NET Framework 3.5 by using the Add Roles and Features Wizard
 .NET Framework 3.5 deployment errors and resolution steps

 Drivers
 Maintain Driver Configurations when Capturing a Windows Image
 Add a Driver Online in Audit Mode
 Add and Remove Drivers to an Offline Windows Image
 Add Device Drivers to Windows During Windows Setup

 Configuration and settings
 Customize the Default User Profile by Using CopyProfile
 Work with Product Keys and Activation

 Change the Windows Image to a Higher Edition Using DISM
 High DPI Support for IT Professionals

 High DPI and Windows 8.1
 Fixing blurry text in Windows 8.1 for IT Professionals
 High DPI projection and multi-monitor configurations
 DPI-related APIs and registry settings

 Features
 Features On Demand

 Available Features on Demand



 Language and Region Features on Demand
 Enable or Disable Windows Features Using DISM
 Configure a Trusted Image Identifier for Windows Defender
 Configure Windows System Assessment Test Scores
 Add or Remove Packages Offline Using DISM

 OOBE
 Oobe.xml Settings
 How Oobe.xml Works

 Localize
 Language Packs
 Available Language Packs for Windows
 Add Language Packs to Windows

 Add and Remove Language Packs Offline Using DISM
 Add and Remove Language Packs on a Running Windows Installation
 Add Language Interface Packs to Windows

 Multilingual Windows Image Creation
 Configure International Settings in Windows
 Add Multilingual Support to a Windows Distribution
 Add Multilingual Support to Windows Setup
 Default Input Profiles (Input Locales) in Windows
 Default Time Zones
 Keyboard Identifiers and Input Method Editors for Windows
 Where is lp.cab?

 Optimize
 Compact OS, single-instancing, and image optimization
 Manage the Component Store

 Determine the Actual Size of the WinSxS Folder
 Clean Up the WinSxS Folder
 Reduce the Size of the Component Store in an Offline Windows Image
 Take Inventory of an Image or Component Using DISM

 Battery Life
 Managing Battery Life and Power Consumption Overview



 Set the Default Power Plan
 Create a Custom Power Plan
 Fine-Tune a Custom Power Plan
 Test Battery Life and Power Consumption

 Windows Recovery Environment (Windows RE)
 Customize Windows RE
 Add a custom tool to the Windows RE boot options menu
 Add a hardware recovery button to start Windows RE
 Deploy Windows RE
 Push-button reset

 How push-button reset features work
 Recovery components
 Deploy push-button reset features
 Add a script to push-button reset features
 Bare metal reset/recovery: create recovery media while deploying new devices
 Bare metal reset/recovery: enable your users to create recovery media
 Push-button reset frequently-asked questions (FAQ)

 REAgentC command-line options
 ResetConfig XML reference
 WinREConfig XML reference
 Windows RE troubleshooting features

 Deployment Tools Reference
 DISM - Deployment Image Servicing and Management

 What is DISM?
 Use DISM in Windows PowerShell
 DISM Command-Line Options

 DISM Image Management Command-Line Options
 DISM Global Options for Command-Line Syntax
 DISM Operating System Package (.cab or .msu) Servicing Command-Line

Options
 DISM Provisioning Package (.ppkg) Command-Line Options
 DISM App Package (.appx or .appxbundle) Servicing Command-Line Options
 DISM Application Servicing (.msp) Command-Line Options



 DISM Default Application Association Servicing Command-Line Options
 DISM Languages and International Servicing Command-Line Options
 DISM Capabilities Package Servicing Command-Line Options
 DISM Windows Edition-Servicing Command-Line Options
 DISM Driver Servicing (.inf) Command-Line Options
 DISM Unattended Servicing Command-Line Options
 DISM Windows PE Servicing Command-Line Options
 DISM Operating System Uninstall Command-Line Options

 DISM Reference (Deployment Image Servicing and Management)
 DISM Configuration List and WimScript.ini Files
 Deployment Image Servicing and Management (DISM) Best Practices
 DISM Supported Platforms

 DISM API
 Windows PE (WinPE)

 What's New in Windows PE
 WinPE: Add packages (Optional Components Reference)
 WinPE: Mount and Customize
 WinPE: Adding PowerShell support to Windows PE
 WinPE: Store or split images to deploy Windows using a single USB key
 WinPE: Identify drive letters with a script
 WinPE: Storage Area Network (SAN) Policy
 WinPE Network Drivers: Initializing and adding drivers
 WinPE: Create Apps
 WinPE: Debug Apps
 Copype Command-Line Options
 Makewinpemedia Command-Line Options
 Drvload Command-Line Options
 Winpeshl.ini Reference: Launching an app when WinPE starts
 Wpeinit and Startnet.cmd: Using WinPE Startup Scripts
 Wpeutil Command-Line Options

 Windows Setup
 Windows Setup Supported Platforms and Cross-Platform Deployments



 Windows Setup Scenarios and Best Practices
 Windows Setup Command-Line Options
 Windows Setup States
 Windows Setup Edition Configuration and Product ID Files (EI.cfg and PID.txt)
 Windows Setup Log Files and Event Logs
 Windows Setup Configuration Passes

 How Configuration Passes Work
 auditSystem
 auditUser
 generalize
 offlineServicing
 oobeSystem
 specialize
 windowsPE

 Deployment Troubleshooting and Log Files
 Command-Line Tools

 BCDBoot Command-Line Options
 Repair the boot menu on a dual-boot PC

 BCDEdit Command-Line Options
 Bootsect Command-Line Options
 Oscdimg Command-Line Options

 Mobile manufacturing
 Mobile deployment and imaging

 Prepare for Windows mobile development
 Create mobile packages

 Adding mobile packages
 Primary elements and attributes of a package project file
 Specifying components in a package project file
 Specifying files and registry entries in a package project file
 Command-line arguments for package generator
 Merging packages before imaging
 Merging packages using FeatureMerger



 Windows Standard Packaging Configuration (WSPC) requirements for retail
images

 Configure the Start layout
 Part 1: Classic mobile deployment

 Configure customization settings
 Add a package to an OEM manifest file
 Configure the OEMInput file
 Build a mobile image using ImgGen
 Sign a mobile image
 Flash an image to a mobile device

 Part 2: Mobile deployment using Windows Provisioning
 Use the Windows ICD UI to customize and build a mobile image
 Use the Windows ICD CLI to customize and build a mobile image

 Manufacturing Mode
 Create a custom manufacturing profile package
 Create a custom manufacturing profile package with USBFN settings
 Define a service that only runs in Manufacturing Mode
 Create a full operating system manufacturing profile
 Detect Manufacturing Mode
 Enable or Disable Manufacturing Mode
 Optional features for Manufacturing Mode
 Boot mode management UEFI protocol

 EFI_BOOT_MODE_INFO enumeration
 EFI_BOOT_MODE_MGMT_PROTOCOL.GetBootModeInfo
 EFI_BOOT_MODE_MGMT_PROTOCOL.SetBootModeInfo

 Microsoft Manufacturing OS
 MMOS image definition
 Flash MMOS to the device
 Working with WIM MMOS images
 Creating a secure MMOS WIM image
 Develop MMOS test applications
 Deploy and test a user-mode test application in MMOS
 Determine if MMOS is running



 Manufacturing test environment supported APIs
 Manufacturing Mode Phone Call Testing APIs

 MfgPhoneDial
 MfgPhoneEndCall
 MfgPhoneGetSimLineCount
 MfgPhoneGetSimLineDetail
 MfgPhoneGetSpeaker
 MfgPhoneInitialize
 MfgPhoneSetSimLineEventNotifyCallback
 MfgPhoneSetSpeaker
 MfgPhoneUninitialize
 MFGPHONE_CALLSTATUS
 MFGPHONE_LINESYSTEMTYPE
 MFGPHONE_REGISTRATIONSTATE
 MFGPHONE_SIMLINEDETAIL
 MFGPHONE_SIMSTATE

 Access the touch interface in MMOS
 Calling SetScreenOff to enter connected standby
 Resetting a device during manufacturing
 Wi-Fi manufacturing API

 WlanMTEEnumAdapters
 WlanMTEOpenHandle
 WlanMTECloseHandle
 WlanMTERegisterCallbackHandler
 WlanMTEDeRegisterCallbackHandler
 WlanMTEGetVendorInfo
 WlanMTEResetAdapter
 WlanMTEQueryMacAddress
 WlanMTEQueryPhyTypes
 WlanMTEStartSelfTest
 WlanMTEQuerySelfTestResult
 WlanMTERxSignal



 WlanMTETxSignal
 WlanMTEQueryADC
 WlanMTESetData
 WlanMTEQueryData
 WlanMTESleep
 WlanMTEAwake

 Adding Wi-Fi manufacturing test support to the OID interface
 Reporting operating mode capabilities
 Supporting updated OID behavior in manufacturing mode
 Supporting existing OID commands in manufacturing mode
 Supporting new OID commands for manufacturing mode
 Supporting new callbacks for manufacturing mode

 Flashing tools
 Developing custom OEM flashing tools
 Flashing security requirements
 FFU image format
 Implementing image integrity validation in custom flashing tools
 Field service scenarios

 Using a host PC to reboot a device to flashing mode and get version information
 Disabling the initial setup process
 Reset protection
 Building and flashing mobile images

 Build a mobile image using Windows ICD
 Build a mobile image using ImgGen.cmd
 Build a mobile image using a hybrid method
 Define the image using OEMInput and feature manifest files

 OEMInput file contents
 Optional features for building mobile images
 Feature manifest file contents
 Create a feature and include it in an image
 Adding a driver to a test image
 Feature groupings and constraints



 Set device platform information
 Sign a full flash update (FFU) image
 Use the flashing tools provided by Microsoft
 IUTool.exe: Update packages on a device

 IUTool error codes
 Update packages on a device and get package update logs
 Update packages in an .FFU image file

 IoT Core manufacturing
 IoT Core manufacturing guide

 Get the tools needed to customize Windows IoT Core
 Lab 1a: Create a basic image
 Lab 1b: Add an app to your image

 Install an appx file on an IoT device
 Lab 1c: Add a file and a registry setting to an image
 Lab 1d: Add a provisioning package to an image
 Lab 1e: Add a driver to an image
 Lab 1f: Build a retail image
 Lab 2: Creating your own board support package

 IoT Device Layout
 IoT Core feature list
 IoT Core Add-ons
 IoT Core Add-ons command-line options
 Update the time server
 Create Windows Universal OEM Packages

 Windows Universal OEM Package Schema

https://docs.microsoft.com/windows/iot-core/develop-your-app/appinstaller


Manufacture
6/6/2017 • 2 minutes to read • Edit Online

Purpose

TOPIC DESCRIPTION

OEM deployment of Windows 10 for desktop editions This guide is intended for OEMs, and applies to Windows 10
for desktop editions (Home, Pro, Enterprise, and Education). IT
professionals using this guide should have prior knowledge of
Windows basic administration and troubleshooting.

System builder deployment of Windows 10 for desktop
editions

Learn how to deploy Windows 10 desktop, including online
and offline customizations, and optional steps for specific
scenarios. This guide is intended to help system builders with
both 64-bit and 32-bit configurations.

OEM Windows Desktop Deployment and Imaging Lab

What's new in Windows manufacturing Learn what new features are available.

Desktop manufacturing Technical reference for Windows 10 for desktop editions

Mobile manufacturing Technical reference for Windows 10 Mobile

IoT Core manufacturing Technical reference for Windows 10 IoT Core

Use the manufacturing tools to deploy your Windows customizations to new Windows 10 devices. Learn how to:

Combine your customizations, plus languages, drivers, apps and more, into new Windows images.
Modify these images either from a manufacturing mode for a familiar Windows experience, or from a
command line for quicker changes that can be automated and scripted.
Install images onto new devices. Choose whether to use compression to balance disk space verses device
performance. Use flashing tools to speed up the final manufacturing processes
Capture your customizations into the recovery tools, helping your customers get back up to speed quickly.

Building your first devices with Windows 10 for desktop
editions (Home, Pro, Enterprise, and Education)?

Want to learn strategies to save time on the factory floor?

This walkthrough shows two ways of creating custom
images with languages, apps, and drivers, and modifying
them when new designs become available.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/index.md
https://msdn.microsoft.com/library/windows/hardware/mt269765.aspx
https://docs.microsoft.com/en-us/windows-hardware/manufacture/whats-new-in-windows-manufacturing


Desktop manufacturing
5/11/2018 • 2 minutes to read • Edit Online

In This Section
CONTENT TYPE REFERENCES

After you've learned how to design, develop, and customize Windows images, you can use the tools in the
Windows ADK to manufacture and deploy Windows images to new PCs and devices.

Getting started Download the Windows ADK | Desktop manufacturing
guide | Manufacturing Windows Engineering Guide (WEG)

Deployment options UEFI Firmware | Hard Drives and Partitions | VHD (Native
Boot)| Secure Boot | Device Drivers | Language Packs |
Features On Demand V2 (Capabilities) | More deployment
options

Tools Deployment Image Servicing and Management (DISM) |
System Preparation (SysPrep) | Windows PE (WinPE) |
Windows Recovery Environment (Windows RE) | Windows
Setup | More command-line tools

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/index.md
http://go.microsoft.com/fwlink/p/?LinkId=526803
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/uefi-firmware
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-deployment-options


OEM deployment guides and walkthroughs for
Windows 10
9/18/2017 • 2 minutes to read • Edit Online

In this section
GUIDE DESCRIPTION

OEM deployment of Windows 10 for desktop editions End-to-end desktop manufacturing lab for OEMs

System builder deployment of Windows 10 for desktop
editions

End-to-end lab for system builders

OEM Windows Desktop Deployment and Imaging Lab Collection of walkthroughs for OEM deployments

Manufacturing Windows Engineering Guide Roadmap for OEMs and ODMs of the ideal manufacturing
process for Windows 10 devices, with guidance for potential
pitfalls and opportunities to streamline the process.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-guides-and-walkthroughs.md


OEM deployment of Windows 10 overview
4/30/2018 • 2 minutes to read • Edit Online

In this section
GUIDE DESCRIPTION

Plan your Windows deployment Information to consider when planning your Windows
deployment

Get the tools you need to complete the Windows Desktop
Deployment and Imaging Lab

Gather the tools you need to complete the lab

OEM deployment of Windows 10 for desktop editions End-to-end desktop manufacturing lab for OEMs

Sample scripts Get the sample scripts that enable faster deployment of
Windows 10

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oem-deployment-of-windows-10-for-desktop-editions-overview.md


Planning: Customizing reference images for different
audiences
4/30/2018 • 2 minutes to read • Edit Online

Device types

Architecture

Retail customers and business customers

Regions

Instead of having one device design that tries to fit everyone, Windows image management tools help you tailor
device designs to meet the specific needs of various customers.

To get started, we recommend choosing a hardware design that targets a specific audience, market, or price point.
Build base images for this design and test it. Next, modify the base images to create designs for for different
audiences, include branding, logos, languages, and apps.

Consider creating separate designs for different device types, such as low-cost or performance laptops, or low-cost
or performance desktops. Each of these styles has different sets of critical differentiators, such as battery life or
graphics performance.

Although Windows includes base drivers for many common devices, some hardware requires specialized device
drivers that must be installed and occasionally updated.

Many drivers are designed to be installed offline without booting the Windows image.

Use Windows Assessment tools to make sure that the apps and hardware that you're installing can perform well in
a variety of circumstances.

If you plan to build devices with both 64-bit and 32-bit (x86) chipsets and architectures, you'll need separate base
images. You'll also need different versions of drivers, packages, and updates.

If you're building designs for both retail and business customers, you can start with a single base edition such as
Windows 10 Home or Windows 10 Pro, and then later upgrade it to a higher edition such as Windows 10
Enterprise, as needed. Once you've built a higher edition, however, you can't downgrade it to the lower edition. For
more info, see Windows Upgrade Paths.

If you're building devices to sell to retail customers, you'll need to meet a set of minimum requirements. For info,
see the Licensing and Policy guidance on the Device Partner Center.

If you're building devices for businesses, you'll have fewer restrictions. IT professionals can customize their devices
in all sorts of ways. However, you should consider the implications of IT policies, as well as customer needs such as
migrating data, activating security tools, and managing volume license agreements and product keys.

Consider creating different base images for different regions.

The resource files for Windows and other apps like Microsoft Office can be large - some resources like localized
handwriting and speech recognition resources are several hundred megabytes.

To save drive space, we've split up the language packs. This can help you preload more languages for your

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oem-deployment-of-windows-10-for-desktop-editions-planning.md
http://go.microsoft.com/fwlink/?LinkId=526838
http://go.microsoft.com/fwlink/?LinkId=131358


customers or save space on your image. For example, to target a large region, you may preload the basic language
components such as text and user interface files for many areas within the region, but only include the handwriting
recognition for devices with pens, or only include voice and speech tools for Cortana on devices with integrated
microphones. Users can download these components later as needed.



Get the tools needed to customize Windows
5/11/2018 • 3 minutes to read • Edit Online

PCs

Storage

diskpart
list disk
select <disk number>
clean
rem === Create the Windows PE partition. ===
create partition primary size=2000
format quick fs=fat32 label="WinPE"
assign letter=P
active
rem === Create a data partition. ===
create partition primary
format fs=ntfs quick label="USB-B"
assign letter=O
list vol
exit

Here's what you'll need to start testing and deploying devices:

Here's how we'll refer to them:

Technician PC: Your work PC. This PC should have at least 15GB of free space for installing the Windows
Assessment and Deployment Kit (Windows ADK) and working with Windows images.

We recommend using Windows 10 for this PC. The minimum requirement is Windows 7 SP1, though this
requires additional tools or workarounds for tasks such as running PowerShell scripts and mounting .ISO
images.

For most tasks, you can use either an x86 or x64 PC. If you're creating x86 images, you'll need an x86-based
PC (or virtual machine) for a one-time task of generating a catalog file when you modify your answer file
with Windows SIM.

Reference PC: A test PC or tablet that represents all of the devices in a single model line; for example, the
Fabrikam Notebook PC Series 1. This device must meet the Windows 10 minimum hardware requirements.

You'll reformat this device as part of the walkthrough.

One USB key that you'll format with two partitions. The USB key must be at least 16GB. This drive will be
formatted, so save your data off of it first. It shouldn't be a Windows-to-Go key or a key marked as a non-
removable drive.

Here's how to format your USB key with two partitions. The first partition will be formatted FAT32 and called
WinPE. We'll use this partition to boot to WinPE. The second partition will be called USB-B. We'll use this drive to
store your Windows images and other customizations that we'll use throughout this lab.

From the Command Prompt:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oem-deployment-of-windows-10-for-desktop-editions-get-tools.md
http://go.microsoft.com/fwlink/?LinkId=526803


NOTENOTE

Software

The most recent version of Windows 10The most recent version of Windows 10

Windows Home 10, 64-bit English OPK

Customizations: Windows updates, languages, features, apps, and Microsoft OfficeCustomizations: Windows updates, languages, features, apps, and Microsoft Office

Win 10 32/64 MultiLang OPK LangPackAll/LIP

Win 10 32/64 MultiLang OPK Feat on Demand

Win 10 32/64 MultiLang OPK App Update

Latest Office OPK

2 Microsoft Store signed apps, if you have them

Windows Assessment and Deployment Kit (ADK) for Windows 10Windows Assessment and Deployment Kit (ADK) for Windows 10

DriversDrivers

Sample filesSample files

You can use two separate USB drives for this lab. If you decide to use two drives, format one as FAT32 and one as NTFS.

Create a folder called on the technician PC called C:\temp\lab . When working with images, use local storage
rather than external sources like network shares or removable drives. This reduces the risk of interrupting the build
process from a temporary network issue or from disconnecting the USB device.

To complete this guide, get the recommended downloads in this section from https://www.microsoftoem.com.

The version numbers of the Windows ADK, the Windows image you're deploying, and the languages and features
you're adding must match.

This lab only gives examples for building 64-bit systems. If you're working with a 32-bit image, replace the
mentions of 64-bit with 32-bit.

Download the following, and place the files into C:\temp\lab .

Download the version of Windows ADK for Windows 10 that matches the version of Windows 10 you are
working with.

We also discuss how to add hardware drivers and other Windows apps in this guide. If you need to add additional
drivers to your image, you'll need to contact your hardware or software manufacturers.

Download the lab samples from USB-B.zip, and extract the files to the USB-B drive.

The deployment steps in this guide depend on the sample configuration files included in USB-B. You can
download USB-B.zip from the Microsoft Download Center.

The contents of the configuration files included in USB-B are examples that you may change according to
your branding and manufacturing choices. However, file names and hierarchy of the folders and files must
be the same as demonstrated below in order to align your deployment procedure with this guide.

https://www.microsoftoem.com
https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install#winADK
https://go.microsoft.com/fwlink/?linkid=872894


Product keys

Note: USB-B has to be formatted as NTFS.

Get the default product keys for each Windows version from the Kit Guide Windows 10 Default Manufacturing
Key OEM PDF, which is on the ISO with the Windows image.

Get the distribution product keys that match the Windows 10 image.



OEM Deployment of Windows 10 for desktop
editions
7/27/2018 • 64 minutes to read • Edit Online

Getting ready to build and test Windows 10 desktop PCs? This lab shows you the steps to take to make and
deploy Windows images. We'll show you how to use the tools to use and commands to setup an end-to-end
deployment. The commands can be scripted, helping you quickly customize new images for specific markets to
meet your customers' needs.

We'll walk you through the process of building a customized Windows deployment. Here's what we'll cover :

We'll start by preparing your environment, then we'll cover the steps for :

Preparing and mounting a WinPE image
Adding packages
Adding drivers
Creating WinPE media

Next we'll move onto customizing your Windows image. We'll start with offline customizations to a mounted
Windows image, where we'll cover :

Adding Drivers
Adding Languages
Adding Updates
Reinstalling inbox apps
Preinstalling Microsoft Office
Adding tiles to the Start Layout
Setup OOBE to display a custom EUL A
Configuring and using answer files to customize Windows Setup

We'll finish customizing the Windows image by deploying your image to a PC and then booting into Audit mode
and finish making changes, including:

Making changes in Audit mode
Preparing Push Button Reset

Finally, we'll Finalize and Capture your image, verify everything works, and prepare your image for deployment.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oem-deployment-of-windows-10-for-desktop-editions.md


Prepare your lab environment

NOTENOTE

Install the Windows ADK for Windows 10Install the Windows ADK for Windows 10

IMPORTANTIMPORTANT

Finalizing the image

Let's get started!

If you haven't gathered the files you need to go through this lab, see Get the tools you need for OEM deployment of
Windows 10 for desktop editions.

At this point, you should have your tools ready to go. At this point, you should have:

A USB drive, formatted with two partitions, with the following on the NTFS, partition (O:):

The extracted folder structure and files from USB-B

A technician PC that has:

A folder called C:\temp\lab  with the following media downloaded:
Windows installation media
The most recent version of the Microsoft Office OPK
Windows Features on Demand ISOs
Windows Language pack ISO
OPK App Update or Inbox Apps ISO
Windows ADK installer
Drivers for your image (if needed)

Let's setup your lab.

The Windows ADK is a collection of tools that enables you to manage and deploy custom Windows installations
to new computers.

Use the matching version of ADK for the images being customized. For example, if you're working with Windows 10, version
1803, use the ADK for Windows 10, version 1803.

On your technician PC:

1. If you have a previous version of the Windows Assessment and Deployment Kit (ADK), uninstall it.

2. Download the version of the Windows ADK that matches the version of Windows that you’re installing.
Run the installer.

3. Install with the following options:

Deployment Tools

Windows Preinstallation Environment (Windows PE)

User State Migration Tool (USMT)

4. When installation finishes, close the installer window.

https://developer.microsoft.com/windows/hardware/windows-assessment-deployment-kit#winADK


Create a bootable Windows PE (WinPE) partition

Prepare WinPE filesPrepare WinPE files

Customize WinPECustomize WinPE

Mount your WinPE imageMount your WinPE image

WinPE is a small, command-line based operating system that you can use to capture, update, and optimize
Windows images. In this section, we'll show you how to prepare a basic WinPE image on a bootable USB flash
drive and try it out.

copype amd64 C:\winpe_amd64

TIPTIP

1. On your technician PC, start the Deployment and Imaging Tools Environment as an administrator :

Click Start, type Deployment and Imaging Tools Environment. Right-click Deployment and
Imaging Tools Environment and select Run as administrator.

2. Use copype  to create a working directory that has the base WinPE files:

If this doesn't work, make sure you're in the Deployment and Imaging Tools Environment, and not the standard
command prompt.

You can customize a WinPE image (boot.wim) in several ways by adding files and components to a mounted
WinPE image.

Here are some examples of how you can modify your WinPE image:

Add an optional component. WinPE Optional components ship in the ADK. These are packages that you
can add to your WinPE image to add functionality to WinPE.

Add a graphics or network driver. (WinPE includes generic video and network drivers, but in some
cases, additional drivers are needed to show the screen or connect to the network.). To learn more, see
WinPE: Add drivers.

Set the power scheme to high-performance. Speeds deployment. Note, our sample deployment scripts
already set this scheme automatically. See WinPE: Mount and Customize: High Performance.

Optimize WinPE : Recommended for devices with limited RAM and storage (for example, 1GB
RAM/16GB storage). After you add drivers or other customizations to Windows PE, see WinPE: Optimize
and shrink the image to help reduce the boot time.

When you add packages to WinPE, performance will be reduced and boot time will increase. Only add packages
that you need to complete a successful deployment.

To customize a Windows image, you have to mount it before you can work with it. This is true for WinPE images
as well. Mounting an image extracts the contents of an image file to a location where it can be viewed and
modified. Throughout this lab we'll use DISM to mount and modify images. DISM comes with Windows, but we'll
be using the version that is installed by the ADK, which we'll access through the Deployment and imaging tools
environment.

Boot.wim is the WinPE image file. You can find it in the files that you copies with copype.cmd.

Mount the image:

From the Deployment and imaging tools environment, mount the image:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-add-drivers
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-optimize


Dism /mount-image /imagefile:c:\WinPE_amd64\media\sources\boot.wim /index:1 /mountdir:c:\winpe_amd64\mount

Add packages, optional components, dependencies, and language packs to WinPE (optional)Add packages, optional components, dependencies, and language packs to WinPE (optional)

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-WMI.cab"  
/PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation 
Environment\amd64\WinPE_OCs\en-us\WinPE-WMI_en-us.cab" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-NetFX.cab" 
/PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation 
Environment\amd64\WinPE_OCs\en-us\WinPE-NetFX_en-us.cab" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-Scripting.cab" 
/PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation 
Environment\amd64\WinPE_OCs\en-us\WinPE-Scripting_en-us.cab" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
PowerShell.cab" /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows 
Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-PowerShell_en-us.cab" /PackagePath:"C:\Program Files 
(x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
StorageWMI.cab" /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows 
Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-StorageWMI_en-us.cab" /PackagePath:"C:\Program Files 
(x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
DismCmdlets.cab" /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows 
Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-DismCmdlets_en-us.cab"

NOTENOTE

Add drivers to WinPE (If needed)Add drivers to WinPE (If needed)

NOTENOTE

dism /image:C:\winpe_amd64\mount /Add-Driver /driver:"C:\Out-of-Box Drivers\mydriver.inf"

Dism /Image:C:\Winpe_amd64\mount /Add-Driver /Driver:c:\drivers /Recurse

Use Dism /Add-Package  to add packages to your mounted WinPE image. The ADK has WinPE Optional
Components you can add for additional WinPE functionality. Some packages have dependencies and require
other packages to be installed. For these packages, you'll have to install the dependencies before you add the a
package. For example, if you want to use Powershell in WinPE, you have to install the NetFx as well as the
language-specific OCs. You can find OC CABs in 
C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\
<arch>\WinPE_OCs\

. Here's how to add Powershell support for en-us:

Only add additional packages when necessary. The more packages you add, the greater the impact to boot time and
performance.

If you need to add drivers to WinPE, you'll use Dism /Add-Driver . You'll only need to do this if WinPE doesn't
already include the drivers for your hardware.

Here's how to add drivers to WinPE:

This method requires .inf-based drivers. We recommend getting .inf based drivers from your hardware Vendor.

Where C:\Out-of-Box Drivers\mydriver.inf  is the path of the driver you're adding.

To install all of the drivers in a folder and all its subfolders use the /recurse option. For example:



Set the power scheme to high-performanceSet the power scheme to high-performance

Cleanup your WinPE imageCleanup your WinPE image

DISM /image:c:\winpe_amd64\mount /Cleanup-image /StartComponentCleanup /ResetBase

Commit your changes and unmount your imageCommit your changes and unmount your image

dism /unmount-image /mountdir:c:\winpe_amd64\mount /commit
dism /export-image /sourceimagefile:c:\winpe_amd64\media\sources\boot.wim /sourceindex:1 
/DestinationImageFile:c:\winpe_amd64\mount\boot2.wim
Del c:\winpe_amd64\media\sources\boot.wim
Copy c:\winpe_amd64\mount\boot2.wim c:\winpe_amd64\media\sources\boot.wim

Create a bootable WinPE driveCreate a bootable WinPE drive

Boot your reference PC to WinPEBoot your reference PC to WinPE

Where C:\drivers  is the drivers folder that you're adding.

Setting WinPE to use high-performance mode will speed deployment. The sample scripts set WinPE to high-
performance mode when they run, but if you want to make sure that WinPE always runs in high-performance
mode, you can modify startnet.cmd  in the WinPE image.

notepad C:\Winpe_amd64\mount\windows\system32\startnet.cmd

powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

1. Use notepad to open C:\Winpe_amd64\mount\windows\system32\startnet.cmd

2. Add the following line to startnet.cmd:

3. Save the file and close Notepad.

Run dism /cleanup-image  to reduce the disk and memory footprint of WinPE and increase compatibility with a
wide range of devices:

See WinPE: Optimize and shrink the image for more details.

If you've added extra files in your WinPE image, you can delete them to reduce your image size and improve
performance. When you're done working with your image, you can commit your changes and unmount your
image. Then export your customized WinPE image into your WinPE folder :

Now that you've updated your WinPE image to have everything it needs to work with the PCs in your
environment, you can make a bootable WinPE drive. From the Deployment and Imaging Tools Environment:

MakeWinPEMedia /UFD C:\winpe_amd64 P:

1. Connect your USB key to your technician PC.

2. Copy WinPE to the WinPE partition:

Where P: is the letter of the WinPE drive.

When prompted, press Y to format the drive and install WinPE.

1. Connect the USB drive to your reference device.

2. Turn off the reference device, and then boot to the USB drive. You usually do this by powering on the

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-optimize


 Customize your Windows image

SCENARIO OFFLINE ONLINE

Adding device drivers X X

Adding Microsoft Store apps X X

Adding Desktop (win32) apps - X

Adding language packs X X

Remove default language pack X -

Adding features-on-demand X X

Adding the latest cumulative update X X

Image optimization X X

Microsoft Store apps duplicate files
cleanup

X -

Microsoft Office X X

Prepare and mount a Windows imagePrepare and mount a Windows image

NOTENOTE

device and quickly pressing a key (for example, the Esc key or the Volume up key).

On some devices, you might need to go into the boot menus to choose the USB drive. If you're given a choice
between booting in UEFI mode or BIOS mode, choose UEFI mode. To learn more, see Boot to UEFI Mode or Legacy
BIOS mode. If the device does not boot from the USB drive, see the troubleshooting tips in WinPE: Create USB
Bootable drive.

WinPE starts at a command line, and runs wpeinit  to set up the system. This can take a few minutes.

Leave this PC booted to Windows PE for now. You can remove the bootable USB drive.

Now that you have your WinPE image customized for your deployment, we'll get into how to get your Windows
image ready for deployment. The process is similar to how we changed our WinPE image, but Windows has
many additional customization options.

You can make either offline or online or online customizations to a Windows image. Offline customizations are
done to the windows image (install.wim) from either the Technician PC or from the destination PC while booted
into WinPE. In most scenarios, offline customizations are customizations you perform from the Technician PC.
Online customizations are done on the Reference PC after it’s been booted into audit mode.

The table below shows which customizations can be made online and offline. In a manufacturing environment, it’s
recommended to do as many customizations as possible offline.

http://go.microsoft.com/fwlink/?LinkId=526943
http://go.microsoft.com/fwlink/?LinkId=526944


Backup your Windows image fileBackup your Windows image file

Mount your Windows imageMount your Windows image

Md C:\mount\windows
Dism /Mount-Wim /WimFile:C:\temp\lab\images\basicimage.wim /index:1 /MountDir:C:\mount\windows

Mount your WinRE imageMount your WinRE image

In this section we'll cover how to mount Windows images on your technician PC. Mounting a Windows image is
the same process that we used to mount the WinPE image earlier. When we mount our Windows image
(install.wim), we'll be able to access a second image, WinRe.wim, which is the image that supports recovery
scenarios. Updating install.wim and WinRE.wim at the same time helps you keep the two images in sync, which
ensures that recovery goes as expected.

Before we continue, make sure that you've created your USB-B drive. We showed you how to set it up in the Get
the tools you need section.

Start working with your images:

Before working on your Windows image, you want to make sure you have a backup copy in case something goes
wrong. Make a copy of the original image:

First copy the install.wim from your Windows installation media to USB-B. Install.wim includes both Home and
Professional images. We'll export the Home image from install.wim, and then work with that image during this
lab.

1. Insert USB-B into your technician computer.
2. Mount the Windows 10 Home .img from the Win Home 10 32-BIT/X64 English OPK.
3. From the mounted image, copy D:\sources\install.wim to C:\temp\lab\images. (Where D: is the drive letter of

the mounted image.)
4. From the Start menu, open Windows Kits, open the Deployment and Imaging Tools Environment as

administrator.
5. Make a copy of your image in case something goes wrong. 

copy "C:\temp\lab\Images\install.wim" C:\temp\lab\Images\install-backup.wim

Dism /export-image /sourceimagefile:C:\temp\lab\images\install.wim /sourceindex:2 
/destinationimagefile:C:\temp\lab\images\basicimage.wim
Del C:\temp\lab\images\install.wim

6. Export the Home edition (index 2) from install.wim as basicimage.wim and delete the original
C:\temp\lab\images\install.wim:

Now that you have your image exported, you can mount it.

Create a mount directory and mount basicimage.wim:

(where E:\ is the drive letter of USB-B)

If a system can't successfully boot into Windows, it will fail over to the Windows Recovery Environment (WinRE).
WinRE can repair common causes of unbootable operating systems. WinRE is based on WinPE, and to make it
work for your customers, you can add drivers, languages, Windows PE Optional Components, and other



NOTENOTE

Offline customizationsOffline customizations

About LanguagesAbout Languages

troubleshooting and diagnostic tools.

The WinRE image is included inside the Windows 10 image, and is eventually copied to the Windows RE tools
partition on the destination PC or device. To modify the WinRE image, you'll mount the Windows image, then
mount the WinRE image inside it. Make your changes, unmount the WinRE image, then unmount the Windows
image.

You should update your recovery image to ensure a consistent recovery experience whenever you:

Add boot-critical .inf-style drivers, such as the graphics and storage drivers.
Add major updates to Windows, like LCUs.
Add new languages, though this isn’t always possible, as not all languages have Windows RE equivalents.)

This lab assumes you’d rather keep winre.wim inside of install.wim to keep your languages and drivers in sync. If you’d like to
save a bit of time on the factory floor, and if you’re okay managing these images separately, you may prefer to remove
winre.wim from the image and apply it separately.

Md c:\mount\winre 
Dism /Mount-Wim /WimFile:C:\mount\windows\Windows\System32\Recovery\winre.wim /index:1 
/MountDir:C:\mount\winre

TIPTIP

attrib -h -a -s C:\mount\windows\Windows\System32\Recovery\winre.wim

Mount the Windows RE Image file from your mounted image.

If winre.wim cannot be seen under the specified directory, use the following command to set the file visible:

Troubleshoot: If the mounting operation fails, make sure you're using DISM from the Deployment and
Imaging Tools Environment. Do not mount images to protected folders, such as the User\Documents
folder. If DISM processes are interrupted, consider temporarily disconnecting from the network and
disabling virus protection.

With your images mounted, you can start customizing. We'll show you how to make offline customizations to
your Windows image. Offline customizations are changes that you can make to a mounted image without having
to boot into the Windows installation. First, we'll walk through adding (and removing) lanugages from your
Windows image.

In this section, we'll show you how to add languages to a Windows installation. If you want to add a language,
you'll need a language pack from the Language Pack ISO, as well as an internet connection or access to the



COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION

Language pack Microsoft-Windows-Client-
Language-Pack_x64_de-de

None UI text, including basic
Cortana capabilities.

Language interface pack Microsoft-Windows-Client-
Language-Interface-
Pack_x64_ca-es

Requires a specific fully-
localized or partially-
localized language pack.
Example: ca-ES requires es-
ES.

UI text, including basic
Cortana capabilities. To learn
more, see Available
Language Packs for
Windows.

Basic Microsoft-Windows-
LanguageFeatures-Basic-de-
de-Package

None Spell checking, text
prediction, word breaking,
and hyphenation if available
for the language.

Fonts Microsoft-Windows-
LanguageFeatures-Fonts-
Thai-Package

None Fonts required for some
regions. Example, th-TH
requires the Thai font pack.

Optical character
recognition

Microsoft-Windows-
LanguageFeatures-OCR-de-
de-Package

Basic Recognizes and outputs text
in an image.

Handwriting recognition Microsoft-Windows-
LanguageFeatures-
Handwriting-de-de-Package

Basic Enables handwriting
recognition for devices with
pen input.

Feature on Demand ISO.

Notes

Add languages before major updates. Major updates include hotfixes, general distribution releases, or
service packs. If you add a language later, you'll need to reinstall the updates.
Add major updates before apps. These apps include universal Windows apps and desktop applications. If
you add an update later, you'll need to reinstall the apps. We'll show you how to add these later in Lab 6: Add
universal Windows apps
Add your languages to your recovery image, too: Many common languages can be added to your
recovery image. We'll show you how to add these later in Lab 12: Update the recovery image.

Always use language packs and Features-On-Demand (FOD) packages that match the language and platform of
the Windows image.

Features on demand (FODs) are Windows feature packages that can be added at any time. When a user needs a
new feature, they can request the feature package from Windows Update. OEMs can preinstall these features to
enable them on their devices out of the box.

Common features include language resources like handwriting recognition. Some of these features are required
to enable full Cortana functionality.

The following table shows the types of language packages and components available for Windows 10:

You must add this
component before
adding any of the
following components.



Text-to-speech Microsoft-Windows-
LanguageFeatures-
TextToSpeech-de-de-
Package

Basic Enables text to speech, used
by Cortana and Narrator.

Speech recognition Microsoft-Windows-
LanguageFeatures-Speech-
de-de-Package

Basic, Text-To-Speech
recognition

Recognizes voice input, used
by Cortana and Windows
Speech

Retail Demo experience Microsoft-Windows-
RetailDemo-OfflineContent-
Content-de-de-Package

Basic, plus the language-
neutral Retail Demo
package: Microsoft-
Windows-RetailDemo-
OfflineContent-Content-
Package

Retail Demo experience.

COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION

Add or change languagesAdd or change languages

IMPORTANTIMPORTANT

In this section, we'll add languages and Features On Demand to your Windows image. We'll add the German (de-
de) language pack, then we'll add the Japanese ( ja-jp) language. Japanese is an example of a language that
requires additional font support.

If you install an update (hotfix, general distribution release [GDR], or service pack [SP]) that contains language-dependent
resources prior to installing a language pack, the language-specific changes in the update won't be applied when you add
the language pack. You need to reinstall the update to apply language-specific changes. To avoid reinstalling updates, install
language packs before installing updates.

Language updates have a specific order they need to be installed in. For example, to enable Cortana, install, in
order : Microsoft-Windows-Client-Language-Pack, then –Basic, then –Fonts, then –TextToSpeech, and then
–Speech. If you’re not sure of the dependencies, it’s OK to put them all in the same folder, and then add them all
using DISM /Add-Package .

Make sure that you are using language packs and features on demand that match the architecture of the image
you are working with. Below are examples for building 64-bit systems.

To start adding languages packs, mount the language pack ISO, and copy the language pack and
LanguageFeatures .cab files to C:\temp\lab\LanguagePacks . The examples below will use the German and
Japanese languages.

Dism /Add-Package /Image:C:\mount\windows /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-
Client-Language-Pack_x64_de-de.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-
LanguageFeatures-Basic-de-de-Package~31bf3856ad364e35~amd64~~.cab 
/PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-LanguageFeatures-OCR-de-de-
Package~31bf3856ad364e35~amd64~~.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-
LanguageFeatures-Handwriting-de-de-Package~31bf3856ad364e35~amd64~~.cab 
/PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-LanguageFeatures-TextToSpeech-de-de-
Package~31bf3856ad364e35~amd64~~.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-
LanguageFeatures-Speech-de-de-Package~31bf3856ad364e35~amd64~~.cab 
/packagepath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-RetailDemo-OfflineContent-Content-de-de-
Package~31bf3856ad364e35~amd64~~.cab

1. Add German language pack and Feature on Demand language packages.

Use the language packs and Features on Demand from the 64-bit ISOs:

https://docs.microsoft.com/windows-hardware/customize/desktop/retail-demo-experience


Configure language settingsConfigure language settings

Dism /Add-Package /Image:C:\mount\windows /PackagePath:E:\LanguagePacks\x64\Microsoft-Windows-Client-
Language-Pack_x64_ja-jp.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-LanguageFeatures-
Basic-ja-jp-Package~31bf3856ad364e35~amd64~~.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-
Windows-LanguageFeatures-OCR-ja-jp-Package~31bf3856ad364e35~amd64~~.cab 
/PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-LanguageFeatures-Handwriting-ja-jp-
Package~31bf3856ad364e35~amd64~~.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-
LanguageFeatures-TextToSpeech-ja-jp-Package~31bf3856ad364e35~amd64~~.cab 
/PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-LanguageFeatures-Speech-ja-jp-
Package~31bf3856ad364e35~amd64~~.cab /PackagePath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-
LanguageFeatures-Fonts-Jpan-Package~31bf3856ad364e35~amd64~~.cab 
/packagepath:C:\Temp\Lab\LanguagePacks\Microsoft-Windows-RetailDemo-OfflineContent-Content-ja-jp-
Package~31bf3856ad364e35~amd64~~.cab

dism /get-packages /image:"C:\mount\windows"

Package Identity : Microsoft-Windows-Client-LanguagePack  ...  de-DE~10.0.17134.1
State : Installed

dism /get-capabilities /image:"C:\mount\windows"

Capability Identity : Language.Basic~~~de-de~0.0.1.0
State : Installed
...
Capability Identity : Language.Handwriting~~~de-de~0.0.1.0
State : Installed

Where E: is the drive letter of the mounted ISO.

2. (Optional) Add Japanese language packs and features on demand.

In Windows 10, some language-specific fonts were separated out into different canguage .cab files. In this
section, we'll add the ja-JP language along with support for Japanese fonts.

Use the language packs and Features on Demand from the 64-bit ISOs:

3. Verify that the language packs are now part of the mounted images:

Make sure that the added languages are on the list.

4. Verify that the Features on Demand are in your image:

Make sure that the language FODs are in the list:

This section covers how to change the default language and timezone of your mounted Windows image.

Dism /Image:C:\mount\windows /Set-AllIntl:de-DE

Dism /Image:C:\mount\windows /Get-Intl

1. Use DISM to set the default language of the image. We'll set the default language to German, since we
added it into our image in the previous steps.:

2. Verify your changes



Set the default timezoneSet the default timezone

Dism /Set-TimeZone:"W. Europe Standard Time" /Image:"C:\mount\windows"

Remove the base language from the imageRemove the base language from the image

WARNINGWARNING

dism /image:"c:\mount\windows" /remove-package /packagename:Microsoft-Windows-Client-LanguagePack-
Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:Microsoft-Windows-LanguageFeatures-Basic-en-us-
Package~31bf3856ad364e35~amd64~~10.0.17134.1 /packagename:Microsoft-Windows-LanguageFeatures-Handwriting-en-
us-Package~31bf3856ad364e35~amd64~~10.0.17134.1 /packagename:Microsoft-Windows-LanguageFeatures-OCR-en-us-
Package~31bf3856ad364e35~amd64~~10.0.17134.1 /packagename:Microsoft-Windows-LanguageFeatures-Speech-en-us-
Package~31bf3856ad364e35~amd64~~10.0.17134.1 /packagename:Microsoft-Windows-LanguageFeatures-TextToSpeech-en-
us-Package~31bf3856ad364e35~amd64~~10.0.17134.1 /packagename:Microsoft-Windows-RetailDemo-OfflineContent-
Content-en-us-Package~31bf3856ad364e35~amd64~~10.0.17134.1

TIPTIP

Error: 0x800f0825
Package Microsoft-Windows-LanguageFeatures-Basic-en-us-Package may have failed due to pending updates to 
servicing components in the image. 

Add languages to Windows REAdd languages to Windows RE

You can use DISM to set the default timezone for a PC. Here we'll set the time zone. See Default time zones for a
list of available time zones.

This section covers removing a language from the Windows image. This is an optional step.

Now that our image has been set to use German as the default language, we can remove the English language
features from it and make it a non-English image. To remove en-US completely from the image, you'll have to
remove several components.

Don't remove the English base language if you're shipping a PC in English.

For removing the language components from a 64-bit image:

Troubleshooting: If an error occurs when running these commands, try the command again on the package that failed.
Example:

If the command completes with errors, check the DISM log file. at C:\windows\Logs\DISM\dism.log.

Here we'll show you how to add languages to WinRE. Adding languages to WinRE ensures that the language that
a customer expects is available in recovery scenarios. Follow these steps if you added languages to your Windows
image.

WinRE uses the same language packs as WinPE. You can find these language packs on the language pack ISO,
and you can find language-specific WinPE OCs in the ADK installation folder at 
C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation
Environment\amd64\WinPE_OCs\<lang>

To complete this section, copy the language packs from the Language pack ISO and the WinPE OCs from 
C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation
Environment\amd64\WinPE_OCs

to C:\Temp\Lab\LanguagePacks\RE\<language> .

1. Add German language packages



Remove the base languages from WinRE (Optional)Remove the base languages from WinRE (Optional)

Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\lp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\Temp\Lab\LanguagePacks\RE\de-deWinPE-Rejuv_de-
de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\\de-de\WinPE-
EnhancedStorage_de-de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-
Scripting_de-de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-
SecureStartup_de-de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-SRT_de-
de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-WDS-
Tools_de-de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-WMI_de-
de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-
StorageWMI_de-de.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\de-de\WinPE-HTA_de-
de.cab"

Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\lp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-
Rejuv_ja-jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-
EnhancedStorage_ja-jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-
Scripting_ja-jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-
SecureStartup_ja-jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-SRT_ja-
jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-WDS-
Tools_ja-jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-WMI_ja-
jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-
StorageWMI_ja-jp.cab" 
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-HTA_ja-
jp.cab"
Dism /image:C:\mount\winre /add-package /packagepath:"C:\temp\lab\LanguagePacks\RE\ja-jp\WinPE-
FontSupport-JA-JP.cab"

3. Set the default language for WinRE to match the default Windows language.
Dism /Image:C:\mount\winre /Set-AllIntl:de-DE

Use the 64-bit versions of language packs and WinPE optional components:

2. (Optional) Add Japanese language packs and font support to WinRE. Note that for Japanese, we will add
an additional cab that is for font support.

Use the language packs and WinPE optional components from the 64-bit ISOs:

Similar to removing the base language in install.wim, we can remove the base language from WinRE as well.

For removing language components from a 64-bit image:



Dism /image:"c:\mount\winre" /remove-package /packagename:Microsoft-Windows-WinPE-LanguagePack-
Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:WinPE-EnhancedStorage-
Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:WinPE-HTA-Package~31bf3856ad364e35~amd64~en-
US~10.0.17134.1 /packagename:WinPE-Rejuv-Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:WinPE-
Scripting-Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:WinPE-SecureStartup-
Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:WinPE-SRT-Package~31bf3856ad364e35~amd64~en-
US~10.0.17134.1 /packagename:WinPE-StorageWMI-Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 
/packagename:WinPE-WDS-Tools-Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1 /packagename:WinPE-WMI-
Package~31bf3856ad364e35~amd64~en-US~10.0.17134.1

DriversDrivers

TIPTIP

Add drivers to your Windows imageAdd drivers to your Windows image

Add drivers to your WinRE imageAdd drivers to your WinRE image

You can add drivers to ensure Windows can successfully boot for the first time. Make sure that you add your
driver to the right image:

DCHU drivers: Many drivers include an information file (with an .inf extension) to help install the driver. These
can be installed using tools described in this section.
Boot-critical drivers: Graphics and storage drivers may sometimes need to be added to the Windows image
(as shown in this lab), Windows PE image, and in the WindowsRE image.

The following shows how to add drivers in various ways. If your hardware doesn't require any additional drivers,
you don't have to add any.

If you're creating several devices with identical hardware configurations, you can speed up installation time and first boot-up
time by maintaining driver configurations when capturing a Windows image.

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf"

WARNINGWARNING

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:c:\drivers /Recurse 

Dism /Get-Drivers /Image:"C:\mount\windows"

1. Add a single driver that includes an .inf file. In this example, we're using a driver named media1.inf:

Where "C:\Drivers\PnP.Media.V1\media1.inf" is the base .inf file in your driver package.

2. If you want to add an entire folder of drivers, you can use the /Recurse option. This adds all .inf drivers in
the folder and all its subfolders.

While /Recurse can be handy, it's easy to bloat your image with it. Some driver packages include multiple .inf driver
packages, which often share payload files from the same folder. During installation, each .inf driver package is
expanded into a separate folder, each with a copy of the payload files. We've seen cases where a popular driver in a
900MB folder added 10GB to images when added with the /Recurse option.

3. Verify that the drivers are part of the image:

Check the list of packages and verify that the list contains the drivers you added.



Dism /Add-Driver /Image:"C:\mount\winre" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf" 
/LogPath=C:\mount\dism.log

NOTENOTE

UpdatesUpdates

Add Windows updates to your imageAdd Windows updates to your image

IMPORTANTIMPORTANT

If you added drivers to your Windows image, you should also add them to your WinRE image. Adding drivers to
your recovery image ensures they are available during recovery scenarios. Adding drivers to a WinRE image is
the same process as adding drivers to a regular Windows image.

You can use the /recurse option to add an entire folder of drivers

While your image is mounted, you can add Windows updates. The process is similar to the one we used to add
drivers earlier.

Reminder :

Add languages before major updates. Major updates include hotfixes, general distribution releases, or
service packs. If you add a language later, you'll need to re-add the updates.
Add major updates before apps. These apps include universal Windows apps and desktop applications. If
you add an update later, you'll need to re-add the apps.
For major updates, update the recovery image too: These may include hotfixes, general distribution
releases, service packs, or other pre-release updates. We'll show you how to update these later in Lab 12:
Update the recovery image.
If a Servicing Stack Update (SSU) is required, you'll have to apply it before applying the most recent
General Distribution Release or any future GDRs.

Use DISM to apply the latest servicing stack update (SSU) and general distribution release (GDR) as well as any
prerequisite KB updates. You can find KB updates in the following locations:

GDR: http://aka.ms/win10releaseinfo

SSU: https://msdn.microsoft.com/en-us/windows/hardware/commercialize/manufacture/whats-new-in-
windows-manufacturing

KB Files: http://catalog.update.microsoft.com

If you install an update (hotfix, general distribution release [GDR], or service pack [SP]) that contains language-dependent
resources prior to installing a language pack, the language-specific changes in the update won't be applied when you add
the language pack. You need to reinstall the update to apply language-specific changes. To avoid reinstalling updates, install
language packs before installing updates.

1. Get a Windows update package. For example, grab the latest cumulative update listed in Windows 10
update history from the Microsoft Update catalog. Extract the .msu file update to a folder, for example,
E:\updates\windows10.0-kb4016240-x64_0e60aebeb151d4b3598e4cfa9b4ccb1fc80e6e4d.msu. Make
sure that your update matches the architecture of the image you are working with.

To learn more, see https://myoem.microsoft.com/oem/myoem/en/product/winemb/pages/comm-ms-
updt-ctlg-trnstn.aspx.

2. Add the msu to your mounted image using dism /add-package .

http://aka.ms/win10releaseinfo
https://msdn.microsoft.com/en-us/windows/hardware/commercialize/manufacture/whats-new-in-windows-manufacturing
http://catalog.update.microsoft.com
http://www.catalog.update.microsoft.com/Search.aspx?q=Cumulative+update
https://myoem.microsoft.com/oem/myoem/en/product/winemb/pages/comm-ms-updt-ctlg-trnstn.aspx


Add Update packages to WinREAdd Update packages to WinRE

IMPORTANTIMPORTANT

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"E:\updates\windows10.0-kb4000001-x64.msu"

Features and AppsFeatures and Apps
Features on DemandFeatures on Demand

Dism /Add-Package /Image:C:\mount\windows /PackagePath:"E:\updates\windows10.0-kb4000001-x64.msu"

Dism /Add-Package /Image:C:\mount\windows /PackagePath:"E:\updates\windows10.0-kb4000001-x64.msu" 
/PackagePath:"E:\updates\windows10.0-kb0000002-x64.msu"

NOTENOTE

DISM /Cleanup-Image /Image=C:\mount\windows /StartComponentCleanup /ResetBase /ScratchDir:C:\Temp

Dism /Image:C:\mount\windows /Get-Packages

Package Identity : Package_for_RollupFix~31bf3856ad364e35~amd64~~15063.250.1.1
State : Installed
Release Type : Security Update
Install Time : 04/29/2017 6:26 PM
The operation completed successfully.

You can also add multiple updates in the same command:

Each package is typically a new KB that increases the build revision number of Windows. You can find the revision
number of windows in the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\UBR

3. Lock in the update to ensure it get restored during recovery.

4. Verify that the updates are in the image.

Review the resulting list of packages and verify that the list contains the package. For example:

In this section, we cover how to add updates to the WinRE image.

You have to apply cumulative updates to your WinRE image in addition to your Windows image. Because updates are
cumulative, when a new update is installed, old updates can be removed. The WinRE optimization that we cover later in the
lab will remove unnecessary updates which will keep the WinRE image from growing in size.

To apply the update that you downloaded in the previous section to your WinRE image, you have to run 
dism /add-package  to apply the update to the mounted WinRE image.

Add a Feature on Demand (FOD) to your Windows image. Features on Demand are features that you can choose
to preinstall. You can see a list of available FODs, and recommendations for preinstallation here.

Here we'll show you how to preinstall the .Net Framework Feature on Demand.



AppsApps

Reinstall inbox appsReinstall inbox apps

Add a Microsoft Store appAdd a Microsoft Store app

Note: While it’s possible to add FODs using the /add-package command, we recommend using DISM with the
/Add-Capability option.

dism /image:C:\mount\windows /get-capabilities

dism /image:C:\mount\windows /add-capability /capabilityname:NetFX3~~~

1. On your technician PC, use DISM to get a list of available FODs in an image:

This will show a list of available capabilities.

2. Add the .NET framework.

.NET framework is now added to your image.

This section covers working with Apps, including reinstalling inbox apps after updates, how to add Microsoft Store
apps, and how to add Microsoft Office.

This section continues to use your mounted Windows image. If your image isn't still mounted, mount it.

Reminder: Install apps only after you have installed languages and updates, in that order.

Now that you've added languages and updates to your image, you have to reinstall the apps that come with
Windows. This makes sure that the apps will work and include the languages you have added to your image. To
reinstall these apps, you'll need the App update OPK or the inbox Apps ISO.

1. Extract the inbox apps ISO to c:\temp\lab\apps\inbox\amd64
2. Run the E:\apps\ReinstallInboxApps-x64.bat  script.

Your apps are now ready to work with your image.

To complete this section, you'll need to have the App update OPK or the inbox apps ISO. Whichever you are using,
we'll refer to it as the App update OPK in the following steps.

DISM /Add-ProvisionedAppxPackage /Image:c:\mount\windows 
/PackagePath:"C:\temp\lab\apps\amd64\Microsoft.HEVCVideoExtension_8wekyb3d8bbwe.x64.appx" 
/licensepath:"C:\temp\lab\apps\inbox\amd64\Microsoft.HEVCVideoExtension_8wekyb3d8bbwe.x64.xml" 
/DependencyPackagePath:"C:\temp\lab\apps\inbox\amd64\Microsoft.VCLibs.x64.14.00.appx" 
/DependencyPackagePath:"C:\temp\lab\apps\inbox\amd64\Microsoft.VCLibs.x86.14.00.appx"

NOTENOTE

1. Use DISM to add the HEVC codec .appx from the files you extracted in Step 1:

2. Install the HEVC .appx:

Include both the x86 and x64 versions of the dependency packages.

3. Use DISM /Add-ProvisionedAppxPackage  to add any additional apps to your image.

4. Verify that the apps are installed:



Install a Microsoft Store app that won't be pinned to the Start MenuInstall a Microsoft Store app that won't be pinned to the Start Menu

Optimize your installed appsOptimize your installed apps

DISM.exe /Image:"C:\mount\windows" /Optimize-ProvisionedAppxPackages

Preinstall Microsoft OfficePreinstall Microsoft Office
R e l a t e d  se t sR e l a t e d  se t s

APP PACKAGE ID FILES

Shared code & required app (not visible
to user)

Microsoft.Office.Desktop_8wekyb3d8bb
we

shared.appxbundle
shared_License1.xml

Access Microsoft.Office.Desktop.Access_8weky
b3d8bbwe

access.appxbundle
access_License1.xml

Excel Microsoft.Office.Desktop.Excel_8wekyb3
d8bbwe

excel.appxbundle
excel_License1.xml

Outlook Microsoft.Office.Desktop.Outlook_8wek
yb3d8bbwe

outlook.appxbundle
outlook_License1.xml

Dism /Image:"C:\mount\windows" /Get-ProvisionedAppxPackages

For this section, you'll need to have at least two apps to add to your image. If you don't have any signed apps you
can skip to the next section.

New in Windows 10, version 1803: A Microsoft Store app can now be installed without being pinned to the
Start Menu. To install an app without also pinning it, use DISM /Add-ProvisionedAppxPackage  with the /region

switch when installing the app. When you create a custom Start Menu later in the lab, you'll be able to exclude an
installed app from the Start Menu.

Dism /Add-ProvisionedAppxPackage /PackagePath:app1.appxbundle /region="all"
Dism /Add-ProvisionedAppxPackage /PackagePath:app2.appxbundle /region="US"

1. Gather your apps for installation

2. Install your apps, specifying a region with the /region  option for each app. You can specify multiple
regions by separating the regions with a ; . We'll show you how you can use LayoutModification.xml with 
/region  later in the lab:

Note: If your apps have dependencies, include them in the command using the /DependencyPackagePath .
Like the examples in the previous section, it's common for apps to have dependencies on
.NET.CoreRuntime and .VCLibs, but If your apps do not share those dependencies, then do not include
them in your command.

New in Windows 10, version 1803: You can reduce app disk usage by running 
DISM /Optimize-ProvisionedAppxPackages  after you install apps. This command will only work when run against an

offline image:

The Office apps are delivered as a set of apps that are installed and serviced together. The main package for Office
is a set of shared code and each Office app (for example, Word, Excel, and PowerPoint) is installed as an optional
package. These packages are delivered as appxbundles that support all Store languages.



PowerPoint Microsoft.Office.Desktop.PowerPoint_8
wekyb3d8bbwe

powerpoint.appxbundle
powerpoint_License1.xml

Publisher Microsoft.Office.Desktop.Publisher_8we
kyb3d8bbwe

publisher.appxbundle
publisher_License1.xml

Word Microsoft.Office.Desktop.Word_8wekyb
3d8bbwe

word.appxbundle
word_License1.xml

APP PACKAGE ID FILES

A d d  O ff i c e  a p p s  t o  y o u r  i m a g eA d d  O ff i c e  a p p s  t o  y o u r  i m a g e

To add the Office apps to an image, use DISM with the /Add-ProvisionedAppxPackage  option. This option also
requires the following information for each app you add:

/PackagePath : This is only used to specify the path to the .appxbundle file for the shared code package.
/OptionalPackagePath : This is used to specify the path to the .appxbundle file for an individual app, such as

Word or Excel.
/LicensePath : This is used to specify the path to the _License1.xml file for an individual app. This is needed for

both the shared package and each of the optional app packages.

DISM /Image:C:\mount\windows /Add-ProvisionedAppxPackage /PackagePath="C:\temp\lab\apps\Office 
Apps\shared.PreinstallKit\shared.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\excel.PreinstallKit\excel.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\powerpoint.PreinstallKit\powerpoint.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\word.PreinstallKit\word.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\outlook.PreinstallKit\outlook.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\publisher.PreinstallKit\publisher.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\access.PreinstallKit\access.appxbundle" /LicensePath="C:\temp\lab\apps\Office 
Apps\shared.PreinstallKit\shared_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\excel.PreinstallKit\excel_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\powerpoint.PreinstallKit\powerpoint_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\word.PreinstallKit\word_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\outlook.PreinstallKit\outlook_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\publisher.PreinstallKit\publisher_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\access.PreinstallKit\access_License1.xml"

TIPTIP

NOTENOTE

1. Extract the Office OPK to C:\temp\lab\apps.

2. Use DISM to add all the Office apps to an offline image. The following example assumes the appxbundle
and license xml files are in subdirectories on USB-B (D:). The example also excludes the /region switch
because we want Office to appear in both the All Apps list, and as a Start Menu tile.

You need to specify both an appxbundle and a license package for the shared package, as well as for each individual
app that you want to install.

The command for adding the Office apps in audit mode (online instead of offline) would be the same, but replace
/Image:C:\mount\windows with /online.

Notes on Language Support

When install Office with DISM, Office language files are automatically added that match the languages that



Modify the Start layoutModify the Start layout
New in Windows 10, version 1803New in Windows 10, version 1803

Start menuStart menu

Dism /Image:"C:\mount\windows" /Get-ProvisionedAppxPackages

...
Displayname : Microsoft.Office.Desktop.Access
Version : 16000.8528.2136.0
Architechture : neutral
ResourceID : ~
PackageName : Microsoft.Office.Desktop.Access_16000.8528.2136.0_neutral_~_8wekyb3d8bbwe
Regions : None

Displayname : Microsoft.Office.Desktop.Excel
Version : 16000.8528.2136.0
Architechture : neutral
ResourceID : ~
PackageName : Microsoft.Office.Desktop.Excel_16000.8528.2136.0_neutral_~_8wekyb3d8bbwe
Regions : None

Displayname : Microsoft.Office.Desktop.Outlook
Version : 16000.8528.2136.0
Architechture : neutral
ResourceID : ~
PackageName : Microsoft.Office.Desktop.Outlook_16000.8528.2136.0_neutral_~_8wekyb3d8bbwe
Regions : None
...

are in the Windows image.

By default, Office will use the UI language of Windows. To configure Windows UI language, see DISM
Languages and International Servicing Command-Line Options.
There isn't a way to add additional Office languages that aren't part of the Windows image.
Both display and proofing resources for Office will be installed for each Windows language.
Some languages supported by Windows are not supported by Office – for these cases, Office will use
the closest available language (for example, es-mx will attempt to use es-es instead).
You can find installed Windows languages in Windows Settings > Time & language > Region &
language.

3. Verify Office was installed:

where C is the drive letter of the drive that contains the image.

Review the resulting list of packages and verify that the list contains the Office apps, such as:

To have the apps appear on the Start screen, follow the steps in the next section: Configuring Start tiles and
taskbar pins.

To complete the Office install, you’ll need to unmount the image and commit your changes, which we'll do
this after we’ve completed all customizations at the end of this lab.

Apps can now be pinned to the All Apps list without also having to be pinned as a Start tile. This is done through
the new "region" switch (as described in the previous section). In the previous section, we added three apps to our
image: App1, App2, and Office. In this lab, we will omit App1 from LayoutModification.xml to ensure that App1
only appears in the All Apps list, and not also as a Start menu tile. We will also include App2 in
LayoutModification.xml to demonstrate that even if the "region" switch was used when adding the app to the
image, the app will still appear in the Start Menu if included in the LayoutModification.xml file. In other words, the
LayoutModification.xml file takes precedence.



NOTENOTE

About the Start Menu layoutAbout the Start Menu layout

If you don’t create a LayoutModification.xml file and you use the Start Unattend settings, Windows will take the
first 12 SquareTiles  or DesktoporSquareTiles  settings specified in the Unattend file. The system then places these
tiles automatically within the newly-created groups at the end of Start. The first six tiles are placed in the first
OEM group and the second set of six tiles are placed in the second OEM group. If OEMName  is specified in the
Unattend file, the value for this element is used to name the OEM groups that get created.

The Start layout and taskbar pins can be lost if the user resets their PC with the built-in recovery tools. To make sure these
settings stay on the device, update the recovery image along with the Windows image.

The Start tile layout in Windows 10 provides OEMs the ability to append tiles to the default Start layout to include
Web links, secondary tiles, classic Windows applications, and universal Windows apps. OEMs can use this layout
to make it applicable to multiple regions or markets without duplicating a lot of the work. In addition, OEMs can
add up to three default apps to the frequently used apps section in the system area, which delivers system-driven
lists, including important or frequently accessed system locations and recently installed apps.

To take advantage of the new features, and to have the most robust and complete Start customization experience
for Windows 10, consider creating a LayoutModification.xml file. This file specifies how the OEM tiles should be
laid out in Start. For more information about how to customize the new Start layout, see Customize the Windows
10 Start Layout.

Get started: Use the sample layoutmodification.xml we've included in the USB-B files. We recommend starting
with this file for this section of this lab. You can find it in USB-B\StartLayout\layoutmodification.xml .

To learn more about layoutmodification.xml, see LayoutModification XML.

<RequiredStartGroups Region="DE|ES|FR|GB|IT|US">

1. Use the optional Region  attribute in the RequiredStartGroups  element to use different layouts for different
regions. The Region  value must be equal to two-letter country/region codes, and separated by a pipe "|"
delimiter if you're specifying multiple regions. The regions listed in the group are related to the regions you
specified when you added apps to your image using the /region  option. If the country/region setting for
the Windows device matches a RequiredStartGroups , then the tiles laid out within the RequiredStartGroups

is applied to Start. If you specify a region-agnostic RequiredStartGroups  (or one without the optional
Region attribute) then the region-agnostic RequiredStartGroups  is applied to Start.

In your layoutmodification.xml, add regions to RequiredStartGroups :

2. Specify the tiles you want to add within an AppendGroup. OEMs can add a maximum of two
AppendGroups. The following example shows two groups called "Fabrikam Group 1" and "Fabrikam
Group 2", which contains tiles that will be applied if the device country/region matches what’s specified in
Region (in this case, the regions are Germany, Spain, France, United Kingdom, Italy, and United States).
Each group contains three tiles and the various elements you need to use depending on the tile that you
want to pin to Start.

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/customize-start-layout
https://docs.microsoft.com/en-us/windows/configuration/start-layout-xml-desktop#layoutmodification-xml


<LayoutModificationTemplate
xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
xmlns:defaultlayout="http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
Version="1">
<RequiredStartGroupsCollection>
<RequiredStartGroups
  Region="DE|ES|FR|GB|IT|US">
  <AppendGroup Name="Fabrikam Group 1">
      <start:DesktopApplicationTile
        DesktopApplicationID="Microsoft.Windows.Explorer" 
      Size="2x2" 
      Row="0" 
      Column="4"/>
  </AppendGroup>    
  <AppendGroup
    Name="Fabrikam Group 2">
    <start:Tile AppUserModelID="Microsoft.MicrosoftEdge_8wekyb3d8bbwe!MicrosoftEdge" 
      Size="2x2" 
      Row="0"
      Column="0"/>
   </AppendGroup>
</RequiredStartGroups>
</RequiredStartGroupsCollection> 

<RequiredStartGroups Region="US">
    <AppendGroup Name="MyGroup">
        <start:Tile AppUserModelID="App2!App" Size="2x2" Row="2" Column="0"/>
    </AppendGroup>

<RequiredStartGroups Region="DE|US|JA">
    <AppendGroup Name="MyGroup">
        <start:Tile AppUserModelID="App2!App" Size="2x2" Row="2" Column="0"/>
    </AppendGroup>

<AppendOfficeSuite/>
<AppendOfficeSuiteChoice Choice="DesktopBridgeSubscription"/>

3. In the Add Microsoft Store Apps section above, we asked you to install two apps using the /region switch:
App1 and App2. Since we included a /region  switch for both, both will be installed and appear in the All
Apps list. However, to get just App2 to also appear as a Start menu tile, add the following line inside your
second in the LayoutModification.xml file, such as:

Since we set the region to "US" for App2 when provisioning it, we should set the region to "US" here in our
LayoutModification.xml to ensure App2 only appears as a Start menu tile in US images. So, ensure your
region parameter looks like this:

Or at least includes the US, such as this:

4. Add Microsoft Office Start Menu tiles. This is a requirement for OEMs that participate in the Jumpstart
program.

You can have tiles appear on the Windows 10 Start menu for Word, PowerPoint and Excel. The tiles appear
in a designated area for Microsoft apps (upper left in the following diagram). All additional apps will be
accessible in the Apps list on the left.

Add the following to the LayoutModification.xml file to add the tiles:



NOTENOTE

Copy E:\StartLayout\Bing.url  "C:\mount\Windows\ProgramData\Microsoft\Windows\Start Menu\Programs"
Copy E:\StartLayout\Paint.lnk "C:\mount\Windows\ProgramData\Microsoft\Windows\Start Menu\Programs"
Copy E:\StartLayout\Bing.url  "C:\mount\Windows\Users\All Users\Microsoft\Windows\Start Menu\Programs"
Copy E:\StartLayout\Paint.lnk "C:\mount\Windows\Users\All Users\Microsoft\Windows\Start Menu\Programs"

Add a license agreement and info fileAdd a license agreement and info file
Add an OEM-specific licenseAdd an OEM-specific license

NOTENOTE

To Add a desktop app, use the start:DesktopApplicationTile tag. If you know the application user model ID for the app, use
that to identify it. Otherwise, if you pinned tiles that require .url or .lnk files, add the files to the following legacy Start Menu
directories:

%APPDATA%\Microsoft\Windows\Start Menu\Programs\
%ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\

Example:

1. Save the Start Layout file as layoutmodification.xml.
2. Copy the saved file to your mounted image, to the 

C:\Mount\Windows\Users\Default\Appdata\Local\Microsoft\Windows\Shell  folder. If a layoutmodification.xml file
already exists in the folder, replace the existing file with the new one.

In this section, we'll cover how an OEM can add their own license terms during OOBE.

If the license terms are included, the OEM must include a version of the license terms in each language that is preinstalled
onto the PC. A license term text must be an .rtf file, and have an .html file with a matching name in the same folder. See
OEM license terms for more information on license files.

To begin adding license terms, you'll have to create folders for your license files, and then configure OOBE to
show the license on first boot.

MD c:\mount\windows\windows\system32\oobe\info\default\1031
MD c:\mount\windows\windows\system32\oobe\info\default\1033

1. Create folders for your system languages under the following directory:
C:\mount\windows\Windows\System32\oobe\info\default\

2. Name each folder under the C:\mount\windows\Windows\System32\oobe\info\default\ directory as the
Language Decimal Identifier that corresponds to the language. Do this step for each language pack that's in
the Windows image.

Note: Please see this link to see complete list of language decimal identifiers of corresponding languages.

For example, if en-us and de-de language packs are added to the Windows image, add a folder named
"1033" (representing en-us language) in C:\mount\windows\Windows\System32\oobe\info\default. Then
add a folder named "1031" (de-de language) under the same
C:\mount\windows\Windows\System32\oobe\info\default\ directory.

3. Create a license terms .rtf file for each language you have in your image, and copy them to the language-
specific oobe folder.

For example: Move the English agreement.rtf file to

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license


Create an image info file and add it to your imageCreate an image info file and add it to your image

Customize Windows with an answer file

copy E:\resources\english-agreement.rtf 
c:\mount\windows\windows\system32\oobe\info\default\1033\agreement.rtf
copy E:\resources\german-agreement.rtf 
c:\mount\windows\windows\system32\oobe\info\default\1031\agreement.rtf

C:\mount\windows\windows\system32\oobe\info\default\1033\agreement.html  (English version)
C:\mount\windows\windows\system32\oobe\info\default\1031\agreement.html  (German version)

 <FirstExperience>
<oobe>
    <oem>
        <eulafilename>agreement.rtf</eulafilename>
    </oem>
</oobe>
</FirstExperience>

copy E:\configset\oobe.xml c:\mount\windows\windows\system32\oobe\info\default\1033
copy E:\configset\oobe.xml c:\mount\windows\windows\system32\oobe\info\default\1031

C:\mount\windows\Windows\System32\oobe\info\default\1033\ directory and move the German
agreement.rtf to C:\mount\windows\Windows\System32\oobe\info\default\1031.

4. Open a text editor and create .html versions of your license terms. Save the terms to the same folders as
the .r tf versions. You can use the EUL A example from OEM license terms to create sample files. The names
of the EUL A files should be identical, except for the extension.

5. Create an oobe.xml file to specify the license agreement.rtf file path. Windows will automatically find the
accompanying .html file. Below is a sample oobe.xml which is located at USB-B\ConfigSet\oobe.xml

6. Copy oobe.xml file to `C:\mount\windows\windows\system32\oobe\info\

7. Copy oobe.xml to the laguage-specific folders you created earlier.For example: Copy oobe.xml to
C:\mount\windows\Windows\System32\oobe\info\default\1033, which has a file called agreement.rtf in
English. To add the German agreement, copy oobe.xml to
C:\mount\windows\Windows\System32\oobe\info\default\1031\ directory, which has the German
agreement.rtf file.

8. Now each language folder has an oobe.xml, agreement.rtf, and agreement.thml file in that corresponding
language.

When the image first boots into OOBE, it will display the license agreement.

echo 4-24-2018 >"C:\mount\windows\Windows\csup.txt"

Create an csup.txt file to specify when the Windows image was created. This file must include the date that
the image was created, in the form of 'MM-DD-YYYY', with no other characters, on a single line at the top
of the file. This command will create the file:

Answer files (or Unattend files) can be used to modify Windows settings in your images during Setup. You can
also create settings that trigger scripts in your images that run after the first user creates his/her account and picks

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license#eula-example
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license


Make an answer fileMake an answer file

Create a catalog file in Windows SIMCreate a catalog file in Windows SIM

the default language. Answer files allow you specify various setup options, including how to partition disks, the
location of the Windows image to install, and the product key to apply. Values that apply to the Windows
installation, such as the names of user accounts, display settings, and Internet Explorer Favorites can also be
specified. The answer file for Setup is typically called Unattend.xml.

Unattend files include several sections, each of which are processed at different times throughout the Windows
installation process. These phases are called configuration passes. Here are the most often-used passes:

You can specify which configuration pass to add new settings to:

1 - windowsPE: These settings are used by the Windows Setup installation program. If you’re modifying
existing images, you can usually ignore these settings.
2 - offlineServicing: Settings in offlineServicing are processed when DISM is used to apply an unattend file to
an offline image.
4 - specialize: Most settings should be added here. These settings are triggered both at the beginning of audit
mode and at the beginning of OOBE. If you need to make multiple updates or test settings, generalize the
device again and add another batch of settings in the Specialize Configuration pass.
6 - auditUser: Runs as soon as you start audit mode. AuditUser is a good place to run a system test script.
We'll add Microsoft-Windows-Deployment\RunAsynchronousCommand as our example. To learn more, see
Add a Custom Script to Windows Setup.
7 - oobeSystem: Use sparingly. Most of these settings run after the user completes OOBE. The exception is the
Microsoft-Windows-Deployment\Reseal\Mode = Audit setting, which we’ll use to bypass OOBE and boot the
PC into audit mode. If your script relies on knowing which language the user selects during OOBE, you’d add it
to the oobeSystem pass.

While you can set many Windows settings in audit mode, some settings can only be set by using an answer file or
Windows Configuration Designer, such as adding manufacturer ’s support information. A full list of answer file
settings (also known as Unattend settings) is in the Unattended Windows Setup reference.

Use Windows System Image Manager (S IM) to create and modify unattend files. S IM is installed as part of the
ADK. We have included some answer files in USB-B that will get you started. Make sure that your answer settings
include the required settings as outlined in the OEM Policy Document:

md c:\mount\windows\windows\panther
copy /y E:\AnswerFiles\OA3.0\Unattend.xml C:\Mount\Windows\Windows\Panther 

md c:\mount\windows\Windows\panther
copy /y E:\AnswerFiles\Non_OA3.0\Unattend.xml C:\Mount\Windows\Windows\Panther

For OA 3.0 systems:

(where E:\ is USB-B)

For non-OA 3.0 systems:

(where E:\ is USB-B)

Catalog files (.clg) are files with information about settings that are applicable to a particular Windows image.
When working with a Windows image in S IM, you have to first create a catalog file for the Windows WIM you're
working with.

1. Start Windows System Image Manager (WSIM).
2. Click File > Select Windows Image.

https://msdn.microsoft.com/library/windows/hardware/dn923277


Create an answer fileCreate an answer file

Add answer file settingsAdd answer file settings

md c:\mount\windows\Windows\panther

A d d  O E M  i n fo  (o p t i o n a l )A d d  O E M  i n fo  (o p t i o n a l )

Se t  t h e  d e v i c e  t o  a u t o m a t i c a l l y  b o o t  t o  a u d i t  m o d eSe t  t h e  d e v i c e  t o  a u t o m a t i c a l l y  b o o t  t o  a u d i t  m o d e

3. In Select a Windows Image, browse to and select the image file (D:\install.wim).
4. Select the Home edition of Windows 10 and click OK.
5. Click Yes to create the catalog file. Windows SIM creates the file based on the image file, and saves it to the

same folder as the image file. This process can take several minutes.

The catalog file appears in the Windows Image pane. Windows SIM lists the configurable components and
packages in that image.

If you're not working with the existing unattend file, you can create a new one in Windows SIM:

Click file > New Answer File

The new answer file will appear in the right-pane.

In this section, we'll show you how to create an answer file that can configure settings when you deploy your
Windows image.

Before you start, create a folder called Panther in your mounted Windows image. Windows will automatically look
in this folder for an answer file.

1. In the Windows Image pane, expand Components, right-click amd64_Microsoft-Windows-Shell-
Setup_(version), and then select Add Setting to Pass 4 specialize.

2. In the Answer File pane, select Components\4 specialize\amd64_Microsoft-Windows-Shell-
Setup_neutral\OEMInformation.

3. In the OEMInformation Properties pane, in the Settings section, set:
Manufacturer=Fabrikam Model=Notebook Model 1 Logo=C:\Fabrikam\Fabrikam.bmp

4. Save the answer file in the Panther folder as USB-B\AnswerFiles\unattend.xml .

Next you'll have to make sure that the logo you specified above is in your Windows image.

mkdir c:\mount\windows\Fabrikam

copy fabrikam.bmp c:\mount\windows\fabrikam

1. Create a 32-bit color image with a maximum size of 120x120 pixels. Save it as
D:\AnswerFiles\Fabrikam.bmp file on your Technician PC. We've included a sample on USB-B, which you
can use for this lab: D:\Logos\Fabrikam.bmp.

2. Create a folder in your mounted Windows image called Fabrikam .

3. Copy Fabrikam.bmp to the Fabrikam folder you just created:

Using the same unattend.xml file, set the PC to automatically boot into Audit mode.

1. In the Windows Image pane, expand Components, right-click amd64_Microsoft-Windows-
Deployment_(version), and then select Add Setting to Pass 7 oobeSystem.

2. In the Answer File pane, select Components\7 oobeSystem\amd64_Microsoft-Windows-
Deployment_neutral\Reseal.

3. In the Reseal Properties pane, in the Settings section, select Mode=Audit .

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-deployment-reseal-mode


En a b l e  S- M o d eEn a b l e  S- M o d e

NOTENOTE

4. Save the answer file in the Panther folder as unattend.xml.

If you don't want to enable S-Mode, you can skip to the next section.

New in Windows 10, version 1803: Windows 10 S is no longer a separate SKU from other versions of
Windows. S-mode is now a mode that can be activated on Home and Pro SKUs.

Set S Mode In this section, we'll show you how to enable S mode in a Windows image. We'll use an Unattend file
that has a setting in Pass 2 - offlineServicing, and use DISM to apply it to our mounted Windows image.

1. Use Windows SIM to modify unattend.xml.
2. Add the amd64_Microsoft_Windows_CodeIntegrity component to Pass 2 offline Servicing.
3. Set amd64_Microsoft_Windows_CodeIntegrity\SkuPolicyRequired to 1 .
4. Save the answer file in the Panther folder as unattend.xml.

dism /image:C:\mount\windows /apply-unattend:C:\mount\windows\windows\panther\unattend.xml

5. Use DISM to apply the unattend file and enable S Mode:

Note: Only Pass 2 - offline Servicing is processed when an unattend file is applied with DISM.

S mode is now applied to the Windows image. When the PC boots, the same Code Integrity policy that is
enforced in Windows 10 S will be enforced on your Windows installation.

Enable Manufacturing mode

If you plan to make additional changes to your image in audit mode, such as editing the registry, running a script,
or running a command from the command-prompt, you have to temporarily enable Manufacturing Mode, which
allows unsigned code that is normally blocked in S Mode to run in Audit mode. This allows you to run scripts,
installers and diagnostic tools (i.e., unsigned code) during the manufacturing process. Manufacturing Mode is
enabled by adding a registry key to the offline image, and it’s disabled by removing the key when booted into
audit mode.

reg load HKLM\Windows10S C:\Mount\Windows\Windows\System32\Config\System

reg add HKLM\Windows10S\ControlSet001\Control\CI\Policy /v ManufacturingMode /t REG_DWORD /d 1

reg unload HKLM\Windows10S

1. On your mounted image, load the SYSTEM registry hive from your mounted image into regedit on your
Technician PC. We'll use a temporary hive called HKLM\Windows10S.

2. Add the manufacturing registry key.

3. Unload the registry hive from your Technician PC.

After you unmount your image and commit your changes (below), your Windows 10 in S Mode image will have
the manufacturing key that will allow you to run unsigned code in audit mode.



  

IMPORTANTIMPORTANT

Set the Windows editionSet the Windows edition

Keep Windows settings through a recoveryKeep Windows settings through a recovery

Optimize WinRE (part 1)Optimize WinRE (part 1)

Unmount your imagesUnmount your images

Make sure to remove the manufacturing registry key before shipping your Windows 10 in S mode device. We show you
how to do that later in the lab, or you can learn how at Manufacturing mode

In this section, we will upgrade the Windows OS edition from Home to Pro.

Notes:

You cannot set a Windows image to a lower edition.
Note: You should not use this procedure on an image that has already been changed to a higher edition.
Since S-mode is not enabled until this image is booted on the Reference device, it doesn’t matter if you run the
/Set-Edition command before or after applying the unattend settings (which includes the S-mode 
<SkuPolicyRequired>  element).

You wouldn't normally switch editions offline like we'll show you here. Instead of upgrading editions, you
would've mounted a Windows Professional wim to begin with. This step is included here for instructional
purposes; just to show you the use of the /Set-Edition command.

Dism /Get-TargetEditions /Image:C:\mount\windows

Dism /Set-Edition:Professional /Image:C:\mount\windows

1. Determine available editions by running the following command to determine what images you can
upgrade the image to:

Note the edition IDs available.

2. Upgrade the edition to the Professional edition.

In recovery scenarios, Windows doesn't automatically save settings created through with answer files, Windows
Start Menu customizations created with LayoutModification.xml, or first-login info from oobe.xml.

To make sure Windows saves your customizations:

Save copies of unattend.xml, LayoutModification.xml, plus your
C:\mount\windows\Windows\System32\OOBE folder, in C:\Recovery\OEM.

Add scripts ResetConfig.xml and EnableCustomizations.cmd to C:\Recovery\OEM. Get these from Sample
scripts: Keeping Windows settings through a recovery.

Dism /image:c:\mount\winre /set-scratchspace:512

dism /image:"c:\mount\winre" /Cleanup-Image /StartComponentCleanup /Resetbase

1. Increase the scratchspace size of the WinRE image.

2. Cleanup unused files and reduce the size of winre.wim



1. Close all applications that might be accessing files from the image, including File Explorer.

Dism /Unmount-Image /MountDir:"C:\mount\winre" /Commit

dism /export-image /sourceimagefile:c:\mount\windows\windows\system32\recovery\winre.wim /sourceindex:1 
/DestinationImageFile:c:\temp\lab\winre_bak.wim
Del c:\mount\windows\windows\system32\recovery\winre.wim
Copy c:\temp\lab\winre_bak.wim c:\mount\windows\windows\system32\recovery\winre.wim

attrib -h -a -s C:\mount\windows\Windows\System32\Recovery\winre.wim

Dir "C:\mount\windows\Windows\System32\Recovery\winre.wim"

PARTITION SIZE FREE SPACE

Less than 500 MB Minimum 50 MB free

450 MB - 680 MB Minimum 320 MB free

More than 680 MB 1024 MB free

rem == 3. Windows RE tools partition ===============
create partition primary size=465

Dism /Image:c:\mount\windows /Cleanup-Image /StartComponentCleanup /ResetBase

2. Commit the changes and unmount the Windows RE image:

where C is the drive letter of the drive that contains the image.

This process can take a few minutes.

3. Make a backup copy of the updated Windows RE image and replace the old WinRE image with the newly
exported one:

If prompted, specify F  for file

Troubleshoot: If you cannot see winre.wim under the specified directory, use the following command to set
the file visible:

4. Check the new size of the Windows RE image:

5. Based on the size of the new winre.wim, adjust the partition sizes in the deployment scripts so they include
enough room for winre.wim, as well as some additional free space.

Follow the below partition layout size chart to determine the size of your recovery partition in the
createpartitions-<firmware>-<imageformat>.txt files. The amount of free space left is after you copy
winre.wim to the hidden partition. See the below disk partition rules for more information.

Example of the recovery partition size from the createpartitions diskpart scripts.:

6. Optimize the Windows image the same way you did with the WinRE image:



  

Deploy your images to a new PC

Boot to WinPEBoot to WinPE

Use a deployment script to apply your imageUse a deployment script to apply your image

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

Dism /Export-Image /SourceImageFile:"C:\temp\lab\Images\basicimage.wim" /SourceIndex:1 
/DestinationImageFile:"C:\temp\lab\Images\install.wim"

7. Commit the changes and unmount the Windows image:

Where C is the drive letter of the drive that contains the image. This process may take several minutes.

8. Finish optimizing your image by exporting the image. During the export process, DISM removes files that
were superseded and the image will have a reduced file size. Export the Windows image into a new image
file:

You now have a customized Windows image that you can deploy to other PCs. In the next section, we'll show you
how to deploy the image to your reference PC, make online changes, and then finalize the Windows image to get
it ready for final deployment.

In this section we'll deploy an image to a PC so that it can be customized in Audit mode. Before you start this
section:

copy c:\temp\lab\images\install.wim e:\images
copy c:\temp\lab\images\winre_bak.wim e:\images

Copy your customized images to USB-B\Images

Make sure the deployment scripts in USB-B\Deployment. These should have been copied when you
extracted the USB-B download to USB-B.

If you're not already booted into WinPE on the device you're deploying your image to, boot into WinPE:

1. Connect the USB key with the WinPE partition boot the reference computer.
2. If you're using two separate USB drives, after WinPE has been booted connect USB-B.
3. At the X:\Windows\system32> command line, type diskpart  and press Enter.
4. At the \DISKPART> command line type list volume .
5. In the "Label" column, note the letter of the volume under the "Ltr" column. This is the drive letter of your USB

key. (example E)
6. Type exit to quit Diskpart

Run a script to create partitions and apply your image. We'll use applyimage.bat in USB-B\deployment to do this
for us.

ApplyImage.bat uses diskpart scripts to create the partitions and define the partition layout. This script and the
subscripts it calls must be placed in the same subfolder. You can update these scripts to change the partition sizes
as you desire.



NOTENOTE

Make online customizations (audit mode)

Verify Customizations in Audit ModeVerify Customizations in Audit Mode

If you're going to be capturing and deploying your final image as an FFU, choose the options to not configure recovery. This
allows you to expand the Windows partition, if needed, after you apply your FFU. You can configure recovery after you
expand the Windows partition.

D:
cd Deployment
ApplyImage.bat D:\Images\install.wim

exit

1. Run applyimage.bat and specify the image to apply:

Where D: is the drive letter of your script and image on your USB Storage drive.

When prompted by the script:

a. Choose whether or not to configure the recovery partition

b. Press Y  to format the drive
c. Choose N  to not to deploy as Compact OS.

NOTENOTE

Y : Configures the Windows recovery partition
N : Does not configure the recovery partition. The recovery partition can be configured later.

Choose this option if you're going to be capturing and deploying your image as an FFU.

d. Press N  to indicate the image does not include extended attributes (EA)

Only use compact OS on Flash drive based devices as compact OS performance is heavily dependent on the
storage device capabilities. Compact OS is NOT recommended on rotational devices. Please reference
Compact OS for more information.

2. Remove the USB drive and reboot the reference PC.

The PC should boot into Windows Audit mode based on the settings of the unattend file we created earlier.
If you're not using an unattend.xml file that sets the PC to boot into Audit Mode, you can press 
Ctrl+Shift+F3  during OOBE to boot into Audit mode.

You can use audit mode to customize Windows using the familiar Windows environment. In audit mode, you can
add Windows desktop applications, change system settings, add data, and run scripts.

To make sure your audit mode changes are included in the recovery image, you'll need to capture these changes
into a provisioning package using ScanState. This package gets used by the system recovery tools to restore your
changes if things go wrong. You can optionally save drive space by running the applications directly from the
compressed recovery files; this is known as single-instancing.

If you want to capture the changes in an image and apply it to other devices, you'll need to use Sysprep to
generalize the image.



Verify the editionVerify the edition

Verify S ModeVerify S Mode

Apps and Store opportunitiesApps and Store opportunities

ITEM LOCATION IN REGISTRY

OEMID HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Curren
tVersion\Store, (REG_SZ) OEMID

We don't recommend connecting your PC to the internet during manufacturing, and also don't recommend
isntalling updates from Windows Update in audit mode because it will likely generate an error during sysprep.

1. After setup has finished, the computer logs into Windows in Audit mode automatically as an Administrator.
2. Verify the changes from the answer file (see manufacturer name, support phone number and other

customizations) are present.

Earlier in the lab, we upgraded the edition from Windows Home to Windows Professional. Verify this change:

1. Open Command Prompt as administrator

dism /online /get-current-edition

Current edition is:

Current Edition : Professional

The operation completed successfully.

2. Run:

3. Make sure it's the right edition. It should look like this:

Note: If you are working with a device that has S Mode enabled, the edition will still just say "Professional."
This is because S Mode is a mode, not an edition.

If you enabled S Mode earlier in the lab, verify that S Mode is enabled.

1. From Start, open Settings.
2. In Settings, open Update & Security
3. Choose Activation from the left pane

If your device has S Mode enabled, it will show here.

Through Windows 10 and the Microsoft Store, you have tremendous opportunities for brand and device
differentiation, revenue creation, and customer access.

Microsoft Store apps are at the center of the Windows 10 experience. They are Windows universal apps, so you
can build apps for desktops, tablets, or phones that run Windows 10. As an OEM, you can provide an engaging
customer experience and increase brand loyalty by providing a great set of value-added software and services
along with the high-quality hardware that you build.

Important: The key below must be set in Audit mode.

You have to change a registry setting to add your OEM ID. If you're an OEM Microsoft Store Program participant,
contact PartnerOps@microsoft.com to get your OEM ID.



SCM ID HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Curren
tVersion\Store, (REG_SZ) StoreContentModifier

ITEM LOCATION IN REGISTRY

IMPORTANTIMPORTANT

Prepare your image for Push Button Reset

OEMID

1. Run regedit.exe from Command Prompt
2. Navigate to HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Store
3. Right click under (Defalut) -> click new
4. Click String Value
5. Type OEMID
6. Double click OEMID and enter OEM name in Value data: text field

SCMID

1. Run regedit.exe from Command Prompt
2. Navigate to HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Store
3. Right click under (Defalut) -> click new
4. Click String Value
5. Type StoreContentModifier
6. Double click StoreContentModifier and enter OEM name in Value data: text field

The OEMID registry key is not restored automatically during PBR in Windows 10. Please refer to the scanstate section of
this guide on how to restore the OEMID registry key during PBR operation.

This section provides guidance for setting up the recovery environment for Push Button Reset (PBR) scenarios.

Please reference Push-button reset and Windows Recovery Environment (Windows RE) and Hard Drives and
Partitions for more information.

Push-button reset, is a built-in recovery tool which allows users to recover the OS while preserving their data and
important customizations, without having to back-up their data in advance. It reduces the need for custom
recovery applications by providing users with more recovery options and the ability to fix their own PCs with
confidence.

In Windows 10, the Push-button reset features have been updated to include the following improvements:

The Push-button reset user experience offers customization opportunities. Manufacturers can insert custom
scripts, install applications or preserve additional data at available extensibility points. The following Push-button
reset features are available to users with Windows 10 PCs:

Refresh your PC

Fixes software problems by reinstalling the OS while preserving the user data, user accounts, and
important settings. All other preinstalled customizations are restored to their factory state. In Windows 10,
this feature no longer preserves user-acquired Universal Windows apps.

Reset your PC

Prepares the PC for recycling or for transfer of ownership by reinstalling the OS, removing all user



Prepare ScanStatePrepare ScanState

Create a Scanstate migration fileCreate a Scanstate migration file

accounts and contents (e.g. data, Classic Windows applications, and Universal Windows apps), and
restoring preinstalled customizations to their factory state.

Bare metal recovery

Restores the default or preconfigured partition layout on the system disk, and reinstalls the OS and
preinstalled customizations from external media.

To start working with Push Button Reset, you'll need to copy ScanState to Data.

Use scanstate to capture Classic Windows applications and settings on your image.

Note: You'll use your technician PC to prepare ScanState.

1. On Technician PC Insert USB-B

2. Open Deployment and Imaging tools command prompt as administrator

Copydandi.cmd amd64 e:\scanstate

3. Run copydandi.cmd to copy necessary files to USB-B\scanstate:

Where E: is the letter of USB-B drive.

In this section, you'll create a configuration file that will restore files and registry keys during Push-button reset.

Create a migration XML file used to restore registry values manually entered during manufacturing process. The
sample below restores the OEMID registry value set earlier in this document.

Note: USB-B\recovery\recoveryimage\regrecover.xml already contains the registry values. You can use this file
instead of creating a new file.

1. Open notepad

<migration urlid="http://www.microsoft.com/migration/1.0/migxmlext/test">
     <component type="System" context="UserAndSystem">
          <displayName>OEMID</displayName> 
        <role role="Settings">
            <rules>
                <include>
                    <objectSet>
                        <pattern type="Registry">HKLM\Software\Microsoft\Windows\CurrentVersion\Store 
[OEMID]</pattern> 
                    </objectSet>
                </include>
            </rules>
        </role>
    </component>
</migration>

2. Copy and paste the following xml into Notepad. This tells ScanState to migrate the OEMID registry key:

3. If you enabled S mode, make sure that the manufacturing registry key doesn't get migrated by telling
ScanState to exlcude it. Add the following rule to exclude the registry key:



Create recovery package using ScanstateCreate recovery package using Scanstate

Create Extensibility scripts to restore additional settingsCreate Extensibility scripts to restore additional settings

<unconditionalExclude>
    <objectSet>
        <pattern type="Registry">HKLM\SYSTEM\CurrentControlSet\Control\CI\Policy [ManufacturingMode]
</pattern>
    </objectSet>
</unconditionalExclude>

4. Save the file as regerecover.xml.

On your reference PC:

Use ScanState to capture installed customizations into a provisioning package, and then save it to
c:\Recovery\customizations. We'll use samples from USB-B\Recovery\RecoveryImage to create the provisioning
package.

Important: For Push Button Reset to work properly, packages have to be .ppkg files that are stored in
C:\Recovery\Customizations.

Copy E:\Recovery\RecoveryImage c:\recovery\OEM
Copy E:\StartLayout\layoutmodification.xml c:\recovery\OEM

mkdir c:\recovery\customizations
E:\ScanState\scanstate.exe /apps /ppkg C:\Recovery\Customizations\apps.ppkg 
/i:c:\recovery\oem\regrecover.xml /config:E:\scanstate\Config_AppsAndSettings.xml /o /c /v:13 
/l:C:\ScanState.log

del c:\scanstate.log
del c:\miglog.xml

1. Create the recovery OEM folder and copy contents of USB-B\Recovery\RecoveryImage

Important: To retain the customized start layout menu during recovery the layoutmodification.xml needs
to be copied again during recovery process. We'll copy it here and then use EnableCustomizations.cmd to
copy it during recovery.

2. Run ScanState to gather app and customizations

For x64 Windows 10 PCs:

Where E: is the drive letter of USB-B

3. When ScanState completes successfully, delete scanstate.log and miglog.xml files:

You can customize the Push-button reset experience by configuring extensibility points. This enables you to run
custom scripts, install additional applications, or preserve additional user, application, or registry data.

During recovery, PBR calls EnableCustomizations.cmd which we'll configure to do 2 things:

1. Copy the unattend.xml file used for initial deployment to the \windows\panther.
2. Copy the layoutmodification.xml to the system.

This will restore the additional layout settings from these 2 answer files during PBR.

[!Important Recovery scripts and unattend.xml must be copied to c:\Recovery\OEM for PBR to pickup and



 

Copy unattend.xml files for restoring settingsCopy unattend.xml files for restoring settings

Copy e:\AnswerFiles\oa3.0\unattendsysprep.xml c:\Recovery\OEM\unattend.xml

Copy e:\AnswerFiles\non_oa3.0\unattendsysprep.xml c:\Recovery\OEM\unattend.xml

Copy winre.wim backupCopy winre.wim backup

Copy e:\images\winre_bak.wim c:\windows\system32\recovery\winre.wim

Reseal the imageReseal the image

C:\Windows\System32\Sysprep\sysprep /oobe /generalize /unattend:c:\recovery\oem\Unattend.xml /shutdown

Remove the Windows 10 in S mode manufacturing keyRemove the Windows 10 in S mode manufacturing key

Finalize and Capture your image

restore settings defined in the unattend.xml.

For OA 3.0 systems:

For non-OA 3.0 systems:

During the deployment winre.wim file is moved. Before capturing a final image, the backup winre.wim we created
must be copied back, or the recovery environment will not work in the final image deployment.

In this section, we'll use sysprep.exe to reseal our image and get it ready for factory deployment.

1. Delete installation folders and files that have been created of the preloaded applications. These folders can
increase the size of a captured .wim file.

2. If the SysPrep Tool is open, close it and open Command Prompt in Administrator mode.
3. Generalize the image by using answer file with additional settings:

If you have manufacturing mode enabled, remove the manufacturing registry key:

1. Open Command Prompt.
2. Remove the registry key: reg delete HKLM\system\ControlSet001\Control\CI\Policy /v ManufacturingMode  >

[!important] > Don't ship a Windows 10 in S mode device with the registry key in place.

We'll show you how to finalize and capture a factory image for mass deployment. To start this section, make sure
your reference machine is shutdown after running sysprep in the previous section.

1. Boot the Reference computer into WinPE.
2. After WinPE has booted connect USB-B.

Troubleshooting:

If the reference PC boots from its internal HDD, Windows will enter the specialize and OOBE
passes. You won't be able to capture a stable and generalized image if any of the configuration
passes have completed. If either of those passes have completed, you'll need To generalize the image
again. You can do with in Audit Mode (<Ctrl>+<Shift>+<F3> during OOBE). In Audit mode, run
the Sysprep command from above. Make sure the PC boots to WinPE on the next restart.

If the system still boots to the internal HDD, check the PC's boot priority. Make sure that the USB



(CompactOS Only) Convert installed customizations(CompactOS Only) Convert installed customizations

IMPORTANTIMPORTANT

DISM /Apply-CustomDataImage /CustomDataImage:C:\Recovery\Customizations\apps.ppkg /ImagePath:C:\ 
/SingleInstance

Optimize your image with DISMOptimize your image with DISM

has a higher boot priority than the internal hard drive.

3. Identify Windows Partition Drive letter using diskpart.

a. At the X:\windows\system32> prompt, type diskpart and press the key to start Diskpart.

b. At the \DISKPART> prompt type list volume .

c. Under the "Label" column, locate the volume that is labeled "Windows".

d. Note what letter it is has been assigned under the "Ltr" column (Example: C). This is the USB key's drive
letter.

e. Type exit to quit Diskpart.

This section shows how to reduce the size of ScanState packages.

Only do this step if you are deploying to a device with limited storage. Single instancing impacts the launch performance of
some desktop applications.

See Compact OS for more information.

To reduce the size of your ScanState recovery packages, run the following command from WinPE on your
reference device:

Running Dism with the /resetbase  optimizes your image in several ways:

It marks installed packages (KB Updates) as permanent so that recovery and Push Button Reset is performed,
packages are included in a refresh/reset.
Superseded packages are removed.
Package updates are compressed to save space.

The /defer  option is new in Windows 10 version 1703. This switch skips the compression action while running 
/resetbase . The compression is done in a lower-priority thread after a device reaches the desktop. This improves

the performance of running /resetbase  on factory floor, but also means the image will be slightly larger than not



  

IMPORTANTIMPORTANT

Run DISM /resetbaseRun DISM /resetbase

MD c:\scratchdir
Dism /Cleanup-Image /Image:C:\ /StartComponentCleanup /resetbase /scratchdir:c:\scratchdir
RD c:\scratchdir 

MD c:\scratchdir
Dism /Cleanup-Image /Image:C:\ /StartComponentCleanup /resetbase /defer /scratchdir:c:\scratchdir
RD c:\scratchdir 

Capture your image

Capture a WIMCapture a WIM

running it.

By default, non-major updates (e.g. ZDPs, KB’s, LCUs) are not restored. To ensure that updates preinstalled during
manufacturing are not discarded after recovery, they should be marked as permanent by using the /Cleanup-Image
command in DISM with the /StartComponentCleanup and /ResetBase options. Updates marked as permanent are always
restored during recovery.

Run Dism with the /resetbase  option to configure your Windows image to include installed packages in
recovery:

Option 1: Run /resetbase with compression on

Option 2: Run /resetbase /defer turning compression off

In this section, we'll tell you how to capture your sysprepped image. You can capture either a WIM or an FFU.

On your reference PC:

MD e:\scratchdir
Dism /Capture-Image /CaptureDir:C:\ /ImageFile:E:\Images\CustomImage.wim /Name:"CustomImage" 
/scratchdir:e:\scratchdir

1. Identify Windows Partition Drive letter.

a. At the X:\windows\system32> prompt, type diskpart and press the key to start Diskpart.

b. At the \DISKPART> prompt type list volume

c. Under the "Label" column, locate the volume that is labeled "Windows"

d. Note what letter it is has been assigned under the "Ltr" column (Example: C). This is the drive letter that
needs to be used

e. Type exit to quit Diskpart

2. Capture the image of the windows partition to USB-B. This process takes several minutes.

Note: We recommend using a cache directory when running DISM. In this step we'll create scratchdir on
the USB-B key for temporary files, but you can choose any hard drive with available space for your scratch
directory.

This captures an image called CustomImage.wim to E:\Images. When the image capture is complete, you



  

 

Capture an FFUCapture an FFU

Verify your final image

Deploy your image to the reference deviceDeploy your image to the reference device

Validate the configurationValidate the configuration

can shut down your reference PC.

With your image captured, you can skip to Verify your final image.

On your reference PC:

DISM.exe /capture-ffu /imagefile=E:\Images\CustomImage.wim /Name:"CustomImage" 
/capturedrive=\\.\PhysicalDrive0 /description:"Windows 10 FFU"

1. Identify Windows Partition Drive letter.

a. At the X:\windows\system32> prompt, type diskpart and press the key to start Diskpart.

b. At the \DISKPART> prompt type list disk

c. Under the "Disk ###" column, identify the the disk that has the Windows installation, and note the
assigned disk number. This will look something like Disk 0.

d. Type exit to quit Diskpart

2. Capture an image of the windows disk to USB-B. This process takes several minutes.

This captures an image called CustomImage.wim to E:\Images. When the image capture is complete, you
can shut down your reference PC.

In this section, we'll cover how to deploy your captured image for testing and verification.

1. Boot the PC you want to test your image on into WinPE.

E:\Deployment\applyimage.bat E:\Images\customimage.wim

E:\Deployment\applyimage.bat E:\Images\CustomImage.FFU

2. Run applyimage.bat to deploy the image.

If you captured a WIM called customimage.wim:

or

If you captured an FFU called CustomImage.FFU:

3. Follow the script's prompts to apply the image.

4. Type exit  to close WinPE and restart the PC.

Your PC will restart and boot into Windows for the first time.

1. In OOBE, create a dummy user which will be deleted later.
2. Verify that any applications and offline customizations are still in your image and working properly.

Some things to check are:

Taskbar



Verify RecoveryVerify Recovery

Optimize final image

Final shipment

Reducing Disk FootprintsReducing Disk Footprints

Pinned Apps
Desktop Wallpaper is set to display the right image
OEM Information displays correctly
OEM App ID registry key is set
Default Theme is the one you chose
Store apps start properly
Desktop applications start ok
Desktop applications applied via SPP start ok
If you enabled S mode, make sure the manufacturing registry key is removed

1. Verify that your customizations are restored after recovery, and that they continue to function by running
the Refresh your PC and Reset your PC features from the following entry points:

Settings a. From the Start Menu, click Settings, b. In the Settings app, click Update & security, and
then click Recovery. c. Click the Get Started button under Reset this PC and follow the on-screen
instructions.

Windows RE a. From the Choose an option screen in Windows RE, click Troubleshoot b. Click Reset
this PC and then follow the on-screen instructions

2. Verify that recovery media can be created, and verify its functionality by running the bare metal recovery
feature: a. Launch Create a recovery drive from Control Panel b. Follow the on-screen instructions to create
the USB recovery drive c. Boot the PC from the USB recovery drive d. From the Choose an option screen,
click Troubleshoot e. Click Recover from a drive and then follow the on-screen instructions

Note: The Push-button reset UI has been redesigned in Windows 10. The Keep my files option in the UI now
corresponds to the Refresh your PC feature. Remove everything corresponds to the Reset your PC feature.

At this point, you have a Windows image that is almost ready for deployment. In this section, we'll show you how
to put the finishing touches on your image so you're ready for deployment.

Dism /export-image /sourceimagefile:E:\images\customimage.wim /sourceindex:1 
/destinationimagefile:e:\images\MasterImage_Pro.wim

Remove unused packages from your image, by exporting a copy of it.

You have to boot a PC at least once to allow the specialize configuration pass of Windows Setup to complete
before shipping a PC.

The specialize configuration pass adds hardware-specific information to the PC and is complete when Windows
OOBE appears.

Reference the OEM Policy Documentation for more details.

Throughout this guide, we have shown a few places where you can reduce the disk footprint:

Using Dism /cleanup-image /resetbase
Using Dism /export-image



Reducing and turning off HiberfileReducing and turning off Hiberfile

Disk footprint with optimizationsDisk footprint with optimizations

FOOTPRINT TYPE WINDOWS 10 HOME X86 2GB MEMORY WINDOWS 10 HOME X64 4GB MEMORY

Base Footprint 11.68GB (Additional Space) 15.06GB (Additional Space)

Compact, no single instancing 8.85GB (>2.75GB) 11.3GB (>3.7GB)

Compact, single instanced 7.66GB (>4GB) 10.09GB (>4.75GB)

Hiberfile off, no compact 10.87GB (>825MB) 13.48GB (>1.5GB)

Hiberfile reduced, no compact 11.27GB (>400MB) 14.15GB (>930MB)

Using Compact OS
Using Compact OS with Single Instancing

This section shows a few more ways you can gain additional free space.

Reducing and turning off hiberfile can return between 400MB to 1.5GB OS space on the deployed OS.

Reducing Hiberfile by 30%

When you run sysprep.exe with unattend.xml, you can add a FirstLogonCommand that will reduce hiberfile:

Turn Off Hiberfile

When you run sysprep.exe with unattend.xml, you can add a FirstLogonCommand that will turn off hiberfile:

Capture your image with the unattend.xml file that contains these settings.

The table below shows additional space saved by using compact OS, Single instancing, and reducing or turning
Off Hiberfile on 2GB (x86) and 4GB (x64).



Sample scripts
6/20/2018 • 18 minutes to read • Edit Online

Image deployment scripts

ApplyImage.batApplyImage.bat

@echo Apply-Image.bat
@echo     Run from the reference device in the WinPE environment.
@echo.
@echo     This script erases the primary hard drive and applies a new image.
@echo.
@echo     Make sure that this script is run from the folder that contains the
@echo     supporting scripts
@echo.
@echo UPDATE (November 2017)
@echo * Added support for FFU deployments.  
@echo.
@echo UPDATE (JULY 2016):
@echo * This script stops just after applying the image.
@echo   This gives you an opportunity to add siloed provisioning packages (SPPs)
@echo   so that you can include them in your recovery tools.
@echo.
@echo   After the script is complete, use apply-recovery.bat to finish
@echo   setting up the recovery tools.
@echo.
@echo * This script creates a now includes support for the /EA variables for quicker
@echo   image capture and recovery.

Download the sample scripts used in this lab

Copy these scripts to the root of your storage USB drive. Refer to this page to understand what's in the scripts.

The sample scripts ZIP download includes all the scripts below:

The following scripts set up Windows devices by using either a WIM or an FFU image file, and then give the
option to configure push-button reset features.

The following files make up the deployment scripts:

ApplyImage.bat
ApplyRecovery.bat
CreatePartitions-BIOS.txt
CreatePartitions-BIOS-FFU.txt
CreatePartitions-UEFI.txt
CreatePartitions-UEFI-FFU.txt
HideRecoveryPartitions-BIOS.txt
HideRecoveryPartitions-UEFI.txt
CreateRecoveryPartitions-BIOS.txt
CreateRecoveryPartitions-UEFI.txt

Use this script applies a Windows image to a new device.

Note: If you copy and paste the contents below to create a .bat file, you may get an error when detecting
firmware. For firmware detection to succeed, ensure that the lines that begin for /f "tokens=2* delims= " %%A  has
a tab followed by a space in between delims=  and " %%A .

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-deployment-sample-scripts-sxs.md
https://go.microsoft.com/fwlink/?linkid=872894


@echo.
@echo * This script now includes support for the /EA variables for quicker
@echo   image capture and recovery.
@echo.
@echo * This script now checks to see if you're booted into Windows PE.
@echo.
@if not exist X:\Windows\System32 echo ERROR: This script is built to run in Windows PE.
@if not exist X:\Windows\System32 goto END
@if %1.==. echo ERROR: To run this script, add a path to a Windows image file.
@if %1.==. echo Example: ApplyImage D:\WindowsWithFrench.wim
@if %1.==. goto END
@echo *********************************************************************
@echo  == Setting high-performance power scheme to speed deployment ==
@call powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c
@echo *********************************************************************
@echo Checking to see the type of image being deployed
@if "%~x1" == ".wim" (GOTO WIM)
@if "%~x1" == ".ffu" (GOTO FFU)
@echo *********************************************************************
@if not "%~x1" == ".ffu". if not "%~x1" == ".wim" echo Please use this script with a WIM or FFU image.
@if not "%~x1" == ".ffu". if not "%~x1" == ".wim" GOTO END
:WIM
@echo Starting WIM Deployment
@echo *********************************************************************
@echo Checking to see if the PC is booted in BIOS or UEFI mode.
wpeutil UpdateBootInfo
for /f "tokens=2* delims=    " %%A in ('reg query HKLM\System\CurrentControlSet\Control /v PEFirmwareType') DO 
SET Firmware=%%B
@echo            Note: delims is a TAB followed by a space.
@if x%Firmware%==x echo ERROR: Can't figure out which firmware we're on.
@if x%Firmware%==x echo        Common fix: In the command above:
@if x%Firmware%==x echo             for /f "tokens=2* delims=    "
@if x%Firmware%==x echo        ...replace the spaces with a TAB character followed by a space.
@if x%Firmware%==x goto END
@if %Firmware%==0x1 echo The PC is booted in BIOS mode. 
@if %Firmware%==0x2 echo The PC is booted in UEFI mode. 
@echo *********************************************************************
@echo Do you want to create a Recovery partition?
@echo    (If you're going to be working with FFUs, and need 
@echo     to expand the Windows partition after applying the FFU, type N). 
@SET /P RECOVERY=(Y or N):
@if %RECOVERY%.==y. set RECOVERY=Y
@echo Formatting the primary disk...
@if %Firmware%==0x1 echo    ...using BIOS (MBR) format and partitions.
@if %Firmware%==0x2 echo    ...using UEFI (GPT) format and partitions. 
@echo CAUTION: All the data on the disk will be DELETED.
@SET /P READY=Erase all data and continue? (Y or N):
@if %READY%.==y. set READY=Y
@if not %READY%.==Y. goto END
@if %Firmware%.==0x1. if %RECOVERY%.==Y. diskpart /s CreatePartitions-BIOS.txt
@if %Firmware%.==0x1. if not %RECOVERY%.==Y. diskpart /s CreatePartitions-BIOS-FFU.txt
@if %Firmware%.==0x2. if %RECOVERY%.==Y. diskpart /s CreatePartitions-UEFI.txt
@if %Firmware%.==0x2. if not %RECOVERY%.==Y. diskpart /s CreatePartitions-UEFI-FFU.txt
@echo *********************************************************************
@echo  == Apply the image to the Windows partition ==
@SET /P COMPACTOS=Deploy as Compact OS? (Y or N):
@if %COMPACTOS%.==y. set COMPACTOS=Y
@echo Does this image include Extended Attributes?
@echo    (If you're not sure, type N).
@SET /P EA=(Y or N):
@if %EA%.==y. set EA=Y
@if %COMPACTOS%.==Y.     if %EA%.==Y.     dism /Apply-Image /ImageFile:%1 /Index:1 /ApplyDir:W:\ /Compact /EA
@if not %COMPACTOS%.==Y. if %EA%.==Y.     dism /Apply-Image /ImageFile:%1 /Index:1 /ApplyDir:W:\ /EA
@if %COMPACTOS%.==Y.     if not %EA%.==Y. dism /Apply-Image /ImageFile:%1 /Index:1 /ApplyDir:W:\ /Compact
@if not %COMPACTOS%.==Y. if not %EA%.==Y. dism /Apply-Image /ImageFile:%1 /Index:1 /ApplyDir:W:\
@echo *********************************************************************
@echo == Copy boot files to the System partition ==
W:\Windows\System32\bcdboot W:\Windows /s S:
@echo *********************************************************************



  

@echo *********************************************************************
@echo   Next steps:
@echo   * Add Windows Classic apps (optional):
@echo       DISM /Apply-SiloedPackage /ImagePath:W:\ 
@echo            /PackagePath:"D:\App1.spp" /PackagePath:"D:\App2.spp"  ...
@echo.
@echo   * Configure the recovery partition with ApplyRecovery.bat
@echo.      
@echo   * Reboot:
@echo       exit
@GOTO END
:FFU
@echo Starting FFU Deployment
@echo list disk > x:\listdisks.txt
@echo exit >> x:\listdisks.txt
@diskpart /s x:\listdisks.txt
@del x:\listdisks.txt
@echo Enter the disk number of the drive where you're going to deploy your FFU (usually 0).
@SET /P DISKNUMBER=(Enter the Disk Number from above):
@echo This will remove all data from disk %DISKNUMBER%. Continue?
@SET /P ERASEALL=(Y or N):
@if %ERASEALL%.==y. set ERASEALL=Y
@if %ERASEALL%==Y DISM /apply-ffu /ImageFile=%1 /ApplyDrive:\\.\PhysicalDrive%DISKNUMBER%
@if not %ERASEALL%==Y GOTO END
@echo FFU applied. Would you like to configure the recovery partition?
@SET /P CONFIGRECOVERY=(Y or N):
@if %CONFIGRECOVERY%.==y. SET CONFIGRECOVERY=Y
@if %CONFIGRECOVERY%==Y ApplyRecovery.bat
@if not %CONFIGRECOVERY%==Y GOTO END
:END

CreatePartitions scriptsCreatePartitions scripts

CreatePartitions-UEFI.txtCreatePartitions-UEFI.txt

ApplyImage.bat relies on the following DiskPart scripts, which must be placed in the same folder :

Use these scripts together with DiskPart to format and set up the hard disk partitions for Windows, including
recovery tools. Adjust the partition sizes to fill the drive as necessary.

Creates the System, MSR, Windows, and recovery tools partitions for UEFI-based PCs.

This script temporarily assigns these drive letters: System=S, Windows=W, and Recovery=R. The MSR partition
doesn't get a letter. The letter W is used to avoid potential drive letter conflicts. After the device reboots, the
Windows partition is assigned the letter C, and the other partitions don’t receive drive letters.

The Recovery partition must be the partition after the Windows partition to ensure winre.wim can be kept up-to-
date during life of the device.

The following diagram shows the resulting partition configuration:



  

rem == CreatePartitions-UEFI.txt ==
rem == These commands are used with DiskPart to
rem    create four partitions
rem    for a UEFI/GPT-based PC.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
select disk 0
clean
convert gpt
rem == 1. System partition =========================
create partition efi size=100
rem    ** NOTE: For Advanced Format 4Kn drives,
rem               change this value to size = 260 ** 
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) partition =======
create partition msr size=16
rem == 3. Windows partition ========================
rem ==    a. Create the Windows partition ==========
create partition primary 
rem ==    b. Create space for the recovery tools ===
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                    **
rem ==    c. Prepare the Windows partition ========= 
format quick fs=ntfs label="Windows"
assign letter="W"
rem === 4. Recovery partition ======================
create partition primary
format quick fs=ntfs label="Recovery"
assign letter="R"
set id="de94bba4-06d1-4d40-a16a-bfd50179d6ac"
gpt attributes=0x8000000000000001
list volume
exit

CreatePartitions-UEFI-FFU.txtCreatePartitions-UEFI-FFU.txt

This script is based off of CreatePartitions-UEFI.txt, but it does not create a recovery partition. This is so that the
Windows partition is the last partition on the drive and can be expanded. If this script is used, the recovery
partition can be configured later with ApplyRecovery.bat.



  

rem == CreatePartitions-UEFI-FFU.txt ==
rem == These commands are used with DiskPart to
rem    create four partitions
rem    for a UEFI/GPT-based PC.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
select disk 0
clean
convert gpt
rem == 1. System partition =========================
create partition efi size=100
rem    ** NOTE: For Advanced Format 4Kn drives,
rem               change this value to size = 260 ** 
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) partition =======
create partition msr size=16
rem == 3. Windows partition ========================
rem ==    a. Create the Windows partition ==========
create partition primary 
rem ==    c. Prepare the Windows partition ========= 
format quick fs=ntfs label="Windows"
assign letter="W"
list volume
exit

CreatePartitions-BIOS.txtCreatePartitions-BIOS.txt

Creates the System, Windows, and recovery tools partitions for BIOS-based PCs.

This script temporarily assigns these drive letters: System=S, Windows=W, and Recovery=R. The letter W is used
to avoid potential drive letter conflicts. After the device reboots, the Windows partition is assigned the letter C,
and the other partitions don’t receive drive letters.

The Recovery partition must be the partition after the Windows partition to ensure winre.wim can be kept up-to-
date during life of the device.

The following diagram shows the resulting partition configuration:



  

rem == CreatePartitions-BIOS.txt ==
rem == These commands are used with DiskPart to
rem    create three partitions
rem    for a BIOS/MBR-based computer.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
select disk 0
clean
rem == 1. System partition ======================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S"
active
rem == 2. Windows partition =====================
rem ==    a. Create the Windows partition =======
create partition primary
rem ==    b. Create space for the recovery tools  
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                 **
rem ==    c. Prepare the Windows partition ====== 
format quick fs=ntfs label="Windows"
assign letter="W"
rem == 3. Recovery partition ====================
create partition primary
format quick fs=ntfs label="Recovery image"
assign letter="R"
set id=27
list volume
exit

CreatePartitions-BIOS-FFU.txtCreatePartitions-BIOS-FFU.txt

rem == CreatePartitions-BIOS-FFU.txt ==
rem == These commands are used with DiskPart to
rem    create three partitions
rem    for a BIOS/MBR-based computer.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
select disk 0
clean
rem == 1. System partition ======================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S"
active
rem == 2. Windows partition =====================
rem ==    a. Create the Windows partition =======
create partition primary
rem ==    c. Prepare the Windows partition ====== 
format quick fs=ntfs label="Windows"
assign letter="W"
list volume
exit

ApplyRecovery.batApplyRecovery.bat

This script is based off of CreatePartitions-BIOS.txt, but it doesn't create a recovery partition. This is so that the
Windows partition is the last partition on the drive and can be expanded. If this script is used, the recovery
partition can be configured later with ApplyRecovery.bat.

Use this script to prepare the Windows recovery partition. This script is called by ApplyImage.bat, but can also be
run on its own.



@echo == ApplyRecovery.bat ==
@rem *********************************************************************
@echo Checking to see if the PC is booted in BIOS or UEFI mode.
wpeutil UpdateBootInfo
for /f "tokens=2* delims=  " %%A in ('reg query HKLM\System\CurrentControlSet\Control /v PEFirmwareType') DO 
SET Firmware=%%B
@echo            Note: delims is a TAB followed by a space.
@if x%Firmware%==x echo ERROR: Can't figure out which firmware we're on.
@if x%Firmware%==x echo        Common fix: In the command above:
@if x%Firmware%==x echo             for /f "tokens=2* delims=    "
@if x%Firmware%==x echo        ...replace the spaces with a TAB character followed by a space.
@if x%Firmware%==x goto END
@if %Firmware%==0x1 echo The PC is booted in BIOS mode. 
@if %Firmware%==0x2 echo The PC is booted in UEFI mode. 
@echo  *********************************************************************
@echo Do you already have a recovery partition on this disk? (Y or N):
@SET /P RECOVERYEXIST=(Y or N):
@if %RECOVERYEXIST%.==y. set RECOVERYEXIST=Y
@if %RECOVERYEXIST%.==Y. GOTO COPYTOTOOLSPARTITION
@if not %RECOVERYEXIST%.==Y. GOTO CREATEFFURECOVERY
@echo  *********************************************************************
:COPYTOTOOLSPARTITION
@echo  == Copy the Windows RE image to the Windows RE Tools partition ==
md R:\Recovery\WindowsRE
xcopy /h W:\Windows\System32\Recovery\Winre.wim R:\Recovery\WindowsRE\
@echo  *********************************************************************
@echo  == Register the location of the recovery tools ==
W:\Windows\System32\Reagentc /Setreimage /Path R:\Recovery\WindowsRE /Target W:\Windows
@echo  *********************************************************************
@IF EXIST W:\Recovery\Customizations\USMT.ppkg (GOTO CUSTOMDATAIMAGEWIM) else goto HIDEWIMRECOVERYTOOLS
:CUSTOMDATAIMAGEWIM
@echo  == If Compact OS, single-instance the recovery provisioning package ==
@echo.     
@echo     *Note: this step only works if you created a ScanState package called
@echo      USMT.ppkg as directed in the OEM Deployment lab. If you aren't
@echo      following the steps in the lab, choose N.
@echo.      
@echo     Options: N: No
@echo              Y: Yes
@echo              D: Yes, but defer cleanup steps to first boot.
@echo                 Use this if the cleanup steps take more than 30 minutes.
@echo                 defer the cleanup steps to the first boot.
@SET /P COMPACTOS=Deploy as Compact OS? (Y, N, or D):
@if %COMPACTOS%.==y. set COMPACTOS=Y
@if %COMPACTOS%.==d. set COMPACTOS=D
@if %COMPACTOS%.==Y. dism /Apply-CustomDataImage /CustomDataImage:W:\Recovery\Customizations\USMT.ppkg 
/ImagePath:W:\ /SingleInstance
@if %COMPACTOS%.==D. dism /Apply-CustomDataImage /CustomDataImage:W:\Recovery\Customizations\USMT.ppkg 
/ImagePath:W:\ /SingleInstance /Defer
@echo  *********************************************************************
:HIDEWIMRECOVERYTOOLS
@echo == Hiding the recovery tools partition
if %Firmware%==0x1 diskpart /s %~dp0HideRecoveryPartitions-BIOS.txt
if %Firmware%==0x2 diskpart /s %~dp0HideRecoveryPartitions-UEFI.txt
@echo *********************************************************************
@echo == Verify the configuration status of the images. ==
W:\Windows\System32\Reagentc /Info /Target W:\Windows
@echo    (Note: Windows RE status may appear as Disabled, this is OK.)
@echo *********************************************************************
@echo      All done!
@echo      Disconnect the USB drive from the reference device.
@echo      Type exit to reboot.
@echo.

Note: If you copy and paste the contents below to create a .bat file, you may get an error when detecting
firmware. For firmware detection to succeed, ensure that the lines that begin for /f "tokens=2* delims= " %%A  has
a tab followed by a space in between delims=  and " %%A .



GOTO END
:CREATEFFURECOVERY
@echo *********************************************************************
@echo == Creating the recovery tools partition
@if %Firmware%==0x1 diskpart /s CreateRecoveryPartitions-BIOS.txt
@if %Firmware%==0x2 diskpart /s CreateRecoveryPartitions-UEFI.txt
@echo finding the Windows Drive
@echo  *********************************************************************
@IF EXIST C:\Windows SET windowsdrive=C:\
@IF EXIST D:\Windows SET windowsdrive=D:\
@IF EXIST E:\Windows SET windowsdrive=E:\
@IF EXIST W:\Windows SET windowsdrive=W:\
@echo The Windows drive is %windowsdrive%
md R:\Recovery\WindowsRE
@echo  *********************************************************************
@echo Finding Winre.wim
@IF EXIST %windowsdrive%Recovery\WindowsRE\winre.wim SET recoveryfolder=%windowsdrive%Recovery\WindowsRE\
@IF EXIST %windowsdrive%Windows\System32\Recovery\winre.wim SET 
recoveryfolder=%windowsdrive%Windows\System32\Recovery\
@echo  *********************************************************************
@echo copying Winre.wim
xcopy /h %recoveryfolder%Winre.wim R:\Recovery\WindowsRE\
@echo  *********************************************************************
@echo  == Register the location of the recovery tools ==
%windowsdrive%Windows\System32\Reagentc /Setreimage /Path R:\Recovery\WindowsRE /Target %windowsdrive%Windows
@echo  *********************************************************************
@IF EXIST W:\Recovery\Customizations\USMT.ppkg (GOTO CUSTOMDATAIMAGEFFU) else goto HIDERECOVERYTOOLSFFU
:CUSTOMDATAIMAGEFFU
@echo  == If Compact OS, single-instance the recovery provisioning package ==
@echo.     
@echo     *Note: this step only works if you created a ScanState package called
@echo      USMT.ppkg as directed in the OEM Deployment lab. If you aren't
@echo      following the steps in the lab, choose N.
@echo.
@echo     Options: N: No
@echo              Y: Yes
@echo              D: Yes, but defer cleanup steps to first boot.
@echo                 Use this if the cleanup steps take more than 30 minutes.
@echo                 defer the cleanup steps to the first boot.
@SET /P COMPACTOS=Deploy as Compact OS? (Y, N, or D):
@if %COMPACTOS%.==y. set COMPACTOS=Y
@if %COMPACTOS%.==d. set COMPACTOS=D
@if %COMPACTOS%.==Y. dism /Apply-CustomDataImage 
/CustomDataImage:%windowsdrive%Recovery\Customizations\USMT.ppkg /ImagePath:%windowsdrive% /SingleInstance
@if %COMPACTOS%.==D. dism /Apply-CustomDataImage 
/CustomDataImage:%windowsdrive%Recovery\Customizations\USMT.ppkg /ImagePath:%windowsdrive% /SingleInstance 
/Defer
:HIDERECOVERYTOOLSFFU
@rem *********************************************************************
@echo == Hiding the recovery tools partition
@if %Firmware%==0x1 diskpart /s HideRecoveryPartitions-BIOS.txt
@if %Firmware%==0x2 diskpart /s HideRecoveryPartitions-UEFI.txt
@echo *********************************************************************
@echo == Verify the configuration status of the images. ==
%windowsdrive%Windows\System32\Reagentc /Info /Target %windowsdrive%Windows
@echo    (Note: Windows RE status may appear as Disabled, this is OK.)
@echo *********************************************************************
@echo      All done!
@echo      Disconnect the USB drive from the reference device.
@echo      Type exit to reboot.
@GOTO END
:END

CreateRecoveryPartitions-UEFI.txtCreateRecoveryPartitions-UEFI.txt

ApplyRecovery.bat relies on the following DiskPart scripts, which must be placed in the same folder :



rem == CreateRecoveryPartitions-UEFI.txt ==
select disk 0
select partition 3
assign letter="W"
rem == extend the Windows partition ==
shrink minimum=500
extend
rem ==    b. Create space for the recovery tools  
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                 **
rem === Create Recovery partition ======================
create partition primary
format quick fs=ntfs label="Recovery"
assign letter="R"
set id="de94bba4-06d1-4d40-a16a-bfd50179d6ac"
gpt attributes=0x8000000000000001
list volume
exit

CreateRecoveryPartitions-BIOS.txtCreateRecoveryPartitions-BIOS.txt

rem == CreateRecoveryPartitions-BIOS.txt ==
select disk 0
select partition 2
assign letter="W"
rem == extend the Windows partition ==
shrink minimum=500
extend
rem ==    b. Create space for the recovery tools  
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                 **
rem ==    c. Prepare the Recovery partition ====== 
select disk 0
create partition primary
format quick fs=ntfs label="Recovery image"
assign letter="R"
set id=27
list volume
exit

HideRecoveryPartitions-UEFI.txtHideRecoveryPartitions-UEFI.txt

rem === HideRecoveryPartitions-UEFI.txt ===
select disk 0
select partition 4
set id=de94bba4-06d1-4d40-a16a-bfd50179d6ac
gpt attributes=0x8000000000000001
remove
list volume

HideRecoveryPartitions-BIOS.txtHideRecoveryPartitions-BIOS.txt

rem === HideRecoveryPartitions-BIOS.txt ===
select disk 0
select partition 3
set id=27
remove
list volume



Start layout (LayoutModification.xml)

<LayoutModificationTemplate
    xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
    xmlns:defaultlayout="http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
    xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
    Version="1">
  <RequiredStartGroupsCollection>
    <RequiredStartGroups
      Region="DE|ES|FR|GB|IT|US">
      <AppendGroup Name="Fabrikam Group 1">
          <start:DesktopApplicationTile
            DesktopApplicationID="Microsoft.Windows.Explorer" 
          Size="2x2" 
          Row="0" 
          Column="4"/>
      </AppendGroup>    
      <AppendGroup
        Name="Fabrikam Group 2">
        <start:Tile AppUserModelID="Microsoft.MicrosoftEdge_8wekyb3d8bbwe!MicrosoftEdge" 
          Size="2x2" 
          Row="0"
          Column="0"/>
          <!-- <start:Tile AppUserModelID="App2!App" Size="2x2" Row="2" Column="0"/>  Update the APUMID to 
reflect the app you installed with the region specified -->
      </AppendGroup>
    </RequiredStartGroups>
    <RequiredStartGroups>
      <AppendGroup Name="Fabrikam Group 1">
        <start:SecondaryTile
          AppUserModelID="Microsoft.MicrosoftEdge_8wekyb3d8bbwe!MicrosoftEdge"
          TileID="MyWeblinkTile"
          Arguments="http://www.fabrikam.com"
          DisplayName="Fabrikam"
          Square150x150LogoUri="ms-appx:///Assets/MicrosoftEdgeSquare150x150.png"
          Wide310x150LogoUri="ms-appx:///Assets/MicrosoftEdgeWide310x150.png"
          ShowNameOnSquare150x150Logo="true"
          ShowNameOnWide310x150Logo="false"
          BackgroundColor="#FF112233"
          Size="2x2"
          Row="0"
          Column="2"/>
        <!-- <start:Tile AppUserModelID="App2!App" Size="2x2" Row="2" Column="0"/>  Update the APUMID to 
reflect the app you installed with no specific region -->
      </AppendGroup>    
    </RequiredStartGroups>
  </RequiredStartGroupsCollection> 
  <AppendOfficeSuite/>
  <AppendOfficeSuiteChoice Choice="DesktopBridgeSubscription"/>      
</LayoutModificationTemplate>

The Start tile layout in Windows 10 provides OEMs the ability to append tiles to the default Start layout to include
Web links, secondary tiles, Windows apps, and Windows desktop applications. OEMs can use this layout to make
it applicable to multiple regions or markets without duplicating a lot of the work. In addition, OEMs can add up to
three default apps to the frequently used apps section in the system area, which delivers sytem-driven lists o the
user including important or frequently accessed system locations and recently installed apps.

To take advantage of all these new features and have the most robust and complete Start customization
experience for Windows 10, consider creating a LayoutModification.xml file. This file specifies how the OEM tiles
should be laid out in Start. For more information about how to customize the new Start layout, see the topic
Customize the Windows 10 Start screen in the Windows 10 Partner Documentation.

Sample LayoutModification.xml:

https://msdn.microsoft.com/library/windows/hardware/mt170651


  

BootToAudit

BootToAudit-x64BootToAudit-x64

<?xml version="1.0" encoding="utf-8"?>
<unattend xmlns="urn:schemas-microsoft-com:unattend">
<!-- BootToAudit-x64.xml -->
    <settings pass="oobeSystem">
        <component name="Microsoft-Windows-Deployment" processorArchitecture="amd64" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
            <Reseal>
                <Mode>Audit</Mode>
            </Reseal>
        </component>
    </settings>
</unattend>

Keeping Windows settings through a recovery

ResetConfig.xmlResetConfig.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- ResetConfig.xml -->
<Reset>
  <Run Phase="BasicReset_AfterImageApply">
    <Path>EnableCustomizations.cmd</Path>
    <Duration>2</Duration>
  </Run>
  <Run Phase="FactoryReset_AfterImageApply">
    <Path>EnableCustomizations.cmd</Path>
    <Duration>2</Duration>
  </Run>
</Reset>

EnableCustomizations.cmdEnableCustomizations.cmd

Add an answer file to the Windows image in C:\mount\windows\Windows\Panther\unattend.xml to instruct it to
boot into audit mode. You can create this answer file in Windows System Image Manager.

Windows doesn't automatically save settings created through unattend.xml setup files, nor Windows Start Menu
customizations created with LayoutModification.xml during a full-system reset, nor first-login info from oobe.xml.

To make sure your customizations are saved, that includes steps to put the unattend.xml, LayoutModification.xml,
and oobe.xml files back into place. Here's some sample scripts that show how to retain these settings and put
them back into the right spots. Save copies of unattend.xml, LayoutModification.xml, oobe.xml, plus these two text
files: ResetConfig.xml and EnableCustomizations.cmd, in C:\Recovery\OEM\:



 

rem EnableCustomizations.cmd

rem Set the variable %TARGETOS%      (Typically this is C:\Windows)
for /F "tokens=1,2,3 delims= " %%A in ('reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RecoveryEnvironment" 
/v TargetOS') DO SET TARGETOS=%%C

rem Set the variable %TARGETOSDRIVE% (Typically this is C:)
for /F "tokens=1 delims=\" %%A in ('Echo %TARGETOS%') DO SET TARGETOSDRIVE=%%A

rem Add back Windows settings, Start menu, and OOBE.xml customizations
copy "%TARGETOSDRIVE%\Recovery\OEM\Unattend.xml" "%TARGETOS%\Panther\Unattend.xml" /y
copy "%TARGETOSDRIVE%\Recovery\OEM\LayoutModification.xml" 
"%TARGETOSDRIVE%\Users\Default\AppData\Local\Microsoft\Windows\Shell\LayoutModification.xml" /y
xcopy "%TARGETOSDRIVE%\Recovery\OEM\OOBE\Info" "%TARGETOS%\System32\Info\" /s

rem Recommended: Create a pagefile for devices with 1GB or less of RAM.
wpeutil CreatePageFile /path=%TARGETOSDRIVE%\PageFile.sys /size=256

Reinstall Windows inbox apps

ReinstallInboxApps-x64.cmdReinstallInboxApps-x64.cmd

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.BingWeather_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.BingWeather_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Advertising.Xaml.x64.10.0.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Advertising.Xaml.x86.10.0.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.DesktopAppInstaller_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.DesktopAppInstaller_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Getstarted_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Getstarted_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.GetHelp_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.GetHelp_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

To learn more about using extensibility points for push-button reset, see Add a script to push-button reset
features.

Reinstall Windows apps after adding a new language. You can reinstall the apps without removing them first.

http://go.microsoft.com/fwlink/?LinkId=618946


DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Messaging_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Messaging_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Microsoft3DViewer_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Microsoft3DViewer_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MicrosoftOfficeHub_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MicrosoftOfficeHub_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MicrosoftSolitaireCollection_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MicrosoftSolitaireCollection_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Advertising.Xaml.x64.10.0.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Advertising.Xaml.x86.10.0.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Services.Store.Engagement.x64.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Services.Store.Engagement.x86.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MicrosoftStickyNotes_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MicrosoftStickyNotes_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MSPaint_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.MSPaint_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Office.OneNote_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Office.OneNote_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.OneConnect_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.OneConnect_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 



/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.People_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.People_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Services.Store.Engagement.x64.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Services.Store.Engagement.x86.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.SkypeApp_kzf8qxf38zg5c.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.SkypeApp_kzf8qxf38zg5c.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.StorePurchaseApp_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.StorePurchaseApp_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Wallet_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Wallet_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.7.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WebMediaExtensions_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WebMediaExtensions_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Windows.Photos_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Windows.Photos_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.7.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.7.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsAlarms_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsAlarms_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCalculator_8wekyb3d8bbwe.appxbundle 



/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCalculator_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCalculator_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCamera_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCamera_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCommunicationsApps_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsCommunicationsApps_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsFeedbackHub_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsFeedbackHub_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsMaps_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsMaps_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsSoundRecorder_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsSoundRecorder_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsStore_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.WindowsStore_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxApp_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxApp_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxGameOverlay_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxGameOverlay_8wekyb3d8bbwe.xml 



/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxGameOverlay_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxIdentityProvider_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxIdentityProvider_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxSpeechToTextOverlay_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxSpeechToTextOverlay_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.ZuneMusic_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.ZuneMusic_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.ZuneVideo_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.ZuneVideo_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\microsoft.print3d_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\microsoft.print3d_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Xbox.TCUI_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.Xbox.TCUI_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Framework.x86.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x64.1.6.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.NET.Native.Runtime.x86.1.6.appx

DISM /image:C:\Mount\Windows /add-ProvisionedAppxPackage 
/packagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxGamingOverlay_8wekyb3d8bbwe.appxbundle 
/licensepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.XboxGamingOverlay_8wekyb3d8bbwe.xml 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x64.14.00.appx 
/Dependencypackagepath:C:\Temp\Lab\Apps\Inbox\amd64\Microsoft.VCLibs.x86.14.00.appx

Find drive letters with a scriptFind drive letters with a script

@echo Find a drive that has a folder titled Images.
@for %%a in (C D E F G H I J K L M N O P Q R S T U V W X Y Z) do @if exist %%a:\Images\ set IMAGESDRIVE=%%a
@echo The Images folder is on drive: %IMAGESDRIVE%
@dir %IMAGESDRIVE%:\Images /w

Use this script in Windows PE to identify a drive that has a folder called "Images."



 

  

System builder deployment of Windows 10 for
desktop editions
4/30/2018 • 28 minutes to read • Edit Online

Prepare your lab environment

USB HARD DRIVE NAME FORMAT MINIMUM SIZE

USB-A FAT32 ~4GB

USB-B NTFS

Creating my USB-BCreating my USB-B

You can use this guide to deploy Windows 10 to a line of computers. It provides prescriptive guidance for
Windows 10 deployment, including online and offline customizations, and optional steps for specific scenarios. It is
intended to help system builders (level 200 technicians) with both 64-bit and 32-bit configurations, and applies to
Windows 10 for desktop editions (Home, Pro, Enterprise, and Education).

The first step is to set up your lab environment, which includes installing the latest Windows Assessment and
Deployment Kit (Windows ADK) tools onto your designated Technician computer. The Technician computer must
run Windows 10 x64 if you are going to deploy x64 images, or run Windows 10 x86 for x86 image deployment.
Incorrect configurations may result in supported architecture mismatch while using deployment tools in the
Windows ADK. Where noted, follow the appropriate guidelines for either a 64-bit vs 32-bit deployment.

Before starting the deployment procedure, you need to download the kits that will be used throughout the guide.
Go to the Device Partner Center > Downloads and Installation > Understanding ADKs and OPKs. For a list
of resources and kits that will be used and where to obtain them, see What you will need and where to get it.

You will need two USB drives. USB-A will be used to boot the system in Windows Preinstallation Environment
(WinPE). USB-B will be used to move files between computers, store deployment and recovery scripts, and store
and apply created images.

~16GB x86

~32GB amd64

1. Format your USB drive and name it as follows:

2. Then download USB-B.zip from the Microsoft Download Center. Save the .zip file to USB-B and extract the

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/system-builder-deployment-of-windows-10-for-desktop-editions.md
http://www.microsoft.com/oem/en/pages/index.aspx#fbid=7JcJYKYGEfo
http://download.microsoft.com/download/5/8/4/5844EE21-4EF5-45B7-8D36-31619017B76A/USB-B.zip


Customizations throughout the document
PASS SETTING ACTION

WinPE Setup UI Language EN-US

User Data Preinstallation Product Key for ODR -
Defined

Specialize Internet Explorer Home Page in the answer file

OEM Name Defined in the answer file

OEM Logo Defined in the answer file

Model Defined in the answer file

Support Info Defined in the answer file

OOBE System Reseal Audit/OOBE

StartTiles Square Tiles / SquareOrDesktopTiles set
to pin only desktop apps

TaskbarLinks (up to 6 pinned .lnk files) Paint and Control Panel shortcuts have
been set

Themes Custom Theme with the OEM logo as
the desktop background has been set

Visual Effects SystemDefaultBackground set

Additional customizations
Product deploymentProduct deployment

Image customizationImage customization

Create a USB drive that can boot to WinPE

contents there. The contents of the configuration files included in USB-B are examples that you may change
according to your branding and manufacturing choices. However, file names and hierarchy of the folders
and files must be the same as demonstrated below in order to align your deployment procedure with this
guide.

Office Single Image v16.5 OPK preloaded

Adding language interface packs to Windows

Adding drivers and update packages

Adding OEM-specific logo and background files to Windows

Image size optimization

Pinning desktop applications to start sceen

   



You must use the matching version of Windows ADK for the images being customized. For example, if you're
building an image for Windows 10, version 1803, use the Windows ADK for Windows 10, version 1803. For more
details about the Windows ADK, see the Windows 10 ADK Documentation Homepage.

Visit Download the Windows ADK to download the ADK.

Deployment and Imaging Tools Environment

Copype amd64 C:\winpe_amd64

Copype x86 C:\winpe_x86

1. Follow the on-screen instructions to install the Windows ADK, including the Deployment Tools,
Windows Preinstallation Environment, and Windows Assessment Toolkit features.

Note: If you have Secure Boot enabled, disable it before installing the ADK.

2. Press the Windows key to display the Start menu. Type:

Right-click the name of the tool, and then click Run as administrator.

3. Windows ADK allows you to create Windows PreInstallation Environment. Copy base WinPE to new
folder.

If you use an x64 Windows 10 image, copy the x64 WinPE folder structure:

If you use an x86 Windows 10 image, copy the x86 WinPE folder structure:

4. You may add packages and/or drivers to WinPE here.

5. Connect a USB drive that is at least 4 GB. Format it as shown in this diagram:

https://technet.microsoft.com/library/mt297512.aspx
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit


 Install Windows with basic customizations

MakeWinPEMedia /UFD C:\winpe_amd64 F:

MakeWinPEMedia /UFD C:\winpe_x86 F:

6. Make the inserted USB a new WinPE bootable USB.

If you use an x64 Windows 10 image, make an x64 WinPE USB:

If you use an x86 Windows 10 image, make an x86 WinPE USB:

(Where F: is the drive letter of USB)

Use Windows 10 x86/x64 DVD media from a Microsoft Authorized Distributor.

See the Windows Guidelines for System Builders and Windows Policy for System Builders for information on how
to tailor the customizations in your unattend.xml file.

1. Copy the sources\Install.wim file from the directory in the Windows 10 media that you will be deploying to
your local Desktop (~3gb).

http://www.microsoft.com/oem/en/pages/download.aspx?wpid=w_w8_129
https://oem.microsoft.com/downloads/worldwide/windows_10/Windows_10_Policy_SB.pdf


2. Run Windows System Image Manager to start creating an answer file from scratch. This tool allows you
to create or manage your answer files in an easy and organized manner.

3. Navigate to File > Select Windows Image. Browse to your local desktop and select Install.wim. A
catalog file (.clg) will be created for the specified wim.

Troubleshoot: Catalog creation may fail due to several reasons. Please make sure install.wim has read/write
permissions. If you continue getting error, make sure correct architecture (x86 or x64) Windows 10 is
installed on technician computer. If you are creating catalog for x64 Windows 10 image, you are required to
use x64 Windows 10 installed on x64 Windows 10 computer. Install.wim image and Windows 10 ADK
versions must be the same.



  Customize the answer fileCustomize the answer file

4. Open a sample answer file or create a new one. USB-B\AnswerFiles\Unattend.xml  is the sample answer file
included on USB-B.

5. Click OK to associate the answer file with the Windows Image.

6. To add a driver to Windows PE, click Insert select Driver Path and select pass 1 windowsPE  and then
browse to the driver. Note: This step is optional and only required if a third-party driver is needed for use in
the Windows Preinstallation Enviornment.

7. To add a package, click Insert, select Package, and then browse to the package you want to add. This step is
optional.

Troubleshoot: A blank character in specialize | Microsoft-Windows-Shell-Setup | Computer Name will result
in Windows installation failure.

1. See USB-B\AnswerFiles\Unattend.xml  for an example of an answer file that has basic customizations. -

You may use the sample answer file and modify relevant parts or start from scratch by specifying some
basic customizations.

Please see and use the Windows 10 default product key from Device Partner Center listed under Default
product keys tab.

2. Add a product key that matches the Windows edition. This key isn't used to activate Windows, so you can
reuse the same key for multiple installations:

In the Answer File pane, select Components\1 windowsPE\amd64_Microsoft-Windows-
Setup_neutral\UserData\ProductKey. In the ProductKey Properties pane, under Settings, enter
the value next to Key.

Important: These product keys cannot be used for activation. You will need to type a software product key
during the installation process for activation. These keys will be removed when sysprep generalize is run.
The end user will be required to type the unique product key from the Certificate of Authenticity (COA)
label when first booting Windows 10.

3. Add your support information:

In the Answer File pane, select Components\4 specialize\amd64_Microsoft-Windows-Shell-
Setup_neutral\OEMInformation.

In the OEMInformation Properties pane, in the Settings section, update the following values: company
name (Manufacturer), hours (SupportHours), phone number (SupportPhone), and website (SupportURL).

4. Prepare your computer to boot to audit mode after the Windows installation is complete:

In the Windows Image pane, expand Components, right-click amd64_Microsoft-Windows-
Deployment, and then select Add Setting to Pass 7 oobeSystem.

In the Answer File pane, select Components\7 oobeSystem\amd64_Microsoft-Windows-
Deployment _neutral\Reseal.

In the Reseal Properties pane, in the Settings section, add the following value: Mode =Audit.

5. Set the Internet Explorer home page:

In the Windows Image pane, right-click amd64_Microsoft-Windows-IE-InternetExplorer, and then
select Add Setting to Pass 4 specialize.

In the Answer File pane, select Components\4 specialize\amd64_Microsoft-Windows-Microsoft-
Windows-IE-InternetExplorer_neutral.

https://www.microsoft.com/OEM/en/products/windows/Pages/windows-10-build.aspx#fbid=nV7H02bHHiv


Update images for each model: offline servicing

Dism /export-image /sourceimagefile:e:\images\install.wim /sourceindex:2 
/destinationimagefile:e:\images\modelspecificimage.wim

Mount imagesMount images

In the IE-InternetExplorer Properties pane, in the Settings section, select Home_page, and add the URL
of your website.

6. OEMs can specify Disk Configuration which is used to create/modify disk partitions and set image
installation partition. This step is optional and configuration is included in the sample answer file USB-
B\AnswerFiles\Unattend.xml.

Save the answer file to USB-B\AnswerFiles\Unattend.xml and close Windows SIM.

Before mounting and editing the image please take a backup copy in the same directory and rename the image
which will be modified as ModelSpecificImage.wim.

Md C:\mount\windows
Dism /Mount-Wim /WimFile:E:\Images\ModelSpecificImage.wim /index:1 /MountDir:C:\mount\windows

Md c:\mount\winre
Dism /Mount-Image /ImageFile:C:\mount\windows\Windows\System32\Recovery\winre.wim /index:1 
/MountDir:C:\mount\winre

1. Mount Windows image (ModelSpecificImage.wim). This process extracts the contents of the image file to a
location where you can view and modify the mounted image.

Where E:\ is the drive letter of USB-B.

2. Mount Windows RE Image file.

Troubleshoot: If mounting operation fails, make sure that you are using the Windows 10 version of DISM
that is installed with the Windows ADK and not an older version from your technician computer. Don’t
mount images to protected folders, such as your User\Documents folder. If DISM processes are interrupted,
consider temporarily disconnecting from the network and disabling virus protection.



  

  

Modify imagesModify images
Add driversAdd drivers

Add language interface packsAdd language interface packs

If you use an x64 Windows 10 image, add x64 drivers; if you use an x86 Windows 10 image, add x86 drivers.

Dism /Add-Driver /Image:C:\mount\windows /Driver:"C:\SampleDriver\driver.inf"
Dism /Add-Driver /Image:C:\mount\winre /Driver:"C:\SampleDriver\driver.inf"

Dism /Image:C:\mount\windows /Add-Driver /Driver:c:\drivers /Recurse

Dism /Image:C:\mount\windows /Get-Drivers
Dism /Image:C:\mount\winre /Get-Drivers

1. Adding driver packages one by one. (.inf files) SampleDriver\driver.inf is a sample driver package that is
specific to the computer model. Type your own specific driver path. If you have multiple driver packages,
skip to the next step.

2. Multiple drivers can be added on one command line if you specify a folder instead of an .inf file. To install all
of the drivers in a folder and all its subfolders, use the /recurse option.

3. Review the contents of the %WINDIR%\Inf\ (C:\mount\windows\Windows\Inf) directory in the mounted
Windows image to ensure that the .inf files were installed. Drivers added to the Windows image are named
Oem*.inf. This is to ensure unique naming for new drivers added to the computer. For example, the files
MyDriver1.inf and MyDriver2.inf are renamed Oem0.inf and Oem1.inf.

4. Verify your driver has been installed for both images.

Important: If the driver contains only the installer package and doesn’t have an .inf file, you may choose to install
the driver in AUDIT mode by double-clicking the corresponding installer package. Some drivers may be
incompatible with Sysprep tool; they will be removed after sysprep generalize even if they have been injected
offline.

In this case, you need to add an extra parameter to USB-B\AnswerFiles\UnattendSysprep.xml in order to persist
the drivers in the image when the image will be generalized.

<PersistAllDeviceInstalls>true</PersistAllDeviceInstalls>

This property must be added to USB-B\AnswerFiles\UnattendSysprep.xml during generalize pass in order to
persist the drivers in the image. For more information about the details of this property and how to add it to an
answer file, see PersistAllDeviceInstalls.

Obtain the Windows 10 Language Interface Packs from Device Partner Center under the LIPs tab.

For more information about L IPs, see Add Language Interface Packs to Windows 10.

Important: LIP Versions must match other Windows component versions, for both the image and the
ADK.

If you use an x64 Windows 10 image, install x64 LIPs; if you use an x86 Windows 10 image, install x86 LIPs.

1. Copy the LIP to the USB-B\LanguagePack\x64 or USB-B\LanguagePack\x86 folder :

http://technet.microsoft.com/library/ff716298.aspx
https://www.microsoft.com/OEM/en/installation/downloads/Pages/Windows-10-v1511-Language-Interface-Packs.aspx#fbid=nV7H02bHHiv


  

IMPORTANTIMPORTANT

Add update packagesAdd update packages

Dism /image:C:\mount\windows /add-package /packagepath:e:\LanguagePacks\x64\Microsoft-Windows-Client-
Language-Interface-Pack_x64_as-in.cab

Dism /image:C:\mount\windows /add-package /packagepath:e:\LanguagePacks\x86\Microsoft-Windows-Client-
Language-Interface-Pack_x86_as-in.cab

2. Apply the L IP to mounted image.

Amd64 architecture

X86 architecture

If you install an update (hotfix, general distribution release [GDR], or service pack [SP]) that contains language-dependent
resources prior to installing a language pack, the language-specific changes in the update won't be applied when you add
the language pack. You need to reinstall the update to apply language-specific changes. To avoid reinstalling updates, install
language packs before installing updates.

If you use an x64 Windows 10 image, add x64 update packages; if you use an x86 Windows 10 image, add x86
update packages.

To get update packages, download them from Microsoft Update Catalog.

1. Run Internet Explorer and navigate to the Microsoft Update Catalog webpage. See What you will need and
where to get it for more information about which packages you should obtain from Microsoft Update
Catalog.

2. Type every single update package one by one into the search box and click Search.

http://catalog.update.microsoft.com/v7/site/Home.aspx
http://catalog.update.microsoft.com/v7/site/Home.aspx


TIPTIP

Dism /Add-Package /Image:C:\mount\windows /PackagePath:"C:\windows10.0-kb4016871-
x64_27dfce9dbd92670711822de2f5f5ce0151551b7d.msu"

Dism /Add-Package /Image:C:\mount\windows /PackagePath:"C:\windows10.0-kb4016871-
x86_5901409e58d1c6c9440e420d99c42b08f227356e.msu"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\windows10.0-kb4016871-
x64_27dfce9dbd92670711822de2f5f5ce0151551b7d.msu"

3. After each search completes, click Download next to the version and architecture of the package you wish
to download.

If you encounter an error that says “The website has encountered a problem” when trying to download your
updates, try turning off the pop-up blocker in IE or temporarily disabling Protected Mode in IE. 

4. After downloading your update packages, add them to the image one by one by using the following
command, substituting the filename in the command with the name of the files that you downloaded:

Amd64 architecture

X86 architecture

5. Add updates to winre.wim (where they apply; not all updates apply to winre.wim)

Amd64 architecture

X86 architecture



Add OEM specific visual customizationsAdd OEM specific visual customizations

Modify Start layoutModify Start layout

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\ windows10.0-kb4016871-
x86_5901409e58d1c6c9440e420d99c42b08f227356e.msu"

1. Create OEM folder under C:\mount\windows\Windows\system32\ directory.

2. Copy the OEM logo to C:\mount\windows\Windows\system32\OEM*FabrikamLogo.bmp* directory which
will be mapped in unattend file in OEM Information | Logo property.

See the following image to add OEM logo in an answer file.

%windir%\system32\OEM\FabrikamLogo.bmp
REFERENCE: OEM Logo file must be in .bmp format and in 120px x 120px size. Please see Windows
Guidelines for System Builders for OEM Logo details.

3. To display an OEM specific desktop background picture, the image file must be placed in
%windir%\system32\OEM*Fabrikam.bmp* directory. Verify that the path is same in answer file
corresponding to oobeSystem > Microsoft-Windows-Shell-Setup > Themes > DesktopBackground
property. See the below image to add desktop background in an answer file.

The Start tile layout in Windows 10 provides OEMs the ability to append tiles to the default Start layout to include
Web links, secondary tiles, Windows desktop applications, and universal Windows apps. OEMs can use this layout
to make it applicable to multiple regions or markets without duplicating a lot of the work. In addition, OEMs can
add up to three default apps to the frequently used apps section in the system area, which delivers sytem-driven
lists o the user including important or frequently accessed system locations and recently installed apps.

1. Create Layoutmodification.xml.

Note: It is recommended to start with the sample on USB-B\StartLayout\layoutModification.xml as it
conforms to the samples in this guide (Example Only).

The Sample LayoutModification.xml shows two groups called “Fabrikam Group 1” and “Fabrikam Group 2”,
which contain tiles that will be applied if the device country/region matches what’s specified in Region (in
this case, the regions are Germany and United States). Each group contains three tiles and the various
elements you need to use depending on the tile that you want to pin to Start.

Keep the following in mind when creating your LayoutModification.xml file:

If you are pinning a Windows desktop application using the start:DesktopApplicationTile tag and
you don’t know the application’s application user model ID, you need to create a .lnk file in a legacy
Start Menu directory before first boot.

If you use the start:DesktopApplicationTile tag to pin a legacy .url shortcut to Start, you must
create a .url file and add this file to a legacy Start Menu directory before first boot.



Copy the answer fileCopy the answer file

Copy /y E:\AnswerFiles\Unattend.xml C:\Mount\Windows\Windows\Panther

Optimize WinREOptimize WinRE

Copy E:\StartLayout\layoutmodification.xml 
c:\mount\windows\users\default\AppData\Local\Microsoft\Windows\Shell\

For the above scenarios, you can use the following directories to put the .url or .lnk files:

%APPDATA%\Microsoft\Windows\Start Menu\Programs\

%ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\

2. Save the LayoutModification.xml file.

3. Add your LayoutModification.xml file to the Windows image. You’ll need to put the file in the following
specific location before first boot. If the file exists, you should replace the LayoutModification.XML that is
already included in the image.

Where E: is the drive letter of USB-B.

4. If you pinned tiles that require .url or .lnk files, add the files to the following legacy Start Menu directories:

Copy e:\StartLayout\Bing.url "C:\mount\windows\ProgramData\Microsoft\Windows\Start 
Menu\Programs\"
Copy e:\StartLayout\Paint.lnk "C:\mount\windows\ProgramData\Microsoft\Windows\Start 
Menu\Programs\"
Copy E:\StartLayout\Bing.url "C:\mount\windows\users\All Users\Microsoft\Windows\Start 
Menu\Programs\"
Copy E:\StartLayout\Paint.lnk "C:\Mount\Windows\Users\All Users\Microsoft\Windows\Start 
Menu\Programs\"

a. %APPDATA%\Microsoft\Windows\Start Menu\Programs\

b. %ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\

Note: If you don’t create a LayoutModification.xml file and you continue to use the Start Unattend
settings, the OS will use the Unattend answer file and take the first 12 SquareTiles or
DesktoporSquareTiles settings specified in the Unattend file. The system then places these tiles
automatically within the newly-created groups at the end of Start. The first six tiles are placed in the
first OEM group, and the second set of six tiles are placed in the second OEM group. If OEMName is
specified in the Unattend file, the value for this element is used to name the OEM groups that will be
created.

A system builder may want to make additional customizations through an unattend file. The sample unattend file
on USB-B contains additional common customizations.

Where E:\ is USB-B.

Dism /image:c:\mount\winre /set-scratchspace:512

1. Increase scratchspace size.

2. Cleanup unused files and reduce size of winre.wim



Unmount imagesUnmount images

Dism /image:"c:\mount\winre" /Cleanup-Image /StartComponentCleanup /Resetbase

Dism /Unmount-Image /MountDir:"C:\mount\winre" /Commit

attrib -h -a -s C:\mount\windows\Windows\System32\Recovery\winre.wim
Dism /export-image /sourceimagefile:c:\mount\windows\windows\system32\recovery\winre.wim /sourceindex:1 
/DestinationImageFile:e:\images\winre_bak.wim
Del c:\mount\windows\windows\system32\recovery\winre.wim
Copy e:\images\winre_bak.wim c:\mount\windows\windows\system32\recovery\winre.wim

Dir "C:\mount\windows\Windows\System32\Recovery\winre.wim"

rem == Windows RE tools partition =============== 
create partition primary size=500

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image

2. Commit the changes and unmount the Windows RE image:

where C is the drive letter of the drive that contains the image.

This process can take a few minutes.

3. Make a backup copy of the updated Windows RE image.

Troubleshoot: If you cannot see winre.wim under the specified directory, use the following command to set
the file visible:

When prompted, specify F for file

4. Check the new size of the Windows RE image.

Use the following partition layout size guidance to determine the size of your recovery partition in
createpartitions-<firmware>.txt files. The amount of free space left is after you copy winre.wim to the
hidden partition.

Please reference Disk Partition rules for more information.

If the partition is less than 500 MB, it must have at least 50 MB of free space.

If the partition is 500 MB or larger, it must have at least 320 MB of free space.

If the partition is larger than 1 GB, we recommend that it should have at least 1 GB free.

Optional: This section assumes you’d rather keep winre.wim inside of install.wim to keep your languages
and drivers in sync. If you’d like to save a bit of time on the factory floor, and if you’re OK managing these
images separately, you may prefer to pull winre.wim from the image and apply it separately.

5. Commit the changes and unmount the Windows image:

Where C is the drive letter of the drive that contains the image.

https://msdn.microsoft.com/en-us/windows/hardware/commercialize/manufacture/desktop/configure-uefigpt-based-hard-drive-partitions#diskpartitionrules


Deploy the image to new computers (Windows installation)

Update images manually by using AUDIT MODE (online servicing)

Add Office apps to your imageAdd Office apps to your image

This process may take several minutes.

  

E:\Deployment\applyimage.bat E:\Images\ModelSpecificImage.wim

NOTENOTE

Exit

1. On the technician computer, locate the following files in USB-B/Deployment. Please see Creating My USB-
B to create and place the files in correct paths.

2. Boot the reference computer and connect USB-A.

3. After WinPE starts, connect USB-B.

4. Type diskpart and hit enter to start Diskpart. Then type list volume to identify volume label of USB-B (For
example: E:).

Note: There are several pauses in the script. You will be prompted Y/N for the Apply operation if this is a
Compact OS deployment.

Only use Compact OS on Flash drive based devices because Compact OS performance depends on the storage
device capabilities. Compact OS is NOT recommend on rotational devices. For more information, see Compact OS.

5. Remove USB-A and USB-B, and then type:

   

Important: Connecting the computer to internet is not recommended during manufacturing stages. We don't
recommend getting updates from Windows Update in audit mode, as it will likely generate errors when you
generalize + sysprep the machine from audit mode.

To add the Office apps to an image, use DISM with the /Add-ProvisionedAppxPackage  option. This option also
requires the following information for each app you add:

/PackagePath : This is only used to specify the path to the .appxbundle file for the shared code package.
/OptionalPackagePath : This is used to specify the path to the .appxbundle file for an individual app, such as

Word or Excel.
/LicensePath : This is used to specify the path to the _License1.xml file for an individual app. This is needed for

both the shared package and each of the optional app packages.



Pin Office tiles to the Start menuPin Office tiles to the Start menu

DISM /online /Add-ProvisionedAppxPackage /PackagePath="C:\temp\lab\apps\Office 
Apps\shared.PreinstallKit\shared.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\excel.PreinstallKit\excel.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\powerpoint.PreinstallKit\powerpoint.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\word.PreinstallKit\word.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\outlook.PreinstallKit\outlook.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\publisher.PreinstallKit\publisher.appxbundle" /OptionalPackagePath="C:\temp\lab\apps\Office 
Apps\access.PreinstallKit\access.appxbundle" /LicensePath="C:\temp\lab\apps\Office 
Apps\shared.PreinstallKit\shared_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\excel.PreinstallKit\excel_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\powerpoint.PreinstallKit\powerpoint_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\word.PreinstallKit\word_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\outlook.PreinstallKit\outlook_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\publisher.PreinstallKit\publisher_license1.xml" /LicensePath="C:\temp\lab\apps\Office 
Apps\access.PreinstallKit\access_License1.xml"

TIPTIP

Dism /Image:"C:\mount\windows" /Get-ProvisionedAppxPackages

...
Displayname : Microsoft.Office.Desktop.Access
Version : 16000.8528.2136.0
Architechture : neutral
ResourceID : ~
PackageName : Microsoft.Office.Desktop.Access_16000.8528.2136.0_neutral_~_8wekyb3d8bbwe
Regions : None

Displayname : Microsoft.Office.Desktop.Excel
Version : 16000.8528.2136.0
Architechture : neutral
ResourceID : ~
PackageName : Microsoft.Office.Desktop.Excel_16000.8528.2136.0_neutral_~_8wekyb3d8bbwe
Regions : None
...

1. Extract the Office 16.5 OPK to C:\temp\lab\apps.

2. Use DISM to add all the Office apps to an offline image. The following example assumes the appxbundle
and license xml files are in subdirectories on USB-B (D:). The example also excludes the /region switch
because we want Office to appear in both the All Apps list, and as a Start Menu tile.

You need to specify both an appxbundle and a license package for the shared package, as well as for each individual
app that you want to install.

3. Verify Office was installed:

where C is the drive letter of the drive that contains the image.

Review the resulting list of packages and verify that the list contains the Office Desktop Bridge apps, such
as:

To have the apps appear on the Start screen, follow the steps in the next section: Configuring Start tiles and
taskbar pins.

To complete the Office install, you’ll need to unmount the image and commit your changes, which we'll do
this after we’ve completed all customizations at the end of this lab.



 Prepare the system for Push Button Reset

We'll pin the Office tiles to the Start menu so Windows won't remove the Office files during OOBE.

notepad C:\Users\Default\AppData\Local\Microsoft\Windows\Shell\layoutmodification.xml.

<AppendOfficeSuite/>
<AppendOfficeSuiteChoice Choice="DesktopBridgeSubscription"/>

copy C:\Users\Default\AppData\Local\Microsoft\Windows\Shell\layoutmodification.xml c:\recovery\OEM   

1. Open a command prompt and type:

2. Add the following to layoutmodification to pin the Office apps to your Start Menu:

3. Close and save layoutmodification.xml.

Note: for recovery purposes the layoutmodification.xml will need to be copied during recovery.

4. Open a command prompt and type:

Once the machine is booted to desktop after going through OOBE, the Start menu will have the Office tiles
added to the Start Menu.

This section provides guidance for setting up the recovery environment for Push Button Reset (PBR) scenarios.

Please reference Push-button reset and Windows Recovery Environment (Windows RE) and Hard Drives and
Partitions for more information.

Push-button reset, is a built-in recovery tool which allows users to recover the OS while preserving their data and
important customizations, without having to back-up their data in advance. It reduces the need for custom
recovery applications by providing users with more recovery options and the ability to fix their own PCs with
confidence.

In Windows 10, the Push-button reset features have been updated to include the following improvements:

The Push-button reset user experience offers customization opportunities. Manufacturers can insert custom
scripts, install applications or preserve additional data at available extensibility points. The following Push-button
reset features are available to users with Windows 10 PCs:

Refresh your PC

Fixes software problems by reinstalling the OS while preserving the user data, user accounts, and
important settings. All other preinstalled customizations are restored to their factory state. In Windows 10,
this feature no longer preserves user-acquired Universal Windows apps.

Reset your PC

Prepares the PC for recycling or for transfer of ownership by reinstalling the OS, removing all user
accounts and contents (e.g. data, Classic Windows applications, and Universal Windows apps), and
restoring preinstalled customizations to their factory state.

Bare metal recovery

Restores the default or preconfigured partition layout on the system disk, and reinstalls the OS and
preinstalled customizations from external media.



Prepare ScanStatePrepare ScanState

Create recovery package using ScanstateCreate recovery package using Scanstate

To start working with Push Button Reset, you'll need to copy ScanState to Data.

Use scanstate to capture Classic Windows applications and settings on your image.

Note: You'll use your technician PC to prepare ScanState.

1. On Technician PC Insert USB-B
2. Open Deployment and Imaging tools command prompt as administrator

Copydandi.cmd amd64 e:\scanstate_amd64

Copydandi.cmd x86 e:\scanstate_x86

3. Run the copydandi.cmd script file pointing to USB-B key

OEMs using an x64 Windows 10 image, make x64 Scanstate directory

Where E: is the letter of USB-B drive.

If you're using an x86 Windows 10 image, make x86 Scanstate directory:

Where E: is the letter of USB-B drive.

On your reference PC:

Use ScanState to capture installed customizations into a provisioning package, and then save it to
c:\Recovery\customizations. We'll use samples from USB-B\Recovery\RecoveryImage to create the provisioning
package.

Important: For PBR to work properly, packages have to be .ppkg files that are stored in
C:\Recovery\Customizations.

Copy E:\Recovery\recoveryimage c:\recovery\OEM
Copy E:\StartLayout\layoutmodification.xml c:\recovery\OEM

mkdir c:\recovery\customizations
E:\ScanState_amd64\scanstate.exe /apps /ppkg C:\Recovery\Customizations\apps.ppkg 
/i:c:\recovery\oem\regrecover.xml /config:E:\scanstate_amd64\Config_AppsAndSettings.xml /o /c /v:13 
/l:C:\ScanState.log

1. Create the recovery OEM folder and copy contents of USB-B\Recovery\RecoveryImage

Important: To retain the customized start layout menu during recovery the layoutmodification.xml needs
to be copied again during recovery process. We'll copy it here and then use EnableCustomizations.cmd to
copy it during recovery.

2. Run ScanState to gather app and customizations

For x64 Windows 10 PCs:

Where E: is the drive letter of USB-B

For x86 Windows 10 PCs:



Create Extensibility scripts to restore additional settingsCreate Extensibility scripts to restore additional settings

Copy a backup of WinRECopy a backup of WinRE

Copy e:\images\winre_bak.wim c:\windows\system32\recovery\winre.wim

Reseal the image

E:\ScanState_x86\scanstate.exe /apps /ppkg C:\Recovery\Customizations\apps.ppkg 
/i:c:\recovery\oem\regrecover.xml /config:e:\scanstate_x86\Config_AppsAndSettings.xml /o /c /v:13 
/l:C:\ScanState.log

del c:\scanstate.log
del c:\miglog.xml

Where E: is the drive letter of USB-B

3. When ScanState completes successfully, delete scanstate.log and miglog.xml files:

You can customize the Push-button reset experience by configuring extensibility points. This enables you to run
custom scripts, install additional applications, or preserve additional user, application, or registry data.

During recovery, PBR calls EnableCustomizations.cmd which we'll configure to do 2 things:

1. Copy the unattend.xml file used for initial deployment to the \windows\panther.
2. Copy the layoutmodification.xml to the system.

Note: The Win10DepWhiPapForOEMsv1.01July2015 sample extensibility script used a command which no
longer is needed. Please use the extensibility script from USB-B as sample for point for creating a new extensibility
script.

This will restore the additional layout settings from these 2 answer files during PBR.

Important: Recovery scripts and unattend.xml must be copied to c:\Recovery\OEM for PBR to pickup and restore
settings defined in the unattend.xml.

During a PC deployment, winre gets moved. Before you caputre a final image, you have to copy the backup of
winre.wim back into Windows.

copy USB-B\answerfiles\unattendsysprep.xml c:\Recovery\OEM\unattend.xml

Cmd /c C:\Windows\System32\Sysprep\sysprep /unattend:c:\Recovery\OEM\Unattend.xml /generalize /oobe 
/shutdown

1. Delete the installation folders and files you have created for the preloaded applications. Extra folders may
increase the size of the .wim when the Windows image gets captured.

2. If Sysprep is open, close it and open an elevated command prompt.

3. Copy unattend.xml to the recovery folder to enable recovery of unattend settings during Push Button Reset.

4. Generalize the image by using the answer file which reflects the changes made in the section Update
images manually by using AUDIT MODE (online servicing).

These changes include Microsoft Office tile component pinned to the Start screen.



Deploy the image

E:\Deployment\applyimage.bat E:\Images\modelspecificimage.wim

Finalize deployment

MD e:\scratchdir
dism /Cleanup-Image /Image:e:\ /StartComponentCleanup /resetbase /scratchdir:e:\scratchdir

dism /Capture-Image /CaptureDir:E:\ /ImageFile:F:\Images\ModelSpecificImage.wim 
/Name:"myWinImageWithMSIUpdated" /scratchdir:e:\scratchdir

5. Boot reference computer and connect USB-A.

6. After WinPE has been booted connect USB-B.

7. Type diskpart and hit enter to start Diskpart. Then type list volume to identify volume label of Windows
Installation volume labelled “Windows” (For example: E:). Finally type exit to quit Diskpart.

8. Start cleanup of the image.

Important: By default, non-major updates (such as ZDPs, or LCUs) are not restored. To ensure that updates
preinstalled during manufacturing are not discarded after recovery, they should be marked as permanent
by using the /Cleanup-Image command in DISM with the /StartComponentCleanup and /ResetBase
options. Updates marked as permanent are always restored during recovery.

9. Capture the image of the windows partition. This process takes several minutes.

Where E: is the volume label of Windows and F is the volume label of USB-B.

This will overwrite the image created in the section Deploy the image to new computers.

Use the deployment script to layout the partitions on the device and apply the image. The applyimage.bat in USB-
B\deployment folder will partition the device based on device mode.

Important: The Recovery partition must be the partition after the Windows partition to ensure
winre.wim can be kept up-to-date during the life of the device.

Run the following command to deploy your image to the reference PC:

Note: There are several pauses in the script. You will be prompted Y/N for the Apply operation if this is a Compact
OS deployment.

Note: Only use Compact OS on high end storage devices because Compact OS performance depends on the
storage device capabilities. Compact OS is NOT recommend on rotational devices or storage greater than 32 GB.
For more information, see Compact OS.

Remove USB-A and USB-B and type exit to reboot your computer with Windows 10.

1. Upon deploying your model specific image to destination computers, boot the computer with master image
for the first time in AUDIT mode

Important: In order to minimize the first boot time, (Boot > Specialize > OOBE > Start screen) specialize
pass must be completed in the factory. Specialize pass will configure hardware specific information which
Windows will run on.



Appendix
Differences between 64-bit and 32-bit deploymentDifferences between 64-bit and 32-bit deployment

DISTINCTION DESCRIPTION RELATED SECTION

Windows installed on Technican
Computer

When Windows ADK gets installed on a
technican computer the the
deployment tools in the ADK would be
installed according to the architecture
of the Windows on technician computer.
In short if ADK is installed on Windows
x64, the tools would be installed 64-bit
version, or vice-versa.

Prepare your lab environment

Creating WinPE folder structure WinPE differs between x64 and x86
architecture, so you have to use
different commands to create a
different WinPE folder for each
architecture.

Create WinPE bootable USB

Drivers Driver versions differ between different
architectures. If you are manufacturing
a 64-bit Windows image, please use
x64 drivers, and vice-versa for 32-bit
Windows.

Add drivers

For more information about the first boot time requirements, see Windows Policy for System Builders.

2. Please note that at the end of the section Update images manually by using AUDIT MODE (online
servicing), the system was sealed with OOBE mode. Please proceed with Audit. If the system boots in
OOBE, press Ctrl+Shift+F3 in order to pass OOBE and boot in audit mode.

3. If you want to apply additional steps, such as executing OEM diagnostics tests and so on, apply them here.

4. Finally, run the Sysprep tool (C:\Windows\System32\Sysprep\sysprep.exe) and seal the system back to
OOBE  and Shutdown but without Generalize.

5. The system is ready to ship.

Important: If you are manufacturing a small amount of devices without using an image managing tool such
as disk duplicators or Windows Deployment Service, you can choose to use the following practice:

a. You can manufacture those devices by first booting in WinPE - inserting USB-A.
b. Then insert USB-B where final manufacturing image is contained.
c. Run the applyimage.bat script to apply the image.
d. After you applied the image, follow the steps in this Finalize deployment section.
e. Now the device is ready to be shipped with your final manufacturing image and PBR feature

implemented.
f. Finally, replicate the same procedure with the other devices.

It is recommended to consider 64-bit deployment versus 32-bit deployment disk footprint according to the
storage of the device you are manufacturing.

The overall deployment flow mentioned in this guide doesn’t differ between 64-bit and 32-bit deployment. Only
some of the resource versions and the way those resources are created differs. The following table covers the
x64/x86 distinctions.

http://www.microsoft.com/oem/en/pages/download.aspx?wpid=w_w8_008


    

Update Packages for Windows Image Update package versions differ between
different architectures. If you are
manufacturing a 64-bit Windows image
please use x64 update packages, and
vice-versa for 32-bit Windows.

Add update packages

Language Interface Packs IF you will be using x64 Windows 10
image, install x64 LIPs or if you will be
using x86 Windows 10 image install x86
LIPs.

Prepare the system for recovery with
Push-button reset

DISTINCTION DESCRIPTION RELATED SECTION

What you will need and where to get itWhat you will need and where to get it

RESOURCE/KIT AVAILABLE AT RELATED SECTION

Windows 10 ADK Download the Windows ADK Create WinPE bootable USB

Windows 10 x64/x86 DVD Media
(desired language)

Obtain Windows 10 media which you
will be customizing from Microsoft
Authorized Distributor

Install Windows with basic
customizations

Windows 10 Default Product Keys Default Product Keys are located at
Device Partner Center listed under
Default product keys tab

Customize the answer file

Language interface packs LIPs are located at Device Partner
Center listed under LIPs tab

Prepare the system for recovery with
Push Button Reset

Update Packages Obtain update packages by
downloading from Microsoft Update
Catalog. The detailed procedure
downloading update packages is
mentioned in the related section.

Add language interface packs

Microsoft Office v16.5 Obtain Microsoft Office v15.4 by
downloading from Device Partner
Center

[Preload Microsoft Office single image
v16.5 OPK]

References

Before starting the deployment procedure OEM requires to download certain kits which will be used throughout
the guide, such as Microsoft Office Single Image v15.4, update packages, language interface packs etc… Below is
the complete list of resources/kits an OEM requires to download and where they download them.

Windows Guidelines for System Builders

Windows Policy for System Builders

https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://dpcenter.microsoft.com/en/Windows/Build/cp-windows-10-build
https://dpcenter.microsoft.com/en/Windows/Build/cc-windows-10-v1703-lip
http://catalog.update.microsoft.com/v7/site/Home.aspx
http://www.microsoft.com/oem/en/pages/download.aspx?wpid=w_w8_129
http://www.microsoft.com/oem/en/pages/download.aspx?wpid=w_w8_008


OEM Windows Desktop Deployment and Imaging
Lab
5/11/2018 • 2 minutes to read • Edit Online

Getting ready to build and test Windows 10 desktop PCs? This lab provides strategies for designing base images
and updating them with command-line tools. The commands can be scripted, helping you quickly customize new
images for specific markets to meet your customers' needs.

Let's get started!

Preparation

Planning: Customizing reference images for different audiences

Deploy images

Get the tools needed to customize Windows
Get the sample scripts
Lab 1: Install Windows PE
Lab 2: Deploy Windows using a script

Customize Window images

In these labs, you'll modify the Windows image (install.wim). While you can perform most of these tasks in any
order, a few have dependencies:

Add languages before major updates. Major updates include hotfixes, general distribution releases, or
service packs. If you add a language later, you'll need to reinstall the updates.
Add major updates before apps. Thes apps include universal Windows apps and desktop applications. If you
add an update later, you'll need to reinstall the apps.

To make the changes, you'll mount the image contents into a temporary folder, and use tools like DISM to make
the changes. Unmount the images and redeploy.

Lab 3: Add device drivers (.inf-style) (includes basics on mounting images)
Lab 4: Add languages
Lab 5: Add updates and upgrade the edition
Lab 6: Add universal Windows apps (includes Microsoft Universal Office Apps)
Lab 7: Change settings, enter product keys, and run scripts with an answer file (unattend.xml)
Lab 8: Add branding and license agreements (OOBE.xml)

Add desktop applications, tiles, and pins

For Windows desktop applications, you can add them in audit mode, or apply them separately after you've applied
a Windows image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oem-windows-deployment-and-imaging-walkthrough.md


Lab 9: Make changes from Windows (audit mode) (includes Microsoft Office 2016)
Lab 10: Add desktop applications and settings with siloed provisioning packages (SPPs) (includes Windows
Store settings, Microsoft Office)
Lab 11: Add Start tiles and taskbar pins (used for universal apps and desktop applications)

Final tasks Make sure your customizations are included in the recovery image, and optimize the images for quick
and easy deployment.

Lab 12: Update the recovery image
Lab 13: Shrink your image size



Planning: Customizing reference images for different
audiences
5/11/2018 • 3 minutes to read • Edit Online

Device types

Architecture

Retail customers and business customers

Regions

Instead of having one device design that tries to fit everyone, Windows image management tools help you tailor
device designs to meet the specific needs of various customers.

To get started, we recommend choosing a hardware design that targets a specific audience, market, or price point.
Build base images for this design and test it. Next, modify the base images to create designs for for different
audiences, include branding, logos, languages, and apps.

Consider creating separate designs for different device types, such as low-cost or performance laptops, or low-cost
or performance desktops. Each of these styles has different sets of critical differentiators, such as battery life or
graphics performance.

Although Windows includes base drivers for many common devices, some hardware requires specialized device
drivers that must be installed and occasionally updated.

Many drivers are designed to be installed offline without booting the Windows image.

Use Windows Assessment tools to make sure that the apps and hardware that you're installing can perform well in
a variety of circumstances.

If you plan to build devices with both 64-bit and 32-bit (x86) chipsets and architectures, you'll need separate base
images. You'll also need different versions of drivers, packages, and updates.

If you're building designs for both retail and business customers, you can start with a single base edition such as
Windows 10 Home or Windows 10 Pro, and then later upgrade it to a higher edition such as Windows 10
Enterprise, as needed. Once you've built a higher edition, however, you can't downgrade it to the lower edition. For
more info, see DISM Windows Edition-Servicing Command-Line Options.

If you're building devices to sell to retail customers, you'll need to meet a set of minimum requirements. For info,
see the Licensing and Policy guidance on the OEM Partner Center.

If you're building devices for businesses, you'll have fewer restrictions. IT professionals can customize their devices
in all sorts of ways. However, you should consider the implications of IT policies, as well as customer needs such as
migrating data, activating security tools, and managing volume license agreements and product keys.

Consider creating different base images for different regions.

The resource files for Windows and other apps like Microsoft Office can be large - some resources like localized
handwriting and speech recognition resources are several hundred megabytes.

To save drive space, we've split up the language packs. This can help you preload more languages for your

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/planning-create-different-product-designs-for-different-market-segments-sxs.md
http://go.microsoft.com/fwlink/?LinkId=131358


Sample plan

HARDWARE CONFIGURATION: 1 1B 2

Form factor Small tablet 2-in-1 Notebook

Architecture x86 x86 x64

RAM 1 GB 2 GB 4 GB

Disk capacity and type 16 GB eMMC 32 GB eMMC 500 GB HDD

Disk compression used Yes No No

Display size 8” 10” 14”

Windows SKU Home Pro Home

Region/Language(s) EN-US EN-US, FR-FR, ES-ES EN-GB, DE-DE, FR-FR, ES-ES,
ZH-CN

Cortana Yes Yes Yes

Inbox apps (Universal) Yes Yes Yes

Pen No Yes No

Office (Universal) Yes Yes Yes

Windows desktop
applications

No Yes Yes

Office 2016 No Yes Yes

Compact OS Yes Yes No

customers or save space on your image. For example, to target a large region, you may preload the basic language
components such as text and user interface files for many areas within the region, but only include the handwriting
recognition for devices with pens, or only include voice and speech tools for Cortana on devices with integrated
microphones. Users can download these components later as needed.

This lab uses the following three sample hardware configurations.

Notes:

We can build an image for Hardware Configuration 1B by using Hardware Configuration 1 as a base image.
We can't build Hardware Configuration 2 from either Hardware Configuration 1 or 1B, because they use a
different architecture.

Get the tools needed to customize Windows



Get the tools needed to customize Windows
4/30/2018 • 4 minutes to read • Edit Online

PCs

Storage

Software

Windows 10 (install.wim)Windows 10 (install.wim)

Here's what you'll need to start testing and deploying devices:

Here's how we'll refer to them:

Technician PC: Your work PC. This PC should have at least 15GB of free space for installing the Windows
Assessment and Deployment Kit (Windows ADK) and for modifying Windows images.

We recommend using Windows 10 for this PC. The minimum requirement is Windows 7 SP1, though this
requires additional tools or workarounds for tasks such as running PowerShell scripts and mounting .ISO
images.

For most tasks, you can use either an x86 or x64 PC. If you're creating x86 images, you'll need an x86-based
PC (or virtual machine) for a one-time task of generating a catalog file.

Reference device: A test PC or tablet that represents all of the devices in a single model line; for example,
the Fabrikam Notebook PC Series 1. This device must meet the Windows 10 minimum hardware
requirements.

You'll reformat this device as part of the walkthrough.

WinPE USB key: Must be at least 512MB and at most 32GB. This drive will be formatted, so save your
data off of it first. It should not be a Windows-to-Go key or a key marked as a non-removable drive.

Storage USB key (USB-B): A second USB key or an external USB hard drive for storing files. Minimum
free space: 8GB, using NTFS, ExFAT, or any other file system that allows files over 4GB. If your hardware
allows it, use USB 3.0 keys/drives and USB 3.0 ports to speed up file copy procedures. Note, some USB 3.0
keys don't work with some USB 2.0 ports. We won't be reformatting this drive, so as long as you have
enough free space, you can reuse an existing storage drive.

To use a single storage drive, see WinPE: Store or split images to deploy Windows using a single USB drive

Copy the following source files to the technician PC, rather than using external sources like network shares or
removable drives. This reduces the risk of interrupting the build process from a temporary network issue or from
disconnecting the USB device.

To complete this guide, get the recommended downloads in this section from https://www.microsoftoem.com.

The version numbers of the Windows ADK, the Windows image you're deploying, and the languages and features
you're adding must match.

This lab assumes the 64-bit architecture, so if you’re using the 32-bit version, change all mentions of x64 to x86.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/get-the-tools-needed-to-customize-windows-sxs.md
http://go.microsoft.com/fwlink/?LinkId=526803
https://www.microsoftoem.com


Windows Home 10, 32/64 English OPK

Windows Home SL 10, 32/64 English OPK

Windows Pro 10, 32/64 English OPK

Windows Assessment and Deployment Kit (ADK) for Windows 10Windows Assessment and Deployment Kit (ADK) for Windows 10

Customizations: Windows updates, languages, features, apps, and Microsoft OfficeCustomizations: Windows updates, languages, features, apps, and Microsoft Office

Win 10 32/64 MultiLang OPK LangPackAll/LIP

Win 10 32/64 MultiLang OPK Feat on Demand

Win 10 32/64 MultiLang OPK App Update

X20-98485 Office Mobile MultiLang v1.3 OPK

X21-05453 Office 2016 v16.2 Deployment Tool for OEM OPK

X21-05414 Office 2016 v16.2 English OPK

X21-05508 Office v16.2 German OPK

Product keysProduct keys

Sample files: Create a deployment USB driveSample files: Create a deployment USB drive

Mount the ISO file to a drive, and note the drive letter, for example, D.

Copy the D:\sources\install.wim file, and save it to the local drive, in the folder : C:\Images\Win10_x64\.

Windows ADK for Windows 10 or the most recent Windows 10 32/64 OPK ADK.

We also discuss how to add hardware drivers and other Windows apps in this guide, get those from the
hardware/software manufacturers.

Get the default product keys for each Windows version from the Kit Guide Windows 10 Default Manufacturing
Key OEM PDF, which is on the ISO with the Windows image.

Get the distribution product keys that match the Windows 10 image.

1. Format a USB Drive with the NTFS file format, name it USB-B.

https://developer.microsoft.com/windows/hardware/windows-assessment-deployment-kit#winADK


Prepare your technician PC

2. Download the USB-B.zip lab samples from the Microsoft download center, and extract the files to the drive.

Here’s how to set up your PC.

Copy the Windows image to the local drive

1. Mount the Windows ISO file that you downloaded (Right-click the file > Mount), and note the drive letter,
for example, D.

2. In File Explorer, create a new folder (example: C:\Images\Win10_x64), and copy the Windows image
(D:\sources\install.wim) file into the folder. This will help speed file creation procedures later on.

Install the Windows ADK for Windows 10

1. If you have a previous version of the Windows Assessment and Deployment Kit (ADK), uninstall it.

2. Download the version of the Windows ADK that matches the version of Windows that you’re installing.
Run the installer.

3. Click Next > Next > Accept to accept the defaults and to join the Customer Experience Improvement
Program.

4. Select the following tools:

Deployment Tools

Windows Preinstallation Environment (Windows PE)

User State Migration Tool (USMT)

For these labs, you won't need the Windows Performance Toolkit or the Windows Assessment Toolkit.
You can clear those check boxes.

5. Click Install, and then click Yes to confirm. This may take a few minutes.

6. When the installation is finished, click Close.

Install Windows PE

http://download.microsoft.com/download/3/F/2/3F2646EF-D589-498C-9F07-DE5549BE018E/USB-B.zip
https://developer.microsoft.com/windows/hardware/windows-assessment-deployment-kit#winADK


Lab 1: Install Windows PE
5/11/2018 • 2 minutes to read • Edit Online

Prepare the WinPE files

Add to WinPE (Usually not needed)

Windows Preinstallation Environment (WinPE) is a small, command-line based operating system. You can use it
to capture, update, and optimize Windows images, which you'll do in later sections. In this section, you'll prepare
a basic WinPE image on a bootable USB flash drive and try it out.

The Windows PE USB must be at least 512MB and at most 32GB. It should not be a Windows-to-Go key or a
key marked as a non-removable drive.

copype amd64 C:\winpe_amd64

copype x86 C:\winpe_x86

1. On your technician PC, start the Deployment and Imaging Tools Environment as an administrator :

Click Start, type Deployment and Imaging Tools Environment. Right-click Deployment and
Imaging Tools Environment and select Run as administrator.

2. Copy the base WinPE files into a new folder :

Repeat if you’re also deploying x86 devices:

Troubleshooting: If this doesn't work, make sure you're in the Deployment and Imaging Tools
Environment, and not the standard command prompt.

Note, when you add more packages to WinPE, it slows WinPE performance and boot time. Only add additional
packages when necessary.

Common customizations:

Add an update. If you're going to be capturing an FFU at the end of the lab, apply KB4048955 to your
WinPE image. To learn more, see: WinPE: mount and customize.

Add a video or network driver. (WinPE includes generic video and network drivers, but in some cases,
additional drivers are needed to show the screen or connect to the network.). To learn more, see WinPE:
Add drivers.

Add PowerShell scripting support. To learn more, see WinPE: Adding Windows PowerShell support to
Windows PE. PowerShell scripts are not included in this lab.

Set the power scheme to high-performance. Speeds deployment. Note, our sample deployment
scripts already set this scheme automatically. See WinPE: Mount and Customize: High Performance.

Optimize WinPE : Recommended for devices with limited RAM and storage (for example, 1GB
RAM/16GB storage). After you add drivers or other customizations to Windows PE, see WinPE: Optimize
and shrink the image to help reduce the boot time.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/install-windows-pe-sxs.md
https://www.catalog.update.microsoft.com/search.aspx?q=4048955
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-add-drivers
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-optimize


Create a bootable drive

Try it out

MakeWinPEMedia /UFD C:\winpe_amd64 D:

MakeWinPEMedia /UFD C:\winpe_x86 E:

1. Plug in a USB key that you don't mind formatting. Note the drive letter it uses, for example, D.

2. Install WinPE to an empty USB drive:

When prompted, press Y to format the drive and install WinPE.

Repeat if necessary, plugging in a separate USB key for use when deploying x86 devices:

When prompted, press Y to format the drive and install WinPE.

3. In File Explorer, right-click the drive and select Eject.

1. Connect the WinPE USB drive to your reference device.

2. Turn off the device, and then boot to the USB drive. You usually do this by powering on the device and
quickly pressing a key (for example, the Esc key or the Volume up key).

Note On some devices, you might need to go into the boot menus to choose the USB drive. If you're
given a choice between booting in UEFI mode or BIOS mode, choose UEFI mode. To learn more, see Boot
to UEFI Mode or Legacy BIOS mode. If the device does not boot from the USB drive, see the
troubleshooting tips in WinPE: Create USB Bootable drive.

WinPE starts at a command line, and runs wpeinit to set up the system. This can take a few minutes.

Leave this PC booted to Windows PE for now.

Lab 2: Deploy Windows using a script

http://go.microsoft.com/fwlink/?LinkId=526943
http://go.microsoft.com/fwlink/?LinkId=526944


Lab 2: Deploy Windows using a script
5/11/2018 • 4 minutes to read • Edit Online

Step 1: Mount the image

Step 2: Copy the deployment scripts to the root of the USB storage
drive

Step 3: Apply the Windows image using a script

You can use scripts to take a Windows image and deploy Windows onto new PCs quickly. You can modify these
scripts to change the size of the drive partitions, or to completely automate deployment.

Dism /Get-ImageInfo /ImageFile:"D:\sources\install.wim"

md E:\images

Dism /Export-Image /SourceImageFile:"D:\sources\install.wim" /SourceIndex:2 
/DestinationImageFile:"E:\Images\install.wim"

1. On your technician PC, right-click the .img file for Windows 10 Home from the Windows Home 10 32/64
English OPK DVD, and select Mount. This loads the files to a temporary drive letter (example, D:).

2. Extract the Home edition. The Windows Home 10 English OPK image includes both Professional and
Home editions. (Index 1=Professional, Index 2=Home). We recommend starting with the Home edition,
because you can upgrade your images later from Home to Professional using DISM commands, but you
can't downgrade.

where D: is the drive from the Windows ISO and E: is the USB storage drive.

Copy the sample scripts to the root of the USB storage drive. If you're going to be deploying FFU images, make
sure you use the FFU scripts. Download a copy here

Use deployment scripts to apply the image onto a test device. These scripts set up the hard drive partitions and
add the files from the Windows image to the partitions.

The sample scripts include steps that detect the firmware type (the newer UEFI-based BIOS, or the legacy BIOS).
Some UEFI-based devices include support for the older legacy BIOS. For more info, see UEFI Firmware.

1. Boot the reference device to Windows PE using the Windows PE USB key.

2. Take out the Windows PE USB key and put in the Storage USB key.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-windows-with-a-script-sxs.md
http://download.microsoft.com/download/3/F/2/3F2646EF-D589-498C-9F07-DE5549BE018E/USB-B.zip
http://go.microsoft.com/fwlink/?LinkId=526945


Step 4: Apply desktop applications

Step 5: Set up the system recovery tools

diskpart
DISKPART> list volume
DISKPART> exit

NOTENOTE

D:
D:\Deployment\ApplyImage.bat D:\Images\install.wim

3. Find the drive letters of the USB key by using diskpart:

For example, the drives can be lettered like this: C = Windows; D = USB storage drive.

4. Format the primary hard drive, create the partitions, and apply the image by using the pre-made sample
scripts.

The script ApplyImage.bat uses diskpart scripts to create the partitions and define the partition layout.
These scripts must be placed in the same folder. You can update these scripts to change the partition sizes.

If you're going to be capturing and deploying your final image as an FFU, choose the options to not configure
recovery. This allows you to expand the Windows partition, if needed, after you apply your FFU. You can configure
recovery after you expand the Windows partition.

When prompted by the script:

a. Choose whether or not to configure the recovery partition.

b. Press Y to format the drive.
c. Press Y to select Compact OS, or N to select a non-compacted OS:

d. Press N to indicate the image does not include extended attributes (EA).

Y : Configures the Windows recovery partition.
N : Does not configure the recovery partition. The recovery partition can be configured later.
Choose this option if you're going to be capturing and deploying your image as an FFU.

Y : Applies the image using Compact OS. This is best for devices with solid-state drives and
drives with limited free space.
N : Applies the image as a fully-uncompressed image. This is best for high-performance devices
or devices that use traditional hard drives with rotational media.

The scripts apply the image to the drive, and then finishes.

Skip this step until you've completed Lab 10: Add desktop applications and settings with siloed provisioning
packages (SPPs). This step adds Windows desktop applications to your images. This must be done before adding
the recovery image.

D:\ADKTools\amd64\WimMountAdkSetupAmd64.exe /Install /q
D:\ADKTools\amd64\DISM.exe /ImagePath:C:\ /Apply-SiloedPackage /PackagePath:E:\SPPs\office16_base.spp 
/PackagePath:E:\SPPs\office16_fr-fr.spp /PackagePath:E:\SPPs\office16_de-de.spp

1. Apply desktop applications.



D:\Deployment\ApplyRecovery.bat

Step 6: Reboot

TIPTIP

Optional: skip this step until you've completed Lab 12: Update the recovery image.

Include a recovery image for your final images, but it's not required for these early testing steps.

Apply the Windows Recovery Environment (Windows RE) image. These tools help repair common causes of
unbootable operating systems. The image is stored in a separate drive partition. The script ApplyRecovery.bat
uses the diskpart scripts: HidePartitions-UEFI.txt and HidePartitions-BIOS.txt to set up this partition. These
scripts must be placed in the same folder as ApplyRecovery.bat.

When you apply an FFU, you can choose to configure the recovery partition when you apply the FFU.

Disconnect the drives, then reboot ( exit ).

The PC should reboot into Windows. While you’re waiting for the preparation phase to complete, go back to
your technician PC and continue with the lab.

If the device does not boot, turn on the device, and press the key that opens the boot-device selection menu (for example,
the Esc key). Select the hard drive as your boot device, and continue.

Optional: Test the recovery image

1. Complete the first logon experience like a regular user.
2. Select Start > Settings > Update & security > Recovery > under Reset this PC, click Get started >

Remove everything > Just remove my files > Next.
3. After Windows completes the reset, Windows should go back to the original welcome screens as if there were

no user account on the device.

Lab 3: Add device drivers (.inf-style)



Lab 3: Add device drivers
5/11/2018 • 4 minutes to read • Edit Online

Prepare and mount the image

md C:\mount\windows
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize

Add device drivers to your images to support your hardware. Some have different installation procedures:

.inf-style drivers: Many drivers include an information file (with an .inf extension) to help install the driver.
These can be installed using tools described in this topic.
.exe-style drivers: Drivers without an .inf file often must be installed like typical Windows desktop
applications. We'll show you how to add those in Lab 10: Add desktop applications and settings with siloed
provisioning packages (SPPs).
Boot-critical drivers: Graphics and storage drivers may sometimes need to be added to the Windows image
(as shown in this topic), as well as the Windows PE image (as shown earlier in Lab 1: Install Windows PE), and
in the Windows recovery image. We'll show you how to update the recovery image later in Lab 12: Update the
recovery image.

To make the changes to a Windows image, you'll mount the image contents into a temporary folder, and use tools
like DISM to make the changes. Unmount the images to save the changes, and use your deployment scripts to
test the images.

Step 1: Backup your Windows image file (recommended while testing new designs)

copy "C:\Images\Win10_x64\sources\install.wim" C:\Images\install-backup.wim

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. Make a backup of the image file:

Step 2: Mount the Windows image file

Create a temporary folder to mount the files, and mount the image into it:

Where /Index:1 refers to the image you want to mount. For the Windows 10 Home/Pro edition, use /Index:2 to
select the Home edition.

This step can take several minutes.

Troubleshooting:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-device-drivers.md


Add customizations to the image

Unmount the image

Dism /Cleanup-Mountpoints

Don’t mount images to protected folders, such as your User\Documents folder.

If DISM processes are interrupted, consider temporarily disconnecting from the public network and
disabling virus protection.

If you've mounted an image to the folder before, try cleaning up the resources associated with the
mounted image:

For some DISM commands, you'll need to make sure that you are using the Deployment and Imaging
Tools Environment rather than the standard command prompt.

These are just examples - you don't have to add all of these.

Step 3: Add drivers

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf"

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf" 
/LogPath=C:\mount\dism.log

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:c:\drivers /Recurse 

Dism /Get-Drivers /Image:"C:\mount\windows"

1. Add a single driver that includes an .inf file:

where "C:\Drivers\PnP.Media.V1\media1.inf" is the base .inf file in your driver package.

Troubleshooting: For many DISM commands, you can detailed information about the error by adding
the /LogPath option. For example:

2. Install a group of drivers by using the /Recurse option. This adds all drivers with a .inf file in that folder and
all its subfolders.

Warning: While /Recurse can be handy, it's easy to bloat your image with it. Some driver packages include
multiple .inf driver packages, which often share payload files from the same folder. During installation, each
.inf driver package is expanded into a separate folder, each with a copy of the payload files. We've seen
cases where a popular driver in a 900MB folder added 10GB to images when added with the /Recurse
option.

3. Verify that the drivers are part of the image:

Review the resulting list of packages and verify that the list contains the driver.

Step 4: Unmount the images

1. Close all applications that might access files from the image.



Try it out

Learn more

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

2. Commit the changes and unmount the Windows image:

Step 5: Apply the image to a new PC Use the steps from Lab 2: Deploy Windows using a script to copy the
image to the storage USB drive, apply the image, and boot it up. The short version:

1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Step 6: Verify drivers

Dism /Get-Drivers /Online

Deployment Image Servicing and Management tool
Version: 10.0.15063.0

Image Version: 10.0.15063.0

Obtaining list of 3rd party drivers from the driver store...

Driver packages listing:

Published Name : oem0.inf
Original File Name : contoso.graphicsdriver.inf
Inbox : No
Class Name : Graphics
Provider Name : Contoso
Date : 05/19/2017
Version : 10.0.0.1

The operation completed successfully.

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in
administrator account (This is also known as audit mode).

2. Right-click the Start button, and select Command Prompt (Admin).

3. Verify that the drivers appear correctly:

Review the resulting list of drivers. For example:

When creating several devices with the identical hardware configuration, you can speed up installation time
and first boot-up time by maintaining driver configurations when capturing a Windows image.

Lab 4: Add languages



Lab 4: Add languages
7/27/2018 • 5 minutes to read • Edit Online

Mount the image

Add languages to the image

COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION

Language pack Microsoft-Windows-
Client-Language-
Pack_x64_es-es

None UI text, including basic
Cortana capabilities.

Language interface pack Microsoft-Windows-
Client-Language-
Interface-Pack_x64_ca-
es

Requires a specific fully-
localized or partially-
localized language pack.
Example: ca-ES requires es-
ES.

Notes

Add languages before major updates. Major updates include hotfixes, general distribution releases, or
service packs. If you add a language later, you'll need to reinstall the updates.

Add major updates before apps. Thes apps include universal Windows apps and desktop applications. If
you add an update later, you'll need to reinstall the apps. We'll show you how to add these later in Lab 6:
Add universal Windows apps

Add your languages to your recovery image, too: Many common languages can be added to your
recovery image. We'll show you how to add these later in Lab 12: Update the recovery image.

Step 1: Mount the image

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "C:\Images\Win10_x64\sources\install.wim" C:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

Always use language packs and Features-On-Demand (FOD) packages that match the language and platform of
the Windows image.

Features on demand (FODs) are Windows feature packages that can be added at any time. When a user needs a
new feature, they can request the feature package from Windows Update. OEMs can preinstall these features to
enable them on their devices out of the box.

Common features include language resources like handwriting recognition. Some of these features are required to
enable full Cortana functionality.

The following table shows the types of language packages and components available for Windows 10:

UI text, including basic
Cortana capabilities. To
learn more, see Available
Language Packs for
Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-drivers-langs-universal-apps-sxs.md


Basic Microsoft-Windows-
LanguageFeatures-Basic-
fr-fr-Package

None

Fonts Microsoft-Windows-
LanguageFeatures-Fonts-
Thai-Package

None Fonts required for some
regions. Example, th-TH
requires the Thai font pack.

Optical character recognition Microsoft-Windows-
LanguageFeatures-OCR-
fr-fr-Package

Basic Recognizes and outputs text
in an image.

Handwriting recognition Microsoft-Windows-
LanguageFeatures-
Handwriting-fr-fr-
Package

Basic Enables handwriting
recognition for devices with
pen input.

Text-to-speech Microsoft-Windows-
LanguageFeatures-
TextToSpeech-fr-fr-
Package

Basic Enables text to speech, used
by Cortana and Narrator.

Speech recognition Microsoft-Windows-
LanguageFeatures-
Speech-fr-fr-Package

Basic, Text-To-Speech
recognition

Recognizes voice input, used
by Cortana and Windows
Speech Recognition.

Retail Demo experience Microsoft-Windows-
RetailDemo-
OfflineContent-Content-
fr-fr-Package

Basic, plus the base retail
demo pack: Microsoft-
Windows-RetailDemo-
OfflineContent-Content-
Package, and the English
retail demo pack: Microsoft-
Windows-RetailDemo-
OfflineContent-Content-en-
us-Package.

Retail Demo Experience
(RDX)

COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION

Spell checking, text
prediction, word
breaking, and
hyphenation if available
for the language.

You must add this
component before
adding any of the
following components.

Step 2: Add or change languages

1. Add languages and Features On Demand to the Windows image.

Language updates have a specific order they need to be installed in. For example, to enable Cortana, install:
Microsoft-Windows-Client-Language-Pack, then –Basic, then –Fonts, then –TextToSpeech, and then –
Speech, in this order. If you’re not sure of the dependencies, it’s OK to put them all in the same folder, and
then add them all using the same DISM /Add-Package command.

Example for adding French, x64:

https://docs.microsoft.com/windows-hardware/customize/desktop/retail-demo-experience


Dism /Add-Package /Image:"C:\mount\windows" /PackagePath="C:\Languages\fr-fr x64\Microsoft-Windows-
Client-Language-Pack_x64_fr-fr.cab" /PackagePath="C:\Languages\fr-fr x64\Microsoft-Windows-
LanguageFeatures-Basic-fr-fr-Package~31bf3856ad364e35~amd64~~.cab" /PackagePath="C:\Languages\fr-fr 
x64\Microsoft-Windows-LanguageFeatures-OCR-fr-fr-Package~31bf3856ad364e35~amd64~~.cab" 
/PackagePath="C:\Languages\fr-fr x64\Microsoft-Windows-LanguageFeatures-Handwriting-fr-fr-
Package~31bf3856ad364e35~amd64~~.cab" /PackagePath="C:\Languages\fr-fr x64\Microsoft-Windows-
LanguageFeatures-TextToSpeech-fr-fr-Package~31bf3856ad364e35~amd64~~.cab" 
/PackagePath="C:\Languages\fr-fr x64\Microsoft-Windows-LanguageFeatures-Speech-fr-fr-
Package~31bf3856ad364e35~amd64~~.cab" /LogPath=C:\mount\dism.log

Dism /Add-Package /Image:"C:\mount\windows" /PackagePath="C:\Languages\ja-jp x64\Microsoft-Windows-
Client-Language-Pack_x64_ja-jp.cab" /PackagePath="C:\Languages\ja-jp x64\Microsoft-Windows-
LanguageFeatures-Basic-ja-jp-Package~31bf3856ad364e35~amd64~~.cab" /PackagePath="C:\Languages\ja-jp 
x64\Microsoft-Windows-LanguageFeatures-OCR-ja-jp-Package~31bf3856ad364e35~amd64~~.cab" 
/PackagePath="C:\Languages\ja-jp x64\Microsoft-Windows-LanguageFeatures-Handwriting-ja-jp-
Package~31bf3856ad364e35~amd64~~.cab" /PackagePath="C:\Languages\ja-jp x64\Microsoft-Windows-
LanguageFeatures-TextToSpeech-ja-jp-Package~31bf3856ad364e35~amd64~~.cab" 
/PackagePath="C:\Languages\ja-jp x64\Microsoft-Windows-LanguageFeatures-Speech-ja-jp-
Package~31bf3856ad364e35~amd64~~.cab" /PackagePath:"C:\Languages\ja-jp x64\Microsoft-Windows-
LanguageFeatures-Fonts-Jpan-Package~31bf3856ad364e35~amd64~~.cab"  /LogPath=C:\mount\dism.log

Dism /Get-Packages /Image:"C:\mount\windows"

Package Identity : Microsoft-Windows-Client-LanguagePack  ...  fr-FR~10.0.16299.15
State : Installed

Dism /Get-Capabilities /Image:"C:\mount\windows"

Capability Identity : Language.Basic~~~fr-fr~0.0.1.0
State : Installed
...
Capability Identity : Language.Handwriting~~~fr-fr~0.0.1.0
State : Installed

Dism /Set-AllIntl:fr-fr /Image:"C:\mount\windows"

Example for adding Japanese, x64. Note, Japanese requires a font pack.

Not every region has fonts or capability packs for every feature.

2. Verify that the language package is part of the image:

where C is the drive letter of the drive that contains the image.

Review the resulting list of packages and verify that the list contains the package. For example:

3. Verify that the language components are part of the image:

where C is the drive letter of the drive that contains the image.

Review the resulting list of packages and verify that the list contains the packages. For example:

4. Change the default language to match the preferred language for your customers.

5. Change the default timezone to match the timezone for your customers. See List of timezones.



Unmount the images

Try it out

Dism /Set-TimeZone:"W. Europe Standard Time" /Image:"C:\mount\windows"

Step 3: Remove the base language (only needed for non-English regions)

dism /Remove-Package /Image:"c:\mount\windows" /PackageName:Microsoft-Windows-Client-LanguagePack-
Package~31bf3856ad364e35~amd64~en-US~10.0.16299.15 /PackageName:Microsoft-Windows-LanguageFeatures-
Basic-en-us-Package~31bf3856ad364e35~amd64~~10.0.16299.15 /PackageName:Microsoft-Windows-
LanguageFeatures-Handwriting-en-us-Package~31bf3856ad364e35~amd64~~10.0.16299.15 
/PackageName:Microsoft-Windows-LanguageFeatures-OCR-en-us-Package~31bf3856ad364e35~amd64~~10.0.16299.15 
/PackageName:Microsoft-Windows-LanguageFeatures-Speech-en-us-
Package~31bf3856ad364e35~amd64~~10.0.16299.15 /PackageName:Microsoft-Windows-LanguageFeatures-
TextToSpeech-en-us-Package~31bf3856ad364e35~amd64~~10.0.16299.15  /LogPath=C:\mount\dism.fod2.log

TIPTIP

Dism /Get-Packages /Image:"C:\mount\windows"

Dism /Get-Capabilities /Image:"C:\mount\windows"

1. To save space, you can remove English language components when deploying to non-English regions. You
can either uninstall them in the reverse order from how you add them, or remove them all at once in the
same DISM /remove-package command.

where C is the drive letter of the drive.

Troubleshooting If removing the package fails due to pending updates, try the command again.

The package names in the command above may be different than the ones in your image, depending on the version
of Windows you're using. Run dism /Image:"C:\mount\windows" /get-packages  to get the names of the packages
in your image.

2. Verify that the language package is no longer part of the image:

where C is the drive letter of the drive that contains the image.

3. Verify that the language components are no longer part of the image:

where C is the drive letter of the drive that contains the image.

Step 4: Unmount the images

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image.

2. Commit the changes and unmount the Windows image:

Step 5: Apply the image to a new PC



Use the steps from Lab 2: Deploy Windows using a script to copy the image to the storage USB drive, apply the
image, and boot it up. The short version:

1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Step 6: Verify updates

C:\Windows\System32\Dism /Get-Packages /Online

Package Identity : Microsoft-Windows-Client-LanguagePack  ...  fr-FR~10.0.16299.15
State : Installed

1. After the PC boots, if you have multiple languages installed, you should receive a list of lanugages during
the out-of-box experience.

2. Either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in administrator
account (This is also known as audit mode).

3. Right-click the Start button, and select Command Prompt (Admin).

4. Verify that the language packages appear correctly:

Review the resulting list of packages and verify that the list contains the package. For example:

Lab 5: Add updates and upgrade the edition



Lab 5: Add updates and upgrade the edition
5/11/2018 • 3 minutes to read • Edit Online

Mount the image

Add customizations to the image

For many customizations, like adding .inf-style drivers, Windows updates or upgrading the edition, you can mount
and edit the Windows image. Mounting an image maps the contents of a file to a temporary location where you
can edit the files or use DISM to perform common deployment tasks.

Notes

Add languages before major updates. Major updates include hotfixes, general distribution releases, or
service packs. If you add a language later, you'll need to re-add the updates.

Add major updates before apps. Thes apps include universal Windows apps and desktop applications. If
you add an update later, you'll need to re-add the apps.

For major updates, update the recovery image too: These may include hotfixes, general distribution
releases, service packs, or other pre-release updates. We'll show you how to update these later in Lab 12:
Update the recovery image.

If a Servicing Stack Update (SSU) is available, you must install it before applying the most recent
General Distribution Release (GDR) or any future GDRs. See Windows 10 update history to see the most
recent GDR.

Note: To add drivers that include an installation package, see Lab 10: Add desktop applications and settings with
siloed provisioning packages (SPPs)

Step 1: Mount the image

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "C:\Images\Win10_x64\sources\install.wim" C:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

Step 2: Upgrade the edition from Home to Pro

Use this procedure to upgrade the edition. You cannot set a Windows image to a lower edition. You should not
use this procedure on an image that has already been changed to a higher edition.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/servicing-the-image-with-windows-updates-sxs.md
https://support.microsoft.com/en-us/help/4018124/windows-10-update-history


Unmount the image

Try it out

Dism /Get-TargetEditions /Image:C:\mount\windows

Dism /Set-Edition:Professional /Image:C:\mount\windows

1. Determine what images you can upgrade the image to: Note the edition IDs available.

2. Upgrade the edition.

Step 3: Add a Windows update package

Dism /Add-Package /Image:"C:\mount\windows" /PackagePath="windows10.0-kb4016871-
x64_27dfce9dbd92670711822de2f5f5ce0151551b7d.msu"  /LogPath=C:\mount\dism.log

Dism /Add-Package /Image:"C:\mount\windows" /PackagePath="C:\WindowsUpdates\windows10.0-kb00001-
x64.msu" /PackagePath="C:\WindowsUpdates\windows10.0-kb00002-x64.msu" 
/PackagePath="C:\WindowsUpdates\windows10.0-kb00003-x64.msu" /LogPath=C:\mount\dism.log

DISM /Cleanup-Image /Image:"C:\mount\windows" /StartComponentCleanup /ResetBase /ScratchDir:C:\Temp

1. Get a Windows update package. For example, grab the latest cumulative update listed in Windows 10
update history from the Microsoft Update catalog. Extract the .msu file update to a folder, for example,
C:\WindowsUpdates\windows10.0-kb4016871-
x64_27dfce9dbd92670711822de2f5f5ce0151551b7d.msu.

To learn more, see https://myoem.microsoft.com/oem/myoem/en/product/winemb/pages/comm-ms-
updt-ctlg-trnstn.aspx.

2. Add the updates to the image. For packages with dependencies, make sure you install the packages in
order. If you’re not sure of the dependencies, it’s OK to put them all in the same folder, and then add them
all using the same DISM /Add-Package command by adding multiple /PackagePath items.

Example: adding a cumulative update:

Example: adding multiple updates:

3. Lock in the updates, so that they are restored during a recovery.

Step 4: Unmount the images

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image.

2. Commit the changes and unmount the Windows image:

Step 5: Apply the image to a new PC

Use the steps from Lab 2: Deploy Windows using a script to copy the image to the storage USB drive, apply the
image, and boot it up. The short version:

https://support.microsoft.com/en-us/help/12387/windows-10-update-history
http://www.catalog.update.microsoft.com
https://myoem.microsoft.com/oem/myoem/en/product/winemb/pages/comm-ms-updt-ctlg-trnstn.aspx


1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Step 6: Verify updates

dism /online /get-currentedition

Current edition is:

Current Edition : Professional

The operation completed successfully.

Dism /Get-Packages /Online

Package Identity : Package_for_RollupFix~31bf3856ad364e35~amd64~~15063.250.1.1
State : Installed
Release Type : Security Update
Install Time : 04/29/2017 6:26 PM

The operation completed successfully.

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in
administrator account (This is also known as audit mode).

2. Right-click the Start button, and select Command Prompt (Admin).

3. Verify that the edition is correct:

Make sure it's the right edition. For example:

4. Verify that the packages appear correctly:

Review the resulting list of packages and verify that the list contains the package. For example:

5. Each package will usually be a new KB, and will increase the build revision number of Windows on the
device. The revision number of windows a device can be found in the following registry key: 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\UBR .

Lab 6: Add universal Windows apps



Lab 6: Add universal Windows apps and taskbar pins
5/18/2018 • 4 minutes to read • Edit Online

Mount the image
Step 1: Mount the imageStep 1: Mount the image

Add/reinstall apps
Step 2: Add/reinstall inbox apps (required whenever adding languages)Step 2: Add/reinstall inbox apps (required whenever adding languages)

NOTENOTE

Add apps to your images to support different customer needs. Some have different installation procedures:

Windows universal platform apps (UWP apps): These can be added or re-installed using tools
described in this topic.

Windows desktop applications: We'll show you how to add those in Lab 10: Add desktop applications
and settings with siloed provisioning packages (SPPs).

Notes

Add languages before major updates. Major updates include hotfixes, general distribution releases, or
service packs. If you add a language later, you'll need to reinstall the updates.

Add major updates before apps. These apps include universal Windows apps and desktop applications.
If you add an update later, you'll need to reinstall the apps.

There's no longer monthly updates of the inbox apps. This process changed for Windows 10, version
1607. See the communication on the MyOEM Portal:

In the future, Microsoft will release updated versions of the apps only when Microsoft releases full
updated versions of Windows.

OEMs will need to incorporate the updated apps at the same time they incorporate the broader
Windows release.

When adding 3rd party apps, follow the Windows Store OEM Program Guide. You must comply
with all Store Program terms and conditions, and related documents.

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "C:\Images\Win10_x64\sources\install.wim" C:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

In previous versions of Windows, it was required to first remove inbox apps. This is no longer required, and if you do, the
commands may fail.

1. Go to https://microsoftoem.com and get the App Update OPK. This package includes the Windows 10

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-universal-apps-sxs.md
https://myoem.microsoft.com/oem/myoem/en/programs/mktg/mda/Pages/COMM-MDAinboxApUpdtRlsPrcssChng.aspx
https://myoem.microsoft.com/oem/myoem/en/topics/Licensing/roylicres/ost2016/Pages/DP-WindowsStoreOEMProgramGuide2016FinalCL.aspx
https://microsoftoem.com


Step 3: Add the HEVC CodecStep 3: Add the HEVC Codec

DISM /image:c:\mount\windows /add-ProvisionedAppxPackage 
/packagepath:"E:\apps\amd64\Microsoft.HEVCVideoExtension_8wekyb3d8bbwe.x64.appx" 
/licensepath:"E:\apps\amd64\Microsoft.HEVCVideoExtension_8wekyb3d8bbwe.x64.xml" 
/dependencypackagepath:"E:\apps\amd64\Microsoft.VCLibs.x64.14.00.appx" 
/DependencyPackagePath:"E:\apps\amd64\Microsoft.VCLibs.x86.14.00.appx"

Step 4: Add/reinstall other apps, example: Microsoft Universal Office AppsStep 4: Add/reinstall other apps, example: Microsoft Universal Office Apps

Dism /Add-ProvisionedAppxPackage /Image:c:\mount\windows 
/PackagePath:e:\apps\amd64\Microsoft.3DBuilder_8wekyb3d8bbwe.appxbundle 
/LicensePath:e:\apps\amd64\Microsoft.3DBuilder_8wekyb3d8bbwe.xml 
/DependencyPackagePath:e:\apps\amd64\Microsoft.VCLibs.x64.14.00.appx 
/DependencyPackagePath:e:\apps\amd64\Microsoft.VCLibs.x86.14.00.appx

inbox apps for the most current Windows release.

2. Extract the package to a folder, for example, E:\apps\amd64.

3. Add/reinstall the inbox apps. The following example shows you how to reinstall the 3D Builder inbox app.
Repeat these steps for each of the inbox apps (with the exception of AppConnector) by substituting the
appropriate package.

Partial example:

For full examples, see sample scripts.

For Windows 10, version 1709 add the HEVC codec and it's dependencies from the App Update OPK. Note that
the HEVC codec is not currently available as an .appxbundle package, so you'll have to use the .appx packages.

Get the latest version of the app. In our example, we install Microsoft Universal Office Apps, though you can install
any UWP app using this procedure.

1. Go to https://microsoftoem.com and get the latest version of the Office Mobile supplemental OPK. This
guide uses Office Mobile Multilang v1.3 OPK.

Note: Install either Office Single Image (either with or with out perpetual or subscription license) or Office
Mobile (not both). Office Mobile must be used on devices with screen size of 10.1” and below, and Office
Single Image must be used on devices with screen sizes above 10.1”. For devices that have a single fixed
storage drive with less than 32 GB, OEMs may preinstall Office Mobile, regardless of the screen size. To
learn more, see Office Mobile Communication.

2. Extract the package to a folder, for example, e:\Universal_Office.

3. Add/reinstall Microsoft Universal Office Apps:

https://microsoftoem.com
https://myoem.microsoft.com/oem/myoem/en/product/office/Pages/COMM-OfficeUnvrslAppsOPKRlsTmng.aspx


Step 5: Start MenuStep 5: Start Menu

Step 6: Unmount the imagesStep 6: Unmount the images

Try it out
Step 7: Apply the image to a new PCStep 7: Apply the image to a new PC

Step 8: Verify appsStep 8: Verify apps

Dism /Add-ProvisionedAppxPackage /Image:"c:\mount\windows" 
/packagepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Excelim.appxbundle_Windows10_PreinstallKi
t\1b0569bd5fbd41d6bf0669beb013073c.appxbundle" 
/dependencypackagepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Excelim.appxbundle_Windows10_Pr
einstallKit\Microsoft.VCLibs.140.00_14.0.22929.0_x86__8wekyb3d8bbwe.appx" 
/licensepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Excelim.appxbundle_Windows10_PreinstallKi
t\1b0569bd5fbd41d6bf0669beb013073c_License1.xml"

Dism /Add-ProvisionedAppxPackage /Image:"c:\mount\windows"  
/packagepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Pptim.appxbundle_Windows10_PreinstallKit\
7f255062294a415a974b4958961df056.appxbundle" 
/dependencypackagepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Pptim.appxbundle_Windows10_Prei
nstallKit\Microsoft.VCLibs.140.00_14.0.22929.0_x86__8wekyb3d8bbwe.appx" 
/licensepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Pptim.appxbundle_Windows10_PreinstallKit\
7f255062294a415a974b4958961df056_License1.xml"

Dism /Add-ProvisionedAppxPackage /Image:"c:\mount\windows" 
/packagepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Wordim.appxbundle_Windows10_PreinstallKit
\532f710ca9d34f0aae6af4abe0af0592.appxbundle" 
/dependencypackagepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Wordim.appxbundle_Windows10_Pre
installKit\Microsoft.VCLibs.140.00_14.0.22929.0_x86__8wekyb3d8bbwe.appx" 
/licensepath:"e:\Universal_Office\PC_TH1_store.16.0.6228.1011.Wordim.appxbundle_Windows10_PreinstallKit
\532f710ca9d34f0aae6af4abe0af0592_License1.xml"

Where the PackagePath points to the app bundle package.

Note the app IDs, you'll need these later in Lab 13: Add universal Windows apps and taskbar pins.

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image.

2. Commit the changes and unmount the Windows image:

where C is the drive letter of the drive that contains the image.

This process may take several minutes.

Use the steps from Lab 2: Deploy Windows using a script to copy the image to the storage USB drive, apply the
Windows image and the recovery image, and boot it up. The short version:

1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in
administrator account (This is also known as audit mode).

2. Check the Start Menu to make sure the apps are available.



Lab 7: Change settings, enter product keys, and run scripts with an answer file (unattend.xml)



Lab 7: Change settings, enter product keys, and run
scripts with an answer file (unattend.xml)
5/18/2018 • 8 minutes to read • Edit Online

Windows settings overview

Answer file settings

Answer files (or Unattend files) can be used to modify Windows settings in your images during Setup. You can
also create settings that trigger scripts in your images that run after the first user creates their account and picks
their default language.

To learn about Windows customizations, see the most recent OEM Policy Document (OPD).

As an example, we'll add a setting that shows you how to automatically boot to a maintenance mode called audit
mode. This mode allows you to perform additional tests, and capture changes. We'll use audit mode in the next
few labs.

While you can set many Windows settings in audit mode, some settings can only be set by using an answer file or
Windows Configuration Designer, such as adding manufacturer ’s support information. A full list of answer file
settings (also known as Unattend settings) is in the Unattended Windows Setup Reference.

Enterprises can control other settings by using Group Policy. For more info, see Group Policy.

We'll show you more ways to add settings later in Lab 10: Add desktop applications and settings with siloed
provisioning packages (SPPs).

You can specify which configuration pass to add new settings:

1 windowsPE : These settings are used by the Windows Setup installation program. If you’re modifying
existing images, you can usually ignore these settings.

4 specialize: Most settings should be added here. These settings are triggered both at the beginning of
audit mode and at the beginning of OOBE. If you need to make multiple updates or test settings,
generalize the device again and add another batch of settings in the Specialize Configuration pass.

6 auditUser: Runs as soon as you start audit mode.

This is a great time to run a system test script - we'll add Microsoft-Windows-
Deployment\RunAsynchronousCommand as our example. To learn more, see Add a Custom Script to
Windows Setup.

7 oobeSystem: Use sparingly. Most of these settings run after the user completes OOBE. The exception is
the Microsoft-Windows-Deployment\Reseal\Mode = Audit setting, which we’ll use to bypass OOBE and
boot the PC into audit mode.

If your script relies on knowing which language the user selects during OOBE, you’d add it to the

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs.md
https://msdn.microsoft.com/library/windows/hardware/dn923277
http://go.microsoft.com/fwlink/p/?linkid=268543
https://msdn.microsoft.com/library/windows/hardware/dn915797
https://msdn.microsoft.com/library/windows/hardware/dn923110


Create and modify an answer file

oobeSystem pass.

To learn more, see Windows Setup Configuration Passes.

Note These settings could be lost if the user resets their PC with the built-in recovery tools. To see how to make
sure these settings stay on the device during a reset, see Sample scripts: Keeping Windows settings through a
recovery.

Step 1: Create a catalog file

1. Start Windows System Image Manager.

2. Click File > Select Windows Image.

3. In Select a Windows Image, browse to and select the image file (D:\install.wim). Next, select an edition
of Windows, for example, Windows 10 Pro, and click OK. Click Yes to create the catalog file. Windows SIM
creates the file based on the image file, and saves it to the same folder as the image file. This process can
take several minutes.

The catalog file appears in the Windows Image pane. Windows SIM lists the configurable components
and packages in that image.

Troubleshooting: If Windows SIM does not create the catalog file, try the following steps:

To create a catalog file for either 32-bit or ARM-based devices, use a 32-bit device.

Make sure the Windows base-image file (\Sources\Install.wim) is in a folder that has read-write
privileges, such as a USB flash drive or on your hard drive.

Step 2: Create an answer file

Click File > New Answer File.

The new answer file appears in the Answer File pane.

Note If you open an existing answer file, you might be prompted to associate the answer file with the
image. Click Yes.

Step 3: Add new answer file settings

1. Add OEM info:

In the Windows Image pane, expand Components, right-click amd64_Microsoft-Windows-Shell-
Setup_(version), and then select Add Setting to Pass 4 specialize.

In the Answer File pane, select Components\4 specialize\amd64_Microsoft-Windows-Shell-
Setup_neutral\OEMInformation.

In the OEMInformation Properties pane, in the Settings section, select:

Manufacturer= Fabrikam

Model= Notebook Model 1

Logo= C:\Fabrikam\Fabrikam.bmp

Create a 32-bit color with a maximum size of 120x120 pixels, save it as D:\AnswerFiles\Fabrikam.bmp file
on your local PC, or use the sample from the USB-B key: D:\ConfigSet\$OEM$\$$\System32\OEM\Fabrikam.bmp

.

We'll copy the logo into the Windows image in a few steps.



More common Windows settings:

Path = CMD /c REG ADD HKEY_LOCAL_MACHINE\Software\OEM /v Value /t REG_SZ ABCD
Description = Adds a OEM registry key
Order = 2
RequiredUserInput = false

2. Set the device to automatically boot to audit mode:

In the Windows Image pane, expand Components, right-click amd64_Microsoft-Windows-
Deployment_(version), and then select Add Setting to Pass 7 oobeSystem.

In the Answer File pane, select Components\7 oobeSystem\amd64_Microsoft-Windows-
Deployment_neutral\Reseal.

In the Reseal Properties pane, in the Settings section, select Mode= Audit .

3. Prepare a script to run after Audit mode begins.

In the Windows Image pane, right-click amd64_ Microsoft-Windows-Deployment_(version) and
then click Add Setting to Pass 6 auditUser.

In the Answer File pane, expand Components\6 auditUser\amd64_Microsoft-Windows-
Deployment_neutral\RunAsynchronous. Right-click RunAsynchronousCommand Properties and
click Insert New AsynchronousCommand.

In the AsynchronousCommand Properties pane, in the Settings section, add the following values:

Path = C:\Fabrikam\SampleCommand.cmd

Description = Sample command to run a system diagnostic check.

Order = 1  (Determines the order that commands are run, starting with 1.)

4. Add a registry key. In this example, we add keys for the OEM Windows Store program. Use the same
process as adding a script, using CMD /c REG ADD .

For Windows 10 Customer Systems, you may use the OEM Store ID alone or in combination with a Store
Content Modifier (SCM) to identify an OEM brand for the OEM Store. By adding a SCM, you can target
Customer Systems at a more granular level. For example, you may choose to target commercial devices
separately from consumer devices by inserting unique SCMs for consumer and commercial brands into
those devices.

Add RunAsynchronousCommands for each registry key to add. (Right-click
RunAsynchronousCommand Properties and click Insert New AsynchronousCommand).

Activate Windows by adding a product key: Microsoft-Windows-Shell-Setup\ProductKey . Please refer to the
Kit Guide Win 10 Default Manufacturing Key OEM PDF to find default product keys for OA3.0 and Non-
OA3.0 keys:

OPK X21-08790 Win Home 10 1607 32 64 English OPK\Print Content\X20-09791 Kit Guide Win 10 Default
Manufacturing Key OEM\X2009791GDE.pdf

.

Speed up first boot by maintaining driver configurations when capturing an image: 
Microsoft-Windows-PnpSysprep/DoNotCleanUpNonPresentDevices , 
Microsoft-Windows-PnpSysprep/PersistAllDeviceInstalls .

Set the Internet Explorer default search engine: Create a RunAsynchronous command as shown above to

https://msdn.microsoft.com/library/windows/hardware/dn923110.aspx
https://msdn.microsoft.com/library/windows/hardware/dn915797.aspx
https://msdn.microsoft.com/library/windows/hardware/dn915735.aspx
https://msdn.microsoft.com/library/windows/hardware/dn915799


Path = `CMD /c REG.exe add 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\InternetSettings\Configuration m /v 
PartnerSearchCode /t REG_DWORD /d "https://search.fabrikam.com/search?p={searchTerms}" /f`   
Description = Changes the Internet Explorer default browser to Fabrikam Search
Order = 3
RequiredUserInput = false

<component name="Microsoft-Windows-IE-InternetExplorer" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SearchScopes>
  <Scope wcm:action="add">             
    <SuggestionsURL>http://api.bing.com/qsml.aspx?query={searchTerms}&amp;src=
{referrer:source?}&amp;maxwidth={ie:maxWidth}&amp;rowheight={ie:rowHeight}&amp;sectionHeight=
{ie:sectionHeight}&amp;FORM=IE8SSC&amp;market={Language}</SuggestionsURL>
    <FaviconURL>http://www.bing.com/favicon.ico</FaviconURL>
    <ScopeKey>Bing</ScopeKey>
    <ScopeDefault>true</ScopeDefault>
    <ScopeDisplayName>Bing</ScopeDisplayName>
    <ScopeUrl>http://www.bing.com/search?q=
{searchTerms}&amp;form=&PRNAM1&amp;src=PRNAM1&amp;pc=NMTE</ScopeUrl>
  </Scope>
</SearchScopes>
<Home_Page>http://oem17WIN10.msn.com/?pc=NMTE</Home_Page>

Path = `powercfg /h /type reduced`   
Description = Saves drive space by reducing hiberfile by 30%.
Order = 4
RequiredUserInput = false

Path = `powercfg /h /off`   
Description = Turns off the hiberfile.
Order = 4
RequiredUserInput = false

add a registry key:

Set the Internet Explorer search scopes: See Scope

Example:

Save drive space by reducing or turning off the hiberfile. The hiberfile helps speed up the time after the
system powers up or recovers from low-power states. Create a RunAsynchronous command as shown
below. To learn more, see Compact OS, single-instancing, and image optimization: RAM, Pagefile.sys, and
Hiberfil.sys

or

Step 4: Save the answer file

Save the answer file, for example: D:\AnswerFiles\BootToAudit-x64.xml.

Note Windows SIM will not allow you to save the answer file into the mounted image folders.

Step 5: Create a script

Copy the following sample script into Notepad, and save it as D:\AnswerFiles\SampleCommand.cmd.

https://msdn.microsoft.com/en-us/library/windows/hardware/dn923228(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/hardware/dn915799


Add the answer file and script to the image
Mount the imageMount the image

Add the answer fileAdd the answer file

Try it out

@rem Scan the integrity of system files 
@rem (Required after removing the base English language from an image)
sfc.exe /scannow

@rem Check to see if your drivers are digitally signed, and send output to a log file.
md C:\Fabrikam
C:\Windows\System32\dxdiag /t C:\Fabrikam\DxDiag-TestLogFiles.txt

Step 6: Mount the images

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "D:\Images\Win10_x64\sources\install.wim" D:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"D:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

Step 7: Add the answer file

MkDir c:\mount\windows\Windows\Panther
Copy D:\AnswerFiles\BootToAudit-x64.xml  C:\mount\windows\Windows\Panther\unattend.xml
MkDir c:\mount\windows\Fabrikam
Copy D:\AnswerFiles\Fabrikam.bmp    C:\mount\windows\Fabrikam\Fabrikam.bmp
Copy D:\AnswerFiles\SampleCommand.cmd    C:\mount\windows\Fabrikam\SampleCommand.cmd

Unmount the images

1. Copy the answer file into the image into the \Windows\Panther folder, and name it unattend.xml. Create
the folder if it doesn’t exist. If there’s an existing answer file, replace it or use Windows System Image
Manager to edit/combine settings if necessary.

Step 8: Unmount the images

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image.

2. Commit the changes and unmount the Windows image:

where C is the drive letter of the drive that contains the mounted image.

This process may take several minutes.

Step 9: Apply the image to a new PC Use the steps from Lab 2: Deploy Windows using a script to copy the
image to the storage USB drive, apply the Windows image and the recovery image, and boot it up. The short
version:



1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Step 10: Verify settings and scripts

If your audit mode setting worked, the PC should boot to audit mode automatically. When audit mode starts,
your script should start automatically.

1. In File Explorer, check to see if the file: C:\Fabrikam\DxDiag-TestLogFiles.txt exists. If so, the
SampleCommand.cmd sample script ran correctly.

Leave the PC booted into audit mode to continue to the following lab:

Lab 8: Add branding and license agreements (OOBE.xml)



Lab 8: Add branding and license agreements
5/11/2018 • 3 minutes to read • Edit Online

Mount the image

Create license files

You can add your own branding and license terms to Windows.

For multi-region or multi-language images, you can create region specific license terms. These display to the user
during the first login experience, based on the region or language that they choose.

Note: If the license terms are included, the OEM must include a version of the license terms in each language that
is preinstalled onto the PC. You can read more about creating license terms at OEM license terms.

Use the examples in the USB-B.zip key.

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "D:\Images\Win10_x64\sources\install.wim" D:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"D:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

md c:\mount\windows\windows\system32\oobe\info\default\1033
md c:\mount\windows\windows\system32\oobe\info\default\1031

C:\mount\windows\Windows\System32\oobe\info\default\1033\agreement.rtf  (English version)
C:\mount\windows\Windows\System32\oobe\info\default\1031\agreement.rtf  (German version)

1. Create folders under a working folder, for example:

C:\mount\windows\Windows\System32\oobe\info\default\

2. Add subfolders for each language using the Language Decimal Identifier corresponding the language.
Do this step for each language pack added to the Windows image.

For example, if en-us and de-de language packs are added to the Windows image, add a folder named
“1033” (representing en-us language) under C:\mount\windows\Windows\System32\oobe\info\default.
Then add a folder named “1031” (representing de-de language) under the same directory.

3. Create license terms documents using the .r tf file format for each language specified. Move each license
term document to the corresponding language folder. For example:

Agreement.rtf EUL A samples are in D:\USB-B\resources\

4. Open a text editor and create .html versions of your license terms. Save the terms to the same folders as the
.rtf versions. You can use the EUL A example from OEM license terms to create sample files. The names of
the EUL A files should be identical, except for the extension.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-a-license-agreement.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license
http://download.microsoft.com/download/3/F/2/3F2646EF-D589-498C-9F07-DE5549BE018E/USB-B.zip
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license#eula-example
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license


Create image info fileCreate image info file

Add a custom logo and wallpaperAdd a custom logo and wallpaper

C:\mount\windows\Windows\System32\oobe\info\default\1033\agreement.html  (English version)
C:\mount\windows\Windows\System32\oobe\info\default\1031\agreement.html  (German version)

<?xml version="1.0" encoding="utf-8"?>
<FirstExperience>
  <oobe>
    <oem>
      <eulafilename>agreement.rtf</eulafilename>
    </oem>
  </oobe>
</FirstExperience>

Copy D:\configset\oobe.xml c:\mount\windows\windows\system32\oobe\info\default\1033
Copy D:\configset\oobe.xml c:\mount\windows\windows\system32\oobe\info\default\1031

<?xml version="1.0" encoding="utf-8" ?>
<FirstExperience>
  <oobe>
    <defaults>
      <location>104</location>
    </defaults>
  </oobe>
</FirstExperience>

5. Create an oobe.xml file to specify the agreement.rtf file path. Windows will automatically look for the
associated agreement.html file.

6. Copy your oobe.xml to each language folder.

7. For Chinese Hong Kong, add the following OOBE.xml file. (In Windows 10 version 1607, the Chinese Hong
Kong language pack was merged into the Chinese Taiwan language pack, so for this region, these steps are
now required).

File: c:\mount\windows\Windows\System32\OOBE\Info\OOBE.xml

8. Verify that each language folder contains an oobe.xml file, an agreement.rtf file, and an agreement.html
file in that corresponding language.

10-05-2017

xcopy C:\temp\CSUP.txt c:\mount\windows\windows\csup.txt

1. Create an csup.txt file to specify when the Windows image was created. This file must include the date that
the image was created, in the form of 'MM-DD-YYYY', with no other characters, on a single line at the top
of the file.

2. Copy the image info file into the image.

Learn how to apply the logo using the User Experience Windows Engineering Guide (UX WEG) and for logo
resolution requirements.

1. Copy the logo files into the image into the \Windows\System32\OEM\ folder. Create the folder if it doesn’t

https://myoem.microsoft.com/oem/myoem/en/topics/Licensing/roylicres/ost2016/Pages/DP-UXWEGWin10.aspx


Unmount the images

Try it out

MkDir c:\mount\windows\windows\system32\OEM
Copy D:\OEM c:\mount\windows\windows\system32\OEM

exist.

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image.

2. Commit the changes and unmount the Windows image:

where C is the drive letter of the drive that contains the image.

This process may take several minutes.

Apply the image to a new PC Use the steps from Lab 2: Deploy Windows using a script to copy the image to
the storage USB drive, apply the Windows image and the recovery image, and boot it up. The short version:

1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Verify license terms

Log into the system as if you were a new user. Select your language or region of required. The correct license
terms should show up during this first login experience.

Lab 9: Make changes from Windows (audit mode)



Lab 9: Make changes from Windows (audit mode)
5/11/2018 • 8 minutes to read • Edit Online

Step 1: Prepare a copy of the Deployment and Imaging Tools

Step 2: Get into audit mode

Step 3: Customize the PC in audit mode.

Example: Add Microsoft Office 2016

You can use audit mode to customize Windows using the familiar Windows environment. In audit mode, you can
add Windows desktop applications, change system settings, add data, and run scripts.

To make sure your audit mode changes are included in the recovery image, you'll need to capture these changes
into a provisioning package using ScanState. This image gets used by the system recovery tools to restore your
changes if things go wrong. You can optionally save drive space by running the applications directly from the
compressed recovery files; this is known as single-instancing.

If you want to capture the changes in an image and apply it to other devices, you'll need to use the Sysprep tool to
generalize the image.

CopyDandI.cmd amd64 D:\ADKTools\amd64

IMPORTANTIMPORTANT

1. From the technician PC, copy the Deployment and Imaging Tools from the Windows ADK to external
storage (for example, a storage USB key with drive letter D:).

Don't overwrite the existing DISM files on the WinPE image.

1. Boot up the reference device, if it's not already booted.

2. If the device boots to the Languages or the Get going fast screen, press Ctrl+Shift+F3 to enter Audit
mode.

3. In audit mode, the device reboots to the Desktop, and the System Preparation Tool (Sysprep) appears.
Ignore Sysprep for now.

Install a Windows desktop application. Change system settings. Add data. Run scripts.

1. On your technician PC, prepare a USB key with the Office Deployment Tool:

a. Mount the ISO for the deployment tool from "X21-20432 Office v16.2 Deployment Tool for OEM
OPK\Software - DVD\X21-20474 SW DVD5 Office 2016 v16.2.1 Deployment Tool for OEM\X21-
20474.img"

b. Copy files from the mounted drive to the USB-B key, for example, (where E:\ is driver letter for USB-B)
E:\OfficeV16.2.1

2. On your reference PC, open the Office Deployment Tool, for example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/prepare-a-snapshot-of-the-pc-generalize-and-capture-windows-images-blue-sxs.md


Microsoft Office 2016: Install the Home and Student editionMicrosoft Office 2016: Install the Home and Student edition

Microsoft Office 2016: Pin tiles to the Start Menu layoutMicrosoft Office 2016: Pin tiles to the Start Menu layout

Microsoft Office 2016: Configure setup experience for the userMicrosoft Office 2016: Configure setup experience for the user

E:\Officev16.2.1\officedeploymenttool.exe

3. Provide folder path to extract files E:\Officev16.2.1. Setup.exe and configuration.xml are extracted to
E:\Officev16.2.1

Get: Office v16.2.1 in the desired language, this sample uses English X21-20393 Office 2016 v16.2.1
English OPK

4. Mount "X21-20393 Office v16.2.1 English OPK\Software - DVD\X21-20435 SW DVD5 Office Pro 2016
32 64-bit English C2ROPK Pro HS HB OEM v16.2.1\X21-20435.img"

5. Copy the Office folder to USB-B (where E:\ is drive letter for USB-B) E:\OfficeV16.2.1

[Optional] if you applied a language pack to your Windows image, you may want to add the language pack
for Office 2016 as well for better end user experience. The below samples will show with the Language
pack applied

6. Mount “x21-20487 Office v16.2.1 German OPK”

7. Copy the office folder to E:\OfficeV16.2.1

8. Skip replacing duplicate files in the copy so that only the German languages are copied.

The current OEM recommendation is to install Office Home and Student 2016, rather than Office Home
Premium. To do this, you'll need to edit the configuration.xml file used to install Office v16.2.1. To learn more, see
Office 16.2.1 communication.

<?xml version="1.0"?> 
<Configuration> 
  <Add OfficeClientEdition="32" SourcePath="\\Server\Share\">
    <Product ID="HomeStudentRetail">
      <Language ID="en-us"/>
    </Product>
  </Add>
  <Display Level="None"/>
</Configuration> 

D:\Officev16.2\Setup.exe /configure D:\Officev16.2\ConfigureO365Home.xml

1. Use Notepad to create a configuration file with the edition info: E:\Officev16.2\ConfigureO365Home.xml

Make sure the ProductID is HomeStudentRetail, as follows:

2. On the reference computer, install Office 2016 using the configuration file:

You must pin the Office tiles to the Start menu. Not doing so Windows will remove the Office files during OOBE
boot phase. To learn more, see Lab 11: Add Start tiles and taskbar pins.

After you install Office on the device, you also need to configure the setup experience for the user. This is the
experience the user sees when they open an Office app for the first time on the device. This also is intended to
ensure that Office is properly licensed and activated.

https://myoem.microsoft.com/oem/myoem/en/product/office/Pages/COMM-Offv16-2-OPK.aspx


SETUP MODE DESCRIPTION

OEM In this mode, a customer can choose to try, buy, or activate
Office with an existing account, PIN, or product key. This
mode doesn’t support Activation for Office (AFO) or AFO late
binding. Therefore, if you choose this mode, you need to
provide the customer with an Activation Card (formerly called
a product key card or a Microsoft Product Identifier (MPI)
card).

OEMTA This mode supports the try, buy, or activate experience of the
OEM mode as well as supporting AFO and AFO late binding.
This mode supports Office activation through the device’s
Windows product key, which means the customer wouldn’t
need to enter a 5x5 product key code.

Step 4: Capture your changes for the recovery tools

Step 5: Prepare for image capture

OEM Mode – Provide user with activation card

1. In command prompt go to drive letter for USB-B\Officev16.2

2. Type and run oemsetup.cmd Mode=OEM Referral=####

OEMTA Mode – Activation is done through the device’s Windows product key

Type and run oemsetup.cmd Mode=OEMTA Referral=####

Note: “Referral” switch is optional, If OEM partner is participating in office Incentive program For OEM referral
ID information please refer to Office Incentive Program Operations Guide 2017.

D:\ADKTools\amd64\scanstate.exe /apps /ppkg C:\Recovery\Customizations\usmt.ppkg /o /c /v:13 
/l:C:\Recovery\ScanState.log

NOTENOTE

1. Connect to your external storage (for example, a storage USB key with the drive letter D:)

2. Capture the changes into a provisioning package. This creates a compressed copy of the desktop
applications and drivers that you added in audit mode that can be used by the recovery tools.

Recommended: Delete the ScanState log file: del C:\Recovery\Scanstate.log .

This step is required when you're capturing images to apply to other PCs.

C:\Windows\System32\Sysprep\sysprep /oobe /generalize /shutdown

1. Prepare the device for the end user : Right-click Start, select Command Prompt (Admin), and from the
command prompt, run the following command:

The Sysprep tool reseals the device. This process can take several minutes. After the process completes, the
device shuts down automatically.

https://myoem.microsoft.com/oem/myoem/en/programs/mktg/ofcprog/Pages/rc-office-program.aspx


Step 6: Optimize the image to take up less drive space (optional)

WARNINGWARNING

WARNINGWARNING

powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

diskpart
DISKPART> list volume
DISKPART> exit

If you're using siloed provisioning packages (SPPs), do not set the image to boot to audit mode again (sysprep
/audit). Instead, set it to boot to OOBE, and if you need to boot to audit again, add an answer file with the
Mode:Audit setting. This will be fixed in future versions.

2. Boot the device into Windows PE. To do this, you may need to press the key that opens the boot-device
selection menu for the device (for example, the Esc key or Volume Up key).

Select the option in the firmware menus to boot to the USB flash drive.

If Windows begins booting instead of Windows PE, you must generalize the device again before capturing the image:
After Windows boots, press Ctrl+Shift+F3 to enter audit mode. The device will reboot. Generalize the device again: 
C:\Windows\System32\Sysprep\sysprep /oobe /generalize /shutdown .

3. Optional: speed up the optimization and image capture processes by setting the power scheme to High
performance:

4. Find the drive letters by using DiskPart:

For example, the drives can be lettered like this: C = Windows; D is the lab USB key, and E is an external
hard drive.

Note that some partitions might not receive a drive letter.

DISM /Apply-CustomDataImage /CustomDataImage:C:\Recovery\Customizations\USMT.ppkg /ImagePath:C:\ 
/SingleInstance

md c:\temp

DISM /Cleanup-Image /Image=C:\ /StartComponentCleanup /ResetBase /ScratchDir:C:\Temp

1. Save space by single-instancing the image. This removes the original copy of the desktop applications, and
adds pointer files so that these applications can run from the recovery provisioning package you created
earlier.

where C is the drive letter of the Windows partition.

Warning: Do not put quotes with the /ImagePath:C:\  option.

2. Cleanup the Windows files:

where C is the drive letter of the Windows partition. You can specify the /Defer parameter with /Resetbase



Step 7: Capture the imageStep 7: Capture the image

dism /Capture-Image /CaptureDir:C:\ /ImageFile:"C:\WindowsWithFinalChanges.wim" /Name:"Final changes"

NOTENOTE

Try it out

to defer any long-running cleanup operations to the next automatic maintenance. But we highly
recommend you only use /Defer as an option in the factory where DISM /Resetbase requires more than
30 minutes to complete.

Capture the image of the Windows partition.

where C is the drive letter of the Windows partition and Final changes is the image name.

The DISM tool captures the Windows partition into a new image file. This process can take several minutes.

If you receive an: "A parameter is incorrect" error message when you try to capture or copy the file to the USB key,
the file might be too large for the destination file system. Copy the file to a different drive that is formatted as
NTFS.

You can also choose to capture an image of the whole drive, including partition information, in a full flash update image
(FFU). See DISM Image Management Command-Line Options for available command line options for capturing an FFU.

Step 6: Apply the image to a new PC Use the steps from Lab 2: Deploy Windows using a script to copy the
image to the storage USB drive, apply the Windows image and the recovery image, and boot it up. The short
version:

1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Step 7: Verify customizations

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in
administrator account (This is also known as audit mode).

2. See that the changes you made in audit mode are there.

Lab 10: Add desktop apps with siloed provisioning packages



Lab 10: Add desktop applications and settings with
siloed provisioning packages (SPPs)
5/11/2018 • 5 minutes to read • Edit Online

Best practices while capturing applications: use clean installations

Step 1: Prepare a copy of the Deployment and Imaging Tools

Install Windows desktop applications and system settings by capturing them into siloed provisioning packages
(SPPs).

SPPs are a new type of provisioning package that is available starting with Windows 10, version 1607. In
previous versions of Windows 10, to capture these applications, you'd capture them all at once into a single
provisioning package.

With SPPs, you can capture individual Windows desktop applications, .exe-style drivers, and Windows settings.
You can then apply these to your PCs after you've applied the Windows image. This provides more flexibility for
the manufacturing process and helps reduce the time required to build PCs that run Windows.

SPPs also support capturing add-on packs for apps that include optional components, like application language
packs.

After you apply the SPPs, they'll be automatically included in the recovery tools.

When you apply SPPs to a Compact OS system, the applications in that SPP are single-instanced automatically
to save space.

See Siloed provisioning packages to learn more about capturing different types of settings, drivers, and
applications.

Notes

To add these apps to the taskbar and start menu, you'll need to update the LayoutModification.xml and
TaskbarLayoutModification.xml files, we'll show you this in Lab 11: Add Start tiles and taskbar pins. New
versions of these files can simply be copied into the image or to the destination device directly.

For Microsoft Office, this is required: you must add Start tiles and taskbar pins. if you don't add it to
the Start menu, Windows will remove the Office files during the OOBE boot phase.

We recommend that each time you capture a new Windows desktop application, you start with a clean, freshly-
installed Windows image, in audit mode.

You can do this by:

Using the techniques you learned in the labs to quickly apply images to a device
Using virtual machines (VMs). With Hyper-V, you can create a clean, freshly-installed Windows image, and
then create a checkpoint. You can use checkpoints to quickly bounce back to the clean, freshly-reinstalled
state.

You'll need the most recent version of the Deployment and Imaging Tools from the ADK. This includes the
ScanState tool and the latest version of DISM.

Important Don't overwrite the existing DISM files on the WinPE image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-desktop-apps-with-spps-sxs.md


  

Step 2: Prepare a device for image capture

Step 3: Capture a setting

Step 4: Install and capture a Windows desktop application (Microsoft
Office)

CopyDandI.cmd amd64 E:\ADKTools\amd64

1. Start the Deployment and Imaging Tools Environment as an administrator.

2. From the technician PC, copy the Deployment and Imaging Tools from the Windows ADK to the storage
USB key.

Get into audit mode

1. Boot up the reference device (or VM), if it's not already booted.

2. If the device boots to the Languages or the Get going fast screen, press Ctrl+Shift+F3 to enter Audit
mode.

3. In audit mode, the device reboots to the Desktop, and the System Preparation Tool (Sysprep) appears.
Ignore Sysprep for now.

4. For VMs, create a checkpoint for this clean, freshly-installed Windows image.

You can add registry keys, for example, an OEM key. To learn more, see the Windows Store Program 2016 Guide
and the Apps and Store Windows Engineering Guide (WEG).

E:\ADKTools\amd64\ScanState.exe /config:E:\ADKTools\amd64\Config_SettingsOnly.xml /o /v:13 /ppkg 
e:\SPPs\Fabrikam-ID.spp /l:C:\ScanState.log

1. Add a setting. For example, add a registry key:

a. Start 'regedit'.

b. Navigate to 'HKEY_LOCAL_MACHINE\Software\OEM\Fabrikam'.

c. Click Edit > New > String Value.

d. Type FabrikamID .

e. Double-click OEMID, and in Value, type "Fabrikam-1".

2. Capture the changes into the siloed provisioning package, and save it on the hard drive:

where E is the drive letter of the USB drive with ScanState.

Recommended: Delete these logs to save disk space: del C:\ScanState.log  del c:\miglog.xml .

ScanState creates two log files, ScanState.log and miglog.xml. The /l  option can be used to specify
where the logs are saved. The above command writes the logs to c:.

To see more about ScanState command-line options, see Siloed Provisioning Packages.

1. Install a Windows desktop application. For example, to install Office 2016.

a. On your technician PC, mount ISO for the deployment tool from " X21-05453 Office v16.2

https://myoem.microsoft.com/oem/myoem/en/topics/Licensing/roylicres/ost2016/Pages/DP-WindowsStoreOEMProgramGuide2016FinalCL.aspx
https://myoem.microsoft.com/oem/myoem/en/topics/Licensing/roylicres/ost2016/Pages/DP-WinEngnrngGdAppsStore.aspx


Step 5: Try it out

E:\ADKTools\amd64\ScanState.exe /apps:-sysdrive /o /v:13 /config:E:\ADKTools\amd64\Config_AppsOnly.xml 
/ppkg e:\SPPs\office16_base.spp /l:C:\ScanState.log

Deployment Tool for OEM OPK\Software - DVD\X21-05495 SW DVD5 Office 2016 v16.2 Deployment
Tool for OEM\X21-05495.img"

b. Copy files from mounted drive to USB-B (where E:\ is driver letter for USB-B) E:\OfficeV16.2

c. Double click e:\Officev16.2\officedeploymenttool.exe

2. Start a command prompt.

3. Capture the changes into the siloed provisioning package, and save it on the hard drive:

where E is the drive letter of the USB drive with ScanState.

Recommended: Delete the ScanState log files: del C:\Scanstate.log  del C:\miglog.xml .

4. To capture an add-on package, repeat the process. Example: add Office 2016 language packs. Get these
from the Office OPK Update image from the Office OPK Connect site.

E:\ADKTools\amd64\ScanState.exe /apps:-sysdrive /o /v:13 
/config:E:\ADKTools\amd64\Config_AppsOnly.xml /diff:e:\SPPs\office16_base.spp /ppkg 
E:\SPPs\office16_fr-fr.spp /l:C:\ScanState.log

a. Install the fr-fr language pack.

b. Capture the combined files as an add-on pack.

The Sysprep tool reseals the device. This process can take several minutes. After the process
completes, the device shuts down automatically.

c. To capture more add-on packs:

Reinstall Windows and the Office base app, and capture the next add-on pack. or
For VMs, revert back to the checkpoint, apply the base package, then capture the next add-on
pack.

Recommended: Delete the ScanState log files: del C:\ScanState.log  del c:\miglog.xml

5. To capture more apps:

Reinstall Windows, then capture the next app or
For VMs, revert back to the checkpoint, then capture the next app.

Apply the image

Use the steps from Lab 2: Deploy Windows using a script to copy the image to the storage USB drive, apply the
image, and boot it up.

The short version:

1. Boot the reference PC to Windows PE.

2. Find the drive letter of the storage drive ( diskpart, list volume, exit ).

3. Apply the image: D:\ApplyImage.bat D:\Images\install-updated.wim .



Apply the SPPs

xcopy D:\ADKTools\ W:\ADKTools\ /s

W:\ADKTools\amd64\WimMountAdkSetupAmd64.exe /Install /q

W:\ADKTools\amd64\DISM.exe /Apply-SiloedPackage /ImagePath:W:\ /PackagePath:"e:\SPPs\fabrikam-id.spp" 
/PackagePath:"D:\SPPs\office16_base.spp" /PackagePath:"D:\SPPs\office16_fr-fr.spp" 
/PackagePath:"D:\SPPs\office16_de-de.spp"

1. Copy the ADK tools to a non-removable file location, such as the primary hard drive, which is assigned to
W after the ApplyImage command. Copying the file to a non-removable location avoids an error
associated with installing DISM from removable drives.

2. Install the ADK Tools by using either WimMountAdkSetupAmd64.exe /Install /q or
WimMountAdkSetupX86.exe /Install /q.

3. Apply the SPPs. This example applies the Office base pack, plus two language packs: fr-fr and de-de.

To learn more, see Siloed provisioning packages. For syntax, see DISM Image Management Command-
Line Options.

Apply the recovery image

1. Apply the recovery image after applying the SPPs: D:\Deployment\ApplyRecovery.bat

2. Disconnect the drives, then reboot ( exit ).

Verify apps

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-
in administrator account (This is also known as audit mode).

2. See if your Windows desktop applications and add-ons are installed.

3. Use Regedit to check to see if the registry key is installed.

Lab 11: Add Start tiles and taskbar pins



Lab 11: Add Start tiles and taskbar pins
5/11/2018 • 5 minutes to read • Edit Online

Step 1: Mount the image

Step 2: Create the Start layout

Add Start tiles and taskbar pins.

Notes:

Start menu : If you don’t create a LayoutModification.xml file and you continue to use the Start Unattend
settings, the OS will use the Unattend answer file and take the first 12 SquareTiles or
DesktoporSquareTiles settings specified in the Unattend file. The system then places these tiles
automatically within the newly-created groups at the end of Start—the first six tiles are placed in the first
OEM group and the second set of six tiles are placed in the second OEM group. If OEMName is specified
in the Unattend file, the value for this element is used to name the OEM groups that will be created.

The Start layout and taskbar pins can be lost if the user resets their PC with the built-in recovery tools.
To make sure these settings stay on the device, see Lab 12: Update the recovery image.

When adding 3rd party apps, follow the Windows Store OEM Program Guide. You must comply
with all program terms and conditions, and related documents.

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "C:\Images\Win10_x64\sources\install.wim" C:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

<RequiredStartGroups
      Region="DE|ES|FR|GB|IT|US">

1. If you don’t already have one, create a file called LayoutModification.xml. You can start by editing a
sample from USB-B or sample LayoutModification.xml.

2. To use different layouts for different regions, use the optional Region attribute in the
RequiredStartGroups element. The Region value must be equal to two-letter country/region codes. Use a
pipe “|” delimiter if you need to specify multiple countries/regions.

3. Specify the tiles you want to add within an AppendGroup. OEMs can add a maximum of two
AppendGroup. The following example shows two groups called “Fabrikam Group 1” and “Fabrikam
Group 2”, which contain tiles that will be applied if the device country/region matches what’s specified in
Region (in this case, the regions are Germany, Spain, France, United Kingdom, Italy, and United States).
Each group contains three tiles and the various elements you need to use depending on the tile that you
want to pin to Start.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-start-tiles-sxs.md
https://myoem.microsoft.com/oem/myoem/en/topics/Licensing/roylicres/ost2016/Pages/DP-WindowsStoreOEMProgramGuide2016FinalCL.aspx


<RequiredStartGroups
      Region="DE|ES|FR|GB|IT|US">

      <!-- OEMs can add a maximum of two AppendGroup. Each AppendGroup specifies a group of
           tiles that will be appended to Start. -->
      <AppendGroup
        Name="Fabrikam Group 1">
        <!-- Add the News Universal Windows app to Start -->
        <start:Tile
          AppUserModelID="Microsoft.Office.Word_8wekyb3d8bbwe!microsoft.word"
          Size="2x2"
          Row="0"
          Column="0"/>
        <!-- Add a Windows desktop application with a known AppUserModelID  -->
        <start:DesktopApplicationTile
          DesktopApplicationID="Microsoft.Windows.Explorer"
          Size="2x2"
          Row="0"
          Column="2"/>
        <!-- Add the Excel Preview Universal Windows app -->
        <start:Tile
          AppUserModelID="Microsoft.Office.Excel_8wekyb3d8bbwe!microsoft.excel"
          Size="2x2"
          Row="0"
          Column="4"/>
      </AppendGroup>

      <AppendGroup
        Name="Fabrikam Group 2">
        <!-- Add a Windows 8.1 app -->
        <start:Tile
          AppUserModelID="Microsoft.Reader_8wekyb3d8bbwe!Microsoft.Reader"
          Size="2x2"
          Row="0"
          Column="0"/>
        <!-- Web link tile with associated .url file is in legacy Start Menu folder. This requires
             a shortcut or .url file to be added in one of several legacy Start Menu directories, such 
as
             "%APPDATA%\Microsoft\Windows\Start Menu\Programs\" 
             or the all users profile "%ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\" -->
        <start:DesktopApplicationTile
          DesktopApplicationID="http://www.bing.com/"
          Size="2x2"
          Row="0"
          Column="2"/>
        <!-- Add a Windows desktop application link in a legacy Start Menu folder. You must add the 
.lnk file 
             in the specified location when the device first boots. -->
        <start:DesktopApplicationTile
          DesktopApplicationLinkPath="%ALLUSERSPROFILE%\Microsoft\Windows\Start 
Menu\Programs\Accessories\Paint.lnk"
          Size="2x2"
          Row="0"
          Column="4"/>
      </AppendGroup>
    </RequiredStartGroups>

The following example shows one group called “Fabrikam Group 1”, which will be applied if the device
country/region doesn’t match any of the ones specified in the previous RequiredStartGroups.



    Step 3: Microsoft Office: Add choice to AppendOfficeSuite

    <!-- Non-region specific group -->
    <RequiredStartGroups>
      <AppendGroup
        Name="Fabrikam Group 1">
        <!-- Add the Word Preview Universal Windows app -->
        <start:Tile
          AppUserModelID="Microsoft.Office.Word_8wekyb3d8bbwe!microsoft.word"
          Size="2x2"
          Row="0"
          Column="0"/>
        <!-- Add the Excel Preview Universal Windows app -->
        <start:Tile
          AppUserModelID="Microsoft.Office.Excel_8wekyb3d8bbwe!microsoft.excel"
          Size="2x2"
          Row="0"
          Column="2"/>
      </AppendGroup>    
    </RequiredStartGroups>

Copy E:\StartLayout\Bing.url  "C:\mount\Windows\ProgramData\Microsoft\Windows\Start Menu\Programs"
Copy E:\StartLayout\Paint.lnk "C:\mount\Windows\ProgramData\Microsoft\Windows\Start Menu\Programs"
Copy E:\StartLayout\Bing.url  "C:\mount\Windows\Users\All Users\Microsoft\Windows\Start Menu\Programs"
Copy E:\StartLayout\Paint.lnk "C:\mount\Windows\Users\All Users\Microsoft\Windows\Start Menu\Programs"

  <!-- Add the calculator app to the frequently used system area -->
  <TopMFUApps>
    <Tile AppUserModelID="Microsoft.WindowsCalculator_8wekyb3d8bbwe!App" />
  </TopMFUApps>

4. Desktop apps: use the start:DesktopApplicationTile tag.

If you know the application user model ID for the app, use that to identify it.

Otherwise, if you pinned tiles that require .url or .lnk files, add the files to the following legacy Start Menu
directories:

%APPDATA%\Microsoft\Windows\Start Menu\Programs\
%ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\

Example:

5. Optionally, you can add up to 3 apps to the frequently used section of the system area. The following
example shows how to add the calculator app to the frequently used system area.

6. Save the LayoutModification.xml file.

You must pin the Office tiles to the Start menu. Not doing so Windows will remove the Office files during OOBE
boot phase. Note: You must be using at least version 10.0.10586.0 of Windows 10. The following steps don’t work
with earlier versions of Windows 10.

Note: The Choice attribute is new. This allows different versions of Office to be pinned to the Start menu at the
same time. For now, Desktop2016 is the only valid value. Other values will be available in the future.

In layoutmodification.xml:

1. Add to the tile:



Step 4: Add the layout to the image

Add or change languages and Cortana features on demand (Optional)

Step 5: Unmount the images

Step 6: Try it out

<LayoutModificationTemplate xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification" 
xmlns:defaultlayout="http://schemas.microsoft.com/Start/2014/FullDefaultLayout" 
xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout">
<AppendOfficeSuite/>
<AppendOfficeSuiteChoice Choice="Desktop2016" /> 
</LayoutModificationTemplate>

2. Save the LayoutModification.xml file.

C:\Mount\Windows\Users\Default\AppData\Local\Microsoft\Windows\Shell\

1. Add your LayoutModification.xml file to the Windows image. You’ll need to put the file in the following
specific location before first boot. If the file already exists in the image, replace it with your new file.

2. To add a taskbar layout in Windows 10, version 1607, you can either add a similar taskbar layout
modification file (see additional steps here), or use traditional unattend settings.

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Close all applications that might access files from the image.

2. Commit the changes and unmount the Windows image:

where C is the drive letter of the drive that contains the image.

This process may take several minutes.

Apply the image to a new PC

Use the steps from Lab 2: Deploy Windows using a script to copy the image to the storage USB drive, apply the
Windows image and the recovery image, and boot it up. The short version:

1. Copy the image file to the storage drive.
2. Boot the reference device to Windows PE using the Windows PE USB key.
3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).
4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim .
5. Disconnect the drives, then reboot ( exit ).

Verify apps

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in
administrator account (This is also known as audit mode).

2. Check the Start Menu to make sure the apps are available.

3. Check the Start Menu and taskbar and make sure the apps you selected are pinned correctly.

https://msdn.microsoft.com/library/windows/hardware/mt736838.aspx


Lab 12: Update the recovery image



Lab 12: Update the recovery image
5/11/2018 • 7 minutes to read • Edit Online

Step 1: Mount the Windows image

If the system can't boot to the Windows image, it will fail over to the Windows Recovery Environment (WinRE).
WinRE can repair common causes of unbootable operating systems. WinRE is based on Windows Preinstallation
Environment (WinPE), and to make it work for your customers, you can add drivers, languages, Windows PE
Optional Components, and other troubleshooting and diagnostic tools.

The WinRE image is included inside the Windows 10 and Windows Server 2016 images, and is eventually
copied to the Windows RE tools partition on the destination PC or device. To modify it, you'll mount the
Windows image, then mount the WinRE image inside it. Make your changes, unmount the WinRE image, then
unmount the Windows image.

You should update your recovery image to ensure a consistent recovery experience whenever you:

Add boot-critical .inf-style drivers, such as the graphics and storage drivers for Lab 1: Install Windows PE.
Add major updates to Windows, like general distribution releases (Lab 5: Add updates and upgrade the
edition).
Add new languages, like you did in Lab 4: Add languages. (This isn’t always possible, as not all languages
have Windows RE equivalents.)

Notes

This lab assumes you’d rather keep winre.wim inside of install.wim to keep your languages and
drivers in sync. If you’d like to save a bit of time on the factory floor, and if you’re OK managing
these images separately, you may prefer to remove winre.wim from the image and apply it
separately.

If a Servicing Stack Update (SSU) is available, you'll have to install it before applying the most
recent General Distribution Release or any future GDRs. See Windows 10 update history for
information about the most recent GDR.

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the Windows image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "C:\Images\Win10_x64\sources\install.wim" "C:\Images\install-backup.wim"

)

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/update-the-recovery-image.md
https://support.microsoft.com/en-us/help/4018124/windows-10-update-history


Step 2: Mount the recovery image

Step 3: Add boot-critical drivers to WinRE

Step 4: Add updates to the image

md C:\mount\winre

Dism /Mount-Image /ImageFile:"C:\mount\windows\Windows\System32\Recovery\winre.wim" /Index:1 
/MountDir:"C:\mount\winre"

Mount the Windows RE image file.

Where C is the drive letter of the drive that contains the image.

This step can take several minutes.

Troubleshooting: If winre.wim cannot be seen under the specified directory, use the following command
to set the file visible:

attrib -h -a -s C:\mount\windows\Windows\System32\Recovery\winre.wim

Dism /Add-Driver /Image:"C:\mount\winre" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf" 
/LogPath=C:\mount\dism.log

Dism /Add-Driver /Image:"C:\mount\winre" /Driver:"C:\Drivers\SampleDrivers" /Recurse 
/LogPath=C:\mount\dism.log

1. Add any .inf-style drivers needed for your hardware.

Example: Add a collection of drivers from a folder and its subfolders, use the /Recurse option:

Dism /Add-Package /Image:"C:\mount\winre" /PackagePath="C:\WindowsUpdates\windows10.0-kb3194798-
x64_8bc6befc7b3c51f94ae70b8d1d9a249bb4b5e108.msu"  /LogPath=C:\mount\dism.log

Dism /Add-Package /Image:"C:\mount\winre" /PackagePath="C:\WindowsUpdates\windows10.0-kb00001-x64.msu" 
/PackagePath="C:\WindowsUpdates\windows10.0-kb00002-x64.msu" 
/PackagePath="C:\WindowsUpdates\windows10.0-kb00003-x64.msu" /LogPath=C:\mount\dism.log

1. Get a Windows update package. Use the same update package that you used for Windows in Lab 5: Add
updates and upgrade the edition. For example, grab the latest cumulative update listed in Windows 10
update history from the Microsoft Update catalog. Extract the .msu file update to a folder, for example,
C:\WindowsUpdates\windows10.0-kb3194798-
x64_8bc6befc7b3c51f94ae70b8d1d9a249bb4b5e108.msu.

2. Add the updates to the image. For packages with dependencies, make sure you install the packages in
order. If you’re not sure of the dependencies, it’s OK to put them all in the same folder, and then add them
all using the same DISM /Add-Package command by adding multiple /PackagePath items.

Example: adding a cumulative update:

Example: adding multiple updates:

https://support.microsoft.com/en-us/help/12387/windows-10-update-history
http://www.catalog.update.microsoft.com/


Step 5: Add languages to the image
If the PC runs into trouble, your users may not be able to read/understand the recovery screens unless you add
the appropriate language resources into WinRE.

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\lp.cab" 

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
Rejuv_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
EnhancedStorage_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
Scripting_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
SecureStartup_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
SRT_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
WDS-Tools_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
WMI_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
StorageWMI_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
HTA_fr-fr.cab"

Dism /Set-AllIntl:fr-fr /Image:C:\mount\winre

1. Add languages. These languages are included with the Windows ADK. You must use a matching version of
the Windows ADK to service the Windows RE image.

Note Windows RE now requires the WinPE-HTA package, this is new for Windows 10.

Note The WinPE-WiFi-Package is not language-specific and does not need to be added when adding
other languages. This is new for Windows 10.

2. Set the default recovery language to match the preferred language for your customers.

3. Optional: Remove languages from Windows RE (only needed for non-English regions)

When you remove languages from Windows, remove them from Windows RE to save space.

You can either use the /PackagePath switch (which requires a matching version of Windows and the
Windows ADK) or the /PackageName switch (which requires identifying the package including the version



Keeping Windows settings through a recovery

Step 6: Optimizing the image, part 1 (optional)

Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-Rejuv-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-HTA-Package~31bf3856ad364e35~amd64~en-
US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-StorageWMI-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-WMI-Package~31bf3856ad364e35~amd64~en-
US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-WDS-Tools-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-SRT-Package~31bf3856ad364e35~amd64~en-
US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-SecureStartup-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-Scripting-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-EnhancedStorage-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:Microsoft-Windows-WinPE-LanguagePack-
Package~31bf3856ad364e35~amd64~en-US~10.0.15063.0 /LogPath=C:\mount\dism.fod2.log

Dism /Get-Packages /Image:"C:\mount\winre"

Package Identity : Microsoft-Windows-WinPE-Rejuv_fr-fr ...  fr-FR~10.0.15063.0
State : Installed

number).

Example:

4. Verify that the language packages are part of the image:

where C is the drive letter of the drive that contains the image.

5. Review the resulting list of packages and verify that the list contains the package. For example:

Windows doesn't automatically save settings created through unattend.xml setup files, nor Windows Start Menu
customizations created with LayoutModification.xml during a full-system reset, nor first-login info from oobe.xml.

To make sure your customizations are saved:

1. Save copies of unattend.xml, LayoutModification.xml, plus your Windows\System32\Info\OOBE folder, in
C:\Recovery\OEM\.

2. Add scripts that restore these settings: ResetConfig.xml and EnableCustomizations.cmd, in
C:\Recovery\OEM\. Get these from Sample scripts: Keeping Windows settings through a recovery.

After adding a language or Windows update package, you can reduce the size of the final Windows RE package
by checking for duplicate files and marking the older versions as superseded.

Dism /Cleanup-Image /Image:c:\mount\winre /StartComponentCleanup /ResetBase

1. Optimize the image:



Step 7: Unmount the WinRE image

Step 8: Optimizing the image, part 2 (optional)

Dism /Set-ScratchSpace:512 /Image:c:\mount\winre

Later, you'll export the image to remove the superseded files.

2. Increase scratch space size to speed up recovery:

Dism /Unmount-Image /MountDir:C:\mount\winre /Commit

Unmount and save the image:

If you've optimized the image, you'll need to export the image in order to see a change in the file size. During the
export process, DISM removes files that were superseded.

Dism /Export-Image /SourceImageFile:c:\mount\windows\windows\system32\recovery\winre.wim 
/SourceIndex:1 /DestinationImageFile:c:\mount\winre-optimized.wim

del c:\mount\windows\windows\system32\recovery\winre.wim

copy c:\mount\winre-optimized.wim c:\mount\windows\windows\system32\recovery\winre.wim

Dir "C:\mount\windows\Windows\System32\Recovery\winre.wim"

rem == 3. Windows RE tools partition ===============
create partition primary size=465

1. Export the Windows RE image into a new Windows image file.

2. Replace the old Windows RE image with the newly-optimized image.

3. Check the new size of the Windows RE image.

Adjust the size of the deployment scripts so they includes enough room for winre.wim plus some free
space.

Note If WinRE.wim is more than 470,000,000 bytes, this step is required.

a. Convert the file size into megabytes (size in bytes ÷ 1048576 = size in MB).

b. Calculate free space needed for the WinRE partition based on the Disk partition rules. WinRE.wim file
size:

Up to 450MB: You'll need 50MB free space. (450MB used + 50 free = 500MB)
450MB-680MB: You'll need 320MB free space.
Over 680MB: You'll need 1024MB free space.

c. Modify the CreatePartitions deployment scripts: CreatePartitions-UEFI.txt, CreatePartitions-UEFI-
FFU.txt, CreatePartitions-BIOS.txt, and CreatePartitions-BIOS-FFU.txt with the new values. Example:

4. Commit the changes and unmount the Windows image:

http://go.microsoft.com/fwlink/?LinkId=526950


Try it out

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

where C is the drive letter of the drive that contains the image.

This process may take several minutes.

Step 9: Apply the image to a new PC Use the steps from Lab 2: Deploy Windows using a script to copy the
image to the storage USB drive, and apply your Windows image to a PC.

Note, you'll now include the steps to add the recovery image:

The short version:

1. Copy the image file to the storage drive.

2. Boot the reference device to Windows PE using the Windows PE USB key.

3. Find the drive letter of the storage drive ( diskpart, list volume, exit ).

4. Apply the image: D:\Deployment\ApplyImage.bat D:\Images\install.wim , or 
D:\Deployment\ApplyImage.bat D:\Images\oemffu.ffu .

5. Apply the recovery image: D:\Deployment\ApplyRecovery.bat , or follow the prompts in the deployment
scripts to apply the recovery partition.

6. Disconnect the drives, then reboot ( exit ).

Step 10: Verify drivers and packages

1. After the PC boots, either create a new user account, or else press Ctrl+Shift+F3 to reboot into the built-in
administrator account (This is also known as audit mode).

2. Click the Start button, click the Power icon, then hold down the Shift key and select Restart.

If the boot-critical drivers have been successfully applied, you should see the Windows recovery
environment.

If languages have been successfully added, you'll either see the new language (for a single language
image) or be prompted for your language (for a multi-language image).

Lab 13: Shrink your image size



Lab 13: Shrink your image size
5/18/2018 • 2 minutes to read • Edit Online

Step 1: Mount the images

Step 2: Optimize the image, part 1 (optional)

Step 3: Unmount the Windows image

Step 4: Optimize the image, part 2 (optional)

Optimize your Windows image to save space on the PC, to speed up transfers to new devices, and to make it
easier to store.

To do this, we'll use DISM tools that check for duplicate files. We'll mark the files for removal. These files won't be
removed until we export the image.

Step 1: Mount the Windows image

Use the steps from Lab 3: Add device drivers (.inf-style) to mount the Windows image. The short version:

1. Open the command line as an administrator (Start > type deployment > right-click Deployment and
Imaging Tools Environment > Run as administrator.)

2. Make a backup of the file ( copy "C:\Images\Win10_x64\sources\install.wim" C:\Images\install-backup.wim )

3. Mount the image ( md C:\mount\windows , then 
Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:"C:\mount\windows" /Optimize )

After adding a language or Windows update package, you can reduce the size of the image size by checking for
duplicate files and marking the older versions as superseded.

Dism /Image:c:\mount\windows /Cleanup-Image /StartComponentCleanup /ResetBase

1. Optimize the image:

2. Later, you'll export the image to remove the superseded files.

Dism /Unmount-Image /MountDir:C:\mount\windows /Commit

Unmount and save the image:

If you've optimized the image, you'll need to export the image in order to see a change in the file size. During the
export process, DISM removes files that were superseded.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/shrink-your-image-size.md


Dism /Export-Image /SourceImageFile:"C:\Images\Win10_x64\sources\install.wim" /SourceIndex:1 
/DestinationImageFile:"C:\Images\Win10_x64\sources\install-optimized.wim"

1. Export the Windows image into a new image file.

Next steps

When you're managing multiple Windows images, you can save even more space by combining them together.
Learn how: Append a Volume Image to an Existing Image Using DISM.



Manufacturing Windows Engineering Guide (WEG)
3/7/2018 • 24 minutes to read • Edit Online

Manufacturing overview

The Manufacturing WEG provides original equipment manufacturer (OEM) and ODM partners with a roadmap of
the ideal manufacturing process for Windows 10 devices, with guidance for potential pitfalls and opportunities to
streamline the process.

Many decisions that affect manufacturability are made early in the engineering effort of a new device, so careful
consideration should be made to ensure the lowest overhead production process is selected. Every extra minute
spent on the manufacturing floor equates to extra cost for the final product. The Manufacturing WEG is intended
to provide OEM and ODM partners with a roadmap of the ideal manufacturing process that brings together
software and hardware on the factory floor. This WEG also provides opportunities to streamline the process and
guidance for how to plan for and avoid common problems. Our manufacturing and deployment recommendations
are meant to help you:

Optimize the image disk footprint on desktops
Enable Windows deployment on small capacity disks on desktops
Shorten image deployment time
Simplify the imaging process
Simplify OEM Activation (OA3) injection/reporting process on desktops. Mobile devices do not require
activation.
Test and calibrate the device on the assembly line
Support other key scenarios to build great devices

For this document, a generic version of the desktop manufacturing process would look like this:

The manufacturing process for mobile devices would look like this:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/manufacturing-windows-engineering-guide.md


Overall considerations
Manufacturing pathManufacturing path

Build to order (BTO)Build to order (BTO)

Build to stock (BTS)Build to stock (BTS)

Push-button resetPush-button reset

The Manufacturing WEG is not intended to communicate the Windows Minimum Hardware Requirements or
OEM Policy Document (OPD). The WHCR and OPD documents take precedence over any information in the
Manufacturing WEG. You must comply with WHCR and OPD.

There are two general manufacturing paths you can take depending on your business—Build to Stock (BTS) and
Build to Order (BTO). As you review the guidelines in this document, consider the manufacturing path for the
device in order to prioritize investments in each phase and save as much time as possible for your customized
process.

For a walkthrough using desktop devices, see our manufacturing end-to-end lab.

For mobile devices, you must use the BTS manufacturing path.

BTO devices start with a basic image and then receive the majority of their customizations during the
manufacturing process.

The primary advantage is the flexible software bill of materials, which allows for late-breaking changes. The
drawbacks include a more complex image creation and manufacturing process, extra time on the factory floor, and
growing image sizes.

BTS devices have images that are customized almost entirely in the lab. BTS processes are simpler to plan and
produce, are faster on the factory floor, have higher quality control, and have a controlled disk size. BTS devices
still need to allow for late breaking changes on the factory floor. For desktop editions of Windows 10, many of
these changes can be done using offline servicing.

The push-button reset tools no longer require a separate full-system recovery image on a separate partition. This
can save several gigabytes of space. When users need to refresh or reset the device, they’ll be able to keep their
installed Windows updates, rather than downloading and installing them all again. They’ll also keep all of the
customizations that you’ve provided.

The new partition layout resembles the traditional partition layouts from Windows 8.1, except the Windows RE
partition is now moved to the end of the drive, and there is no longer a need for a separate full-system recovery
partition.

For more information, see Push-button reset

Push-button reset is not supported on mobile devices. Instead, you should do a factory reset.

https://msdn.microsoft.com/library/windows/hardware/dn915086.aspx
http://go.microsoft.com/fwlink/p/?LinkId=526101


Compact OSCompact OS

Provisioning packagesProvisioning packages

Language packsLanguage packs

Driver co-installersDriver co-installers

Hardware componentsHardware components

Antimalware appsAntimalware apps

Pre-factory floor image updates

You can now run the entire operating system, including your preloaded Windows desktop applications, using
compressed files, by using the Compact OS and single-instancing features. These features replace the WIM Boot
feature from Windows 8.1 Update 1, and can help maintain a smaller disk footprint over time.

Although the Compact OS is supported for all devices, we recommend using Compact OS only on devices with
solid-state drives, because of the slower performance of rotational drives.

For more information, see Compact OS, single-instancing, and image optimization.

Compact OS is not supported on mobile devices.

To save time while building images, you can now capture and apply desktop Windows applications during image
deployment by using provisioning packages. This saves the time-consuming steps of generalizing and recapturing
the entire image, and allows you to quickly deploy BTO devices.

Instead of adding full language packs, save space by adding the resources you need for the desktop device by
choosing individual packages for display strings, handwriting, speech, and text-to-speech. Later, if your user needs
additional language capabilities, Windows can download the packages as needed.

Language and regional SKU decisions can greatly impact the disk footprint and complexity of the image creation
system. Care should be taken to limit the amount and types of language packs included with each image.

Mobile devices use a worldwide image so all languages are included in every image.

Drivers are generally a very small portion of the disk footprint, however, the co-installers or desktop device apps
that accompany the drivers can add hundreds of megabytes. Carefully consider if the device(s) require the
accompanying Classic Windows application to be fully functional.

Hardware decisions can also affect the manufacturing process. Besides the challenges to the physical assembly of
the hardware, the inclusion or exclusion of certain devices can make the factory process more difficult. For
example, if touch screens and sensors are included they must be calibrated on each device. If you exclude devices
such as ethernet ports, you can’t use PXE boot, which can mean extra costs.

Recommendation: Configure your devices to avoid full scan of the disk during first sign-in. Please work with
your Antimalware vendor to determine best practices for limiting this scan.

We have seen several instances where antimalware tools are doing a full disk scan during the user ’s first sign-in.
The scanning competes with critical tasks occurring during the first sign-in process, resulting in very slow first
sign-in, a degraded Start experience and slow system performance.

For Windows Defender, this can be configured by adding unique identifiers to your images. To learn more, see
Configure a Trusted Image Identifier for Windows Defender.

Golden images are generally handed off to the ODM from the OEM before production begins. These images
almost always require some updating. When you update the golden image, you won’t have to perform the updates
on each device. This leads to less time on the factory floor for each device and increases quality.

Updates to the image can include drivers, Windows Updates, software, OEM customizations, and app packages
(.appx).

http://go.microsoft.com/fwlink/?LinkId=532775


ConsiderationsConsiderations

GoalsGoals

ImplementationImplementation

Image creationImage creation

Region-specific policy for Skype removal on desktopRegion-specific policy for Skype removal on desktop

get-provisionedappxpackage -online | where-object {$_.displayname -eq "Microsoft.SkypeApp"} | Remove-
ProvisionedAppxPackage -online

get-provisionedappxpackage -path c:\mount | where-object {$_.displayname -eq "Microsoft.SkypeApp"} | Remove-
ProvisionedAppxPackage

If you update images using offline servicing, you’ll need to periodically maintain the images. The time saved on the
factory floor should make it worthwhile.

Reduce time spent per unit on the factory floor and decrease the amounts of errata on production devices.

On a BTO system, some optional drivers and some optional apps may need to be applied at the software
download station to accommodate the device. These modifications should be minimized in order to decrease the
likelihood of error and to improve manufacturing time.

The overall golden desktop image creation process in OEM image labs is similar to the existing process.

To avoid compatibility issues, use the new version of Windows PE when working on the reference device in the
image creation lab.

Windows-provided apps are included in all Windows images by default. These apps cannot be modified except
where explicitly stated in the Windows OEM Policy Document (OPD).

If you are required to remove the inbox Skype app due to policy requirements, you can use the DISM.exe tool or
the DISM Windows PowerShell cmdlets to remove the app. For more information about this policy requirement,
see the most recent OEM Policy Document.

To remove Skype online in audit mode from Windows PowerShell:

To remove Skype offline with Windows PowerShell:

To remove Skype offline using Dism.exe:

Dism.exe /image:<Windows_volume> /get-provisionedappxpackages

Dism.exe /image:<Windows_volume> /remove-provisionedappxpackage /PackageName:<PackageName>

1. Get the full package name:

2. Remove the package, using the from the Microsoft.SkypeApp listing:

We recommend using the Windows 10 version of Windows Preinstallation Environment (WinPE).



dir %windir%\System32\catroot\{F750E6C3-38EE-11D1-85E5-00C04FC295EE}

Language pack updatesLanguage pack updates

Apps in Audit modeApps in Audit mode

Note: If you use the Windows 8 version of WinPE, then after any servicing operation, you must update the
timestamps of the files; otherwise you may not be able to activate the image using the OEM Activation 3.0
licensing method. In addition, the in-box licensing diagnostic tool, licensingdiag.exe, will report that the image has
been tampered with.

To resolve this problem, after any servicing operation run from the Windows 8 version of WinPE, the OEM must
run:

After installing a new language, you must reinstall any APPX bundles and inbox Windows apps to support the new
languages. Otherwise, the APPX bundles won’t include support for the new languages.

After installing a new language, you must reinstall any APPX bundles and inbox Windows apps to support the new
languages. Otherwise, the APPX bundles won’t include support for the new languages.

To disable the app readiness service offline:

1. Create a .reg file where HKLM\Software\Microsoft\Windows\CurrentVersion\AppReadiness
DisableInAuditMode is set to a value of 1.

Dism /Mount-Image /ImageFile:"C:\Images\ModelSpecificImage.wim" /Name:"Fabrikam" 
/MountDir:"C:\mount\windows" /Optimize

reg load hklm\LoadedHive C:\mount\Windows\System32\config\SYSTEM

regedit /s e:\registry\regFile.reg

reg unload hklm\LoadedHive

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

2. Mount the Windows image. For example:

3. Load the registry hive. For example:

4. Add the registry value. For example, using a .reg file from your USB stick:

5. Unload the hive.

6. Unmount the Windows image, committing changes. For example:

It is recommended that you disable the service offline before entering audit mode. But you can also disable it
online in audit mode. You must generalize the image after you disable the service. To disable the app readiness
service online:

1. In audit mode, start regedit .
2. Navigate to HKLM\Software\Microsoft\Windows\CurrentVersion\AppReadiness DisableInAuditMode.
3. Set the value of the key to 1.



SMT / Assembly phase

ImplementationImplementation

Hardware test and run-in phase

ConsiderationsConsiderations

GoalsGoals

ImplementationImplementation

[HKLM\System\CurrentControlSet\Services\Tpm\WMI\NoAutoProvision] (REG_DWORD) to 1
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM\WMI]
"NoAutoProvision"=dword:00000001

Software download phase
ConsiderationsConsiderations

GoalsGoals

Run Sysprep generalize before continuing.

Devices need to be calibrated for the best customer experience and to pass the Windows Hardware Lab Kit tests.

Calibrations
Sensors
Touchpad
Touchscreen
RF
Camera

Set the time to UTC and implement ACPI changes detailed below.

We recommend testing on a full version of Windows. This lets you test final hardware/software interactions as the
user will see them.

Using the full version of Windows that you will be shipping with allows testing and validation in the exact same
environment that the end user will be seeing. Windows PE is not a supported operating system for test – it is
designed to be used only as a deployment vehicle.

Deliver the highest quality product possible, while keeping manufacturing times at the absolute minimum.

The installation of the test OS can be handled a variety of ways. Since the test OS has less churn than the shipping
OS the image can be laid down on the disk at any time, which can reduce the amount of time spent applying the
image on the factory floor. Options include having the image pre-flashed from the IHV, or using disk duplication
on site.

Important: Disable TPM (Trusted Platform Module) auto-provisioning when booting into a test OS to ensure
both good performance and to make sure the user ’s OS has ownership of the module. To do this in Windows, you
need to set the following registry keys:

Care should be taken to minimize the amount of time spent on this phase. While some long durations are
unavoidable (such as BTO customizations), we encourage our partners to calculate the costs vs. benfits of
streamlining as much as possible.

Create an efficient and resilient imaging system with a minimum amount of overhead. Move as many steps as
possible to the Pre-Factory Floor Image Updates.



ImplementationImplementation

diskpart /s F:\CreatePartitions-UEFI.txt

ApplyImage F:\Images\ThinImage.wim

1. Boot the machine to WinPE. To deploy Compact OS, you’ll need to use the Windows 10 version of WinPE.
You can boot WinPE in a variety of ways:

Using PXE
Using a USB stick
Preinstalling WinPE on the hard disk

2. Create the hard drive partition structure using diskpart.

For more information, see UEFI/GPT-based hard drive partitions

3. Apply the images that you created using DISM to the Windows partitions.

For more information, see Capture and Apply Windows, System, and Recovery Partitions.

Optional: Use the same image as a recovery image on a separate USB flash drive. This USB disk no longer
needs to be sourced from an authorized replicator. For more info, see Create media to run push-button
reset features.

4. Boot the device into audit mode.

Make any final image modifications. This is where many BTO modifications are made.
If APPX apps were installed before additional language packs were added, reinstall the apps so they can
support the new languages. This includes inbox applications.
Microsoft strongly advises that OEMs run DISM with the /StartComponentCleanup /resetbase flags to
gain additional free disk space.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngen.exe update /queue
C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngen.exe eqi

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ngen.exe update /queue
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ngen.exe eqi

dir %windir%\System32\catroot\{F750E6C3-38EE-11D1-85E5-00C04FC295EE}

Enable Secure Boot (if implemented).

Ensure .NET Framework apps are compiled by running the following commands

On 64-bit machines, do the same for 64-bit CLR:

Create the OA3 computer build report (CBR) using OAtool.exe, inject the key into firmware, and
validate the provisioning.

If you’re using Windows Preinstallation Environment (WinPE) 5.x, fix the timestamps. (This step is
not necessary if you’re using WinPE for Windows 10).

Run Sysprep /oobe to prepare the system for the end user.



Quality assurance phase

ConsiderationsConsiderations

GoalsGoals

ImplementationImplementation

Remanufacturing

ConsiderationsConsiderations

GoalsGoals

ImplementationImplementation

$Tpm = Get-WmiObject -class Win32_Tpm -namespace "root\CIMv2\Security\MicrosoftTpm"
$Tpm.SetPhysicalPresenceRequest(22)

Manufacturing checklist
Windows 10 manufacturing task timelineWindows 10 manufacturing task timeline

TASK PRE-EV PHASE EV PHASE DV PHASE PV PHASE

Prerequisite
manufacturing
work:

Pre-EV EV DV PV

Quality assurance should be run on a sample of machines throughout the production run to ensure all
customizations have been successfully installed. This QA pass should also be used to validate the OA3
implementation.

Once the system has gone through OOBE for this QA pass, it will need to be reset in order to assure the end-user
experience is excellent.

Assure a good customer experience and reduce time spent rebuilding machine.

The device should return to the production line to be re-imaged.

Once the device has passed through OOBE (for any reason) the device needs to be reimaged. In the factory, the
device can simply be added back onto the Software Download Station after the TPM has been cleared (if
equipped).

If the device needs to be serviced in the field by a 3rd party, then Push Button Reset should be used. This will
guarantee the machine is returned back to the full factory configuration while still remaining simple to execute.

While PBR has all the functions needed for factory remanufacturing, it does not provide the ability to script the
actions and does not provide actionable error codes needed for automation that would be necessary in large scale
production.

Ensure a good customer experience, while protecting the user data.

To clear the TPM use the following commands:

To use Windows PE, you’ll need a customized Windows PE image with:

SOC-specific drivers for ftpm.
Optional components: SecureStartup, WMI, PowerShell, and .NET Framework.

You can use this checklist to plan your manufacturing tasks.



ODM chosen? ✔ - - -

OEM access to
Windows 10?

✔ - - -

ODM access to
Windows 10?

✔ - - -

OEM access to
Manufacturing WEG?

✔ - - -

ODM access to
Manufacturing WEG?

✔ - - -

ODM points of
contact identified?

✔ - - -

OEM points of
contact identified?

✔ - - -

ODM kick-off? ✔ - - -

OEM kick-off? ✔ - - -

Regular
manufacturing call?

- ✔ - -

Deployment: Pre-EV EV DV PV

OEM understanding
of deployment
concepts

✔ - - -

ODM understanding
of deployment
concepts

✔ - - -

Using Windows 10
DISM

- ✔ - -

Using Windows 10
Windows PE

- ✔ - -

Extended attributes
applied via DISM

- ✔ - -

WinSxS check being
run?
/AnalyzeComponentS
tore

- ✔ - -

TASK PRE-EV PHASE EV PHASE DV PHASE PV PHASE



Image is cleaned up?
(DISM /Cleanup-
Image
/StartComponentClea
nup /ResetBase)

- ✔ - -

Push-button reset Pre-EV EV DV PV

OEM understanding
of push-button reset
concepts

- ✔ - -

ODM understanding
of push-button reset
concepts

- ✔ - -

Recommended
partition layout to
use for Windows RE
and push-button
reset?

- - ✔ -

If a non-standard
partition layout is
used, is bare-metal
recovery configured?

- - ✔ -

Recovery image ACL
settings correct?

- - ✔ -

Refresh/reset time is
within guidelines?

- - - ✔

Windows RE: Pre-EV EV DV PV

OEM understanding
of Windows RE
concepts

- ✔ - -

ODM understanding
of Windows RE
concepts

- ✔ - -

Windows RE is
enabled

- - ✔ -

Windows RE location
is correct

- - ✔ -

BCD GUID for
Windows RE matches
Windows RE GUID
entry in Reagent.xml

- - ✔ -

Image index is correct - - ✔ -

TASK PRE-EV PHASE EV PHASE DV PHASE PV PHASE



Manufacturing: Pre-EV EV DV PV

Windows RE partition
size (MB) and position
on selected disk

- ✔ - -

Test partition uses full
Windows

- - ✔ -

Image deployment
via [NIC] or
[duplication]

- ✔ - -

OPM key
provisioning plan
done?

- ✔ - -

Language packs per
SKU

- - ✔ -

Secure boot: Pre-EV EV DV PV

OEM understanding
of security concepts

✔ - - -

ODM understanding
of security concepts

✔ - - -

Secure boot process
tested with
preproduction
signing?

- - ✔ -

Watermark off? - - - ✔

Drivers signed from
IHV/ISV?

- - - ✔

Drivers signed by
Microsoft?

- - - ✔

Re-manufacturing
process complete
[factory]

- - ✔ -

Re-manufacturing
process complete
[field service]

- - ✔ -

Secure boot and
debug policy plans
vetted by FT

- ✔ - -

OA 3.0: Pre-EV EV DV PV

TASK PRE-EV PHASE EV PHASE DV PHASE PV PHASE



Using updated
OA3tool.exe

- - ✔ -

Validate image/key
offline

- - ✔ -

Injection done in 
[Windows PE]
[Windows]

Refer to the OEM
Activation 3.0 section.

- - ✔ -

TASK PRE-EV PHASE EV PHASE DV PHASE PV PHASE

Appendix
Small disk footprint optimizationSmall disk footprint optimization

Windows (w/Office), Page file, hiberfile, swapfile, and two
language packs

11.7GB

WinRE 500MB

System Partitions (MSR, ESP) 428MB

Total ~23GB

Available space for OEM customizations on a 32GB (29GB
usable) device

~6GB

Language packsLanguage packs

ServicingServicing

The basic disk footprint of Windows 10 x86 with Office and 2GB of RAM will contain:

Assumptions:

Disk footprint calculated using GetDiskFreeSpaceEx()
Data is collected immediately after OS setup, prior to NGEN running, prior to Idle Tasks.
Measurement includes pagefiles
Windows Update is disabled
Build has multiple runs; the max footprint is used in this report
Drive capacity is converted into Base-2 sizes:32GB == 32,000,000,000 bytes == 30518MiB (or 29GiB).

Language packs comprise some of the largest disk space additions an OEM is likely to make. A language with all
its optional components included can be estimated at 275MB each (size varies based on language) while Office
language packs can be estimated at 300MB (also depending on language).

Windows will trim unused language packs once the end-user selects a primary language during OOBE. After
they're removed, these languages won't be available through push-button reset.

In order to maintain a smaller disk footprint, consider reducing the amount of languages installed on each
shipping SKU.

Adding Windows Update KB packages can add significantly to the size of the disk. To reduce the footprint of an



Real Time Clock (RTC)Real Time Clock (RTC)

Factory floor considerationsFactory floor considerations

Ensuring a good first sign-in experienceEnsuring a good first sign-in experience

Antimalware tools scanning disk during first sign-inAntimalware tools scanning disk during first sign-in

image after adding updates:

1. Install KB and reboot if prompted

dism.exe /online /cleanup-image /startcomponent

2. From an elevated command prompt, run the following commands:

3. Restart the device.

The RTC is a battery-backed time source that stores and maintains system time when a device is powered off.
ACPI 5.0 defines the Time & Alarm device which abstracts the underlying hardware device which maintains
platform time. The ACPI Time & Alarm device is the preferred way to set and query platform time in Windows,
even on a system with a traditional CMOS based RTC. The ACPI interface provides the time zone bias for the time
value obtained from or written to the RTC. This extra field of information addresses a longstanding issue with the
CMOS based RTC, where an operating system does not know how to interpret the time read from the hardware
clock.

Windows queries RTC to update the system time when:

No time synchronization service is available.
The machine enters sleep (S3) or hibernate (S4) power state.
Kernel Debugger is enabled.

OEMs typically provision the RTC in Local Time (LT) for devices shipped with Windows 7. Windows 7 exclusively
uses the CMOS time interface to get RTC time, which is interpreted as LT. In Windows 8, we added support for the
ACPI Time & Alarm device, but Windows 8 also uses the CMOS RTC, if it is available, and treats the time returned
from it as LT. This behavior (related to the CMOS RTC interface) is incompatible with most non-Windows
operating systems. Also, hosting providers like Azure want to use UTC time in their virtualized hardware to
simplify management and migration of guests that might have a number of different time zones.

To address these concerns, Microsoft will be transitioning away from using the CMOS RTC interface and primarily
relying on the ACPI Time & Alarm device.

For OEMs, the guidance is:

Implement the ACPI Time & Alarm device.
Set “CMOS RTC Not Present” flag in Fixed ACPI Description Table (FADT) . The underlying hardware can still
be the CMOS backed RTC, however Windows will only use the ACPI Time & Alarm Device if this flag is set.
It is not recommended for the platform firmware to update the RTC across a daylight saving boundary. If it
does, however, the firmware needs to ensure coordinated universal time (UTC) can always be calculated by
adding the time zone bias to the time value, i.e., UTC = LT + TZ. Windows will ignore the DST field received
from the _GRT control method.
Invalidate TZ (set to 0x7FF) through firmware if RTC time is ever updated through CMOS RTC interface.

The Windows team has seen a number of issues blocking good performance of user ’s first experience with
Windows, and the following guidance should address common issues when preparing OS Images for your
customers.

We have seen several instances where antimalware tools are doing a full disk scan during the user ’s first sign-in.
The scanning competes with critical tasks occurring during the first sign-in process, resulting in very slow first
sign-in, a degraded Start experience and slow system performance.



Windows DefenderWindows Defender

Running NGEN commandsRunning NGEN commands

C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngen.exe update /queue
C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngen.exe eqi

C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngen.exe update /queue
C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngen.exe eqi
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ngen.exe update /queue
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ngen.exe eqi

Graphics driversGraphics drivers

Frequently asked questionsFrequently asked questions
Windows PEWindows PE

Push-button recovery (PBR) and Windows Recovery Environment (WinRE)Push-button recovery (PBR) and Windows Recovery Environment (WinRE)

Recommendation: Devices should be configured to avoid full scan of the disk during first sign-in. Specific
guidance for AV solutions should be provided by the AV Vendor.

Add unique identifiers to your images to prevent Windows Defender from re-scanning all of the files you provided
in the original disk image. To learn more, see Configure a Trusted Image Identifier for Windows Defender.

Native image GENeration is a task compiling .NET framework’s MSIL (virtual machine code) into native images
(platform specific executables). Generally it improves CLR application startup time by more than an order of
magnitude. See The Performance Benefits of NGen for more details.

Recommendation: Follow these instructions to ensure .NET Framework apps are compiled. Please run the
following commands after installing all OS updates:

On 32-bit, x86 ,or ARM devices:

On 64-bit devices, do this for both versions of the .NET framework:

A Windows device should ship with the correct DirectX Graphics Driver for the system hardware. Failing to install
the correct driver results in a fallback to a software-based graphics driver. This results in degraded experiences
with Windows, including slower first sign-in performance.

Recommendation: Install the correct graphics driver for your hardware while in audit mode.

Question: Can I use the new WinPE to deploy, maintain and service previous Windows versions?

Answer: Updates to WinPE will not affect the currently supported Windows versions. You can use the
updated WinPE to deploy previous Windows versions including Windows 7.

Question: Do I have to migrate to the new deployment tools available as part of Windows 10?

Answer: No you don’t. You only need to update to the newer version of the deployment tools (WinPE,
DISM) if you want to implement Compact OS.

Question: How does disk footprint optimization impact my PXE environment?

Answer: You only need to update your PXE environment to the newer version of the deployment tools
(WinPE, DISM) if you are executing an “apply” while in your PXE environment. If you are only executing a
download (file copy from server to client), you don’t have to update your PXE environment.

Question: Will WinRE also be updated?

Answer: Yes, a new WinRE.wim is needed.

Question: Can the user still create a PBR USB key?

http://go.microsoft.com/fwlink/?LinkId=532775
http://go.microsoft.com/fwlink/?LinkId=532790


StorageStorage

Disk footprintDisk footprint

Imaging and deploymentImaging and deployment

Language Packs and appsLanguage Packs and apps

Answer: Yes. If the default partition layout is used, then no additional setup is required by the OEM to
enable this.

Question: Do you only support solid state disks?

Answer: No, we now support solid-state and traditional rotational media. We recommend that single-
instancing is only used on solid-state disks, due to performance issues.

Question: Can I use single-instancing of provisioning packages on a dual disk configuration (HDD + SSD)?

Answer: Single-instancing can only be implemented on the same disk.

Question: How will you delete the language packs that the user does not choose during OOBE?

Answer: The language packs are deleted from the device, and will no longer be available during push-
button recovery operations.

Question: How are you calculating disk size? For example, you report a disk size of 14.8 GB on a 16 GB
disk.

Answer: The disk capacity is converted into Base-2. For example, 16,000,000,000 (billion bytes) is equal to
~14.8 GB.

Question: Can I only use Compact OS on small devices, such as those with 1 GB RAM and 16 GB disk?

Answer: Compact OS can be applied to any 32-bit or 64-bit platform with >=16GB of solid state storage.

Question: Do you recommend using 16 GB disk on a 64-bit platform running 64-bit Windows?

Answer: We recommend a minimum disk capacity of 32 GB for 64-bit Windows.

Question: What are the changes to the DISM command to support Compact OS?

Answer: You can use DISM /Apply-Image … /Compact and /Apply-CustomDataImage. For more info, see
DISM Image Management Command-Line Options.

Question: Does Compact OS support both GPT and MBR partition layout?

Answer: Yes.

Question: Is an updated OA3 tool required with Windows 10?

Answer: Yes.

Question: Can I still use Windows SIM, unattend answer files and settings with Windows 10?

Answer: Yes, though some settings may have changed. See Changed answer file settings from Windows
8.1 and Windows Server 2012 R2.

Question: Can we use multiple language packs?

Answer: Yes, however, we strongly recommend that you validate the disk footprint impact of the number of
languages (Windows, Office, drivers and apps) per image.

Question: Is there a change in how I install language packs?

Answer: Yes, you'll apply the base lp.cab in the same way as you did before in order to get multiple UI
options, but to be able to enter text or get support, you'll need to add optional language components. For
more info, see Add Language Packs to Windows.

http://go.microsoft.com/fwlink/?LinkId=532791
http://go.microsoft.com/fwlink/?LinkId=532812
http://go.microsoft.com/fwlink/?LinkId=532792


PolicyPolicy

ServicingServicing

Question: Is there a change in how I install desktop or Microsoft Store apps?

Answer: There is no change in how you install desktop or Microsoft Store apps from Windows 8.1.

Question: What is the user experience on a multi-language configuration or when a user adds an
additional language pack?

Answer: Language packs will continue to work the same way they do in previous versions of Windows.

Question: Are there compatibility concerns with desktop apps?

Answer: The type of apps listed below will need to be carefully validated.

Full volume encryption tools should not encrypt WIM images to limit performance impact. Such tools
should check integrity of the unencrypted WIM to prevent tampering.
Any tool that writes system files can be affected:

Imaging applications should perform block-level backup and restore of ALL volumes.
Faulty/Incomplete restore-operations can render a system unbootable.
Encryption/Back-Up/Defrag tools may unintentionally inflate system files.

Question: Is Compact OS also applicable to Windows Embedded?

Answer: The Compact OS implementation and feature design we shared is limited to Windows 10 for
desktop editions (Home, Pro, and Enterprise) . However, you should contact your Windows Embedded
representative and ask about their disk footprint optimization plan.

Question: Is there a change to the existing 10 GB free disk space policy requirement?

Answer: Refer to the updated Windows Hardware Compatibility Requirements.

Question: How will upgrade work especially on the recovery image with disk footprint optimization?

Answer: Upgrade will continue to work.



Windows 10 in S mode manufacturing overview
4/30/2018 • 2 minutes to read • Edit Online

In this section

Planning a Windows 10 in S mode or Windows 10 S image Gives an overview of what to consider when planning a
Windows 10 S image.

Manufacturing environment Describes how the manufacturing environment behaves with
Windows 10 S.

Manufacturing mode Explains how to enable and disable manufacturing mode.

Enable S mode Covers how to use unattend to enable S mode.

Windows 10 S deployment lab Provides step by step instructions on how to create a
Windows 10 S deployment.

Windows 10 in S mode is a mode that can be applied to a Windows edition to enable a productive Windows
experience that's streamlined for security and performanace. By exclusively using apps in the Microsoft Store and
ensuring that you browse safely with Microsoft Edge, Windows 10 in S mode keeps you running fast and secure
day in and day out. The same technology that makes Windows 10 in S mode secure also creates some differences
when creating software images for Windows 10 devices.

In previous versions of Windows, Windows 10 S was a separate edition that required working with a different
Windows image than non-S editions. Starting with Windows 10, version 1803, you can Enable S mode on
supported Windows editions.

When you plan your Windows 10 in S mode image and deployment, you'll have to ensure that your
customizations will work with Windows 10 in S mode, as well as the manufacturing environment.

While the overall process is similar to building other Windows 10 devices, Windows 10 in S mode has some
additional considerations.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-s-overview.md


  

Planning a Windows 10 in S mode deployment
7/27/2018 • 7 minutes to read • Edit Online

Executables

What runs on Windows 10 in S mode?What runs on Windows 10 in S mode?

What is blocked in Windows 10 in S mode?What is blocked in Windows 10 in S mode?

Building a Windows 10 in S mode or Windows 10 S image is like building an image for any other desktop edition
of Windows, with some key differences. You can add apps, drivers, and customizations to Windows 10 in S mode,
but you'll have to make sure they're supported.

When planning a deployment, make sure you understand what runs, and what is blocked in Windows 10 in S
mode. Choose and test customizations that work with Windows 10 in S mode and won't interrupt your
deployment. If you need to run unsigned code, you can enable the manufacturing mode registry key which allows
you to run unsigned code, but once the PC ships the unsigned code will be blocked.

Only run executable code that is signed with a Windows, WHQL, ELAM, or Store certificate from the Windows
Hardware Developer Center Dashboard. This includes companion apps for drivers.

Apps not signed with one of the certificates mentioned, including companion apps, are blocked. When a blocked
app is run, the user is notified that the app cannot run.

The following components are blocked from running in Windows 10 in S mode. Any script or application that calls
one of these blocked components will be blocked. If your manufacturing process uses scripts or applications that
rely on blocked components, you can temporarily enable manufacturing mode for configuring and testing, but you
can't ship a PC with manufacturing mode enabled.

bash.exe
cdb.exe
cmd.exe
cscript.exe
csi.exe
dnx.exe
fsi.exe
hh.exe
infdefaultinstall.exe
kd.exe
lxssmanager.exe
msbuild.exe
mshta.exe
ntsd.exe
powershell.exe
powershell_ise.exe
rcsi.exe
reg.exe
regedit.exe
regedt32.exe
regini.exe

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-s-planning.md
https://aka.ms/DevCenterPortal


 

Microsoft OfficeMicrosoft Office

Testing your appTesting your app

Drivers

Customizations

Supported customizationsSupported customizations

CUSTOMIZATION OR TASK MECHANISM ENVIRONMENT

Language Packs DISM Offline, WinPE, Audit Mode

Features on Demand DISM Offline, WinPE, Audit Mode

Start Menu Layout layoutmodification.xml N/A

OEM Taskbar tiles taskbarlayoutmodification.xml N/A

InkWorkstationTiles InkWorkstationLayoutModification.xml N/A

OOBE customizations OOBE.xml, OOBE folder structure OOBESystem pass

UWP apps DISM Offline, WinPE, Audit mode

Bridge apps DISM Offline, WinPE, Audit Mode

Drivers with no unsigned or win32
scripts/exe/binaries

DISM Offline, WinPE, Audit Mode

Wallpaper unattend.xml N/A

syskey.exe
wbemtest.exe
windbg.exe
wmic.exe
wscript.exe
wsl.exe

For the best customer and end-user experience, preinstall Microsoft Office using the Office 16.5 OPK. This version
of Microsoft Office is the same version that's available in the Microsoft Store, and runs on Windows 10 in S mode.
We show you how to enable S mode and install the Office 16.5 OPK in the OEM deployment of Windows 10 lab.

For information on how to test your app, see Test your Windows app for Windows 10 in S mode.

For Windows 10 in S mode driver guidelines and requirements, see Windows 10 in S mode Driver Requirements.

Not all customizations are supported in Windows 10 in S mode. This section shows which customizations are
supported, which customizations are not supported, and how to enable manufacturing mode that allows you to
perform customizations in audit mode.

The following table shows customizations in Windows 10 in S mode, the mechanism to deploy the customizations,
and the environment where you can deploy the customizations.

https://docs.microsoft.com/en-us/windows/uwp/porting/desktop-to-uwp-test-windows-s
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/Windows10SDriverRequirements
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/customize-the-start-screen
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/customize-the-taskbar
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/porting/desktop-to-uwp-root.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-shell-setup-themes-desktopbackground


Command prompt from OOBE using
<Shift + F10>

Manufacturing reg key OOBE

CUSTOMIZATION OR TASK MECHANISM ENVIRONMENT

Unsupported customizationsUnsupported customizations

CUSTOMIZATION OR TASK MECHANISM ENVIRONMENT

Driver installation with setup.exe Unsupported Unsupported

Drivers with co-installers or dependent
on scripts or cmd execution

Unsupported Unsupported

Win32 apps Unsupported Unsupported

First logon commands Unsupported Unsupported

IMPORTANTIMPORTANT

Enable customizations in audit modeEnable customizations in audit mode

IMPORTANTIMPORTANT

Upgrade and switch paths
Upgrade pathsUpgrade paths

UPGRADE PATHS

Windows 10 Home in S mode to Windows 10 Pro in S mode

Windows 10 Pro in S mode to Windows 10 Enterprise in S mode

Windows 10 Pro in S mode to Windows 10 Education in S mode

The following tables shows customizations that are not supported in Windows 10 in S mode.

Bing is set as the search default and Microsoft Edge is set as the default browser in Windows 10 in S mode. These settings
can’t be changed.

To enable customizations in audit mode, you have to enable manufacturing mode by adding a registry key to your
offline image. Manufacturing mode allows you to run unsigned code that is normally blocked. For instructions on
how to add or remove the manufacturing registry key, see Manufacturing registry key.

You'll also have to configure ScanState to exclude the registry key when capturing your recovery package. This
ensures that the registry key doesn't get restored during reset or recovery scenarios. We'll cover how to exclude
the key from recovery in the Windows 10 in S mode deployment lab

Don't ship your Windows 10 in S mode PC with the registry in place. You'll have to remove the registry key prior to shipping
the device.

Windows 10 in S mode (Windows 10, version 1803 or later) allows the following upgrade paths:

Windows 10 S allows the following upgrade paths:



UPGRADE PATHS

Windows 10 S to Professional

Windows 10 S N to Professional N

Windows 10 S to Enterprise

Windows 10 S N to Enterprise N

Windows 10 S to Education

Windows 10 S N to Education N

Windows 10 S to Professional Education

Windows 10 S N to Professional Education N

Switch pathsSwitch paths

SWITCH PATHS

Windows 10 Home in S mode to Windows 10 Home

Windows 10 Pro in S mode to Windows 10 Pro

Windows 10 Enterprise in S mode to Windows 10 Enterprise

Windows 10 Education in S mode to Windows 10 Education

NOTENOTE

Recovery
Built-in recoveryBuilt-in recovery

For information on using DISM to change the a Windows image to a different edition, see Change the windows
image to a higher edition using dism.

Windows 10 in S mode can be switched to a non-S edition. A user can switch modes through the Microsoft Store.
The following shows the available switch paths:

Starting with Windows 10, version 1803, switching from S mode doesn't require a reboot.

Windows 10 S includes a recovery solution that enables a user to restore, refresh, or troubleshoot their PC.
Recovery in Windows 10 S has some differences from other editions of Windows. These differences are:

Third party recovery solutions are NOT supported
Extensibility points for customizations documented in this section is supported

OEM tools in WinRE is not supported
CMD prompt in WinRE will be enabled but only allow execution of inbox WinRE binaries
Extensibility script must be in the form of a *.CMD
Does not call any of the blocked inbox components except reg.exe and wmic.exe



Recovery scenarios for S modeRecovery scenarios for S mode

PREINSTALLED
OS

WAS
WINDOWS
SWITCHED TO
NON-S MODE?

WAS
WINDOWS
UPGRADED TO
A DIFFERENT
EDITION?

PCS
MODE/EDITION
AT RECOVERY

PBR (BOTH
“KEEP MY
FILES” AND
“REMOVE
EVERYTHING”)

BMR USING
OEM FACTORY
RECOVERY
IMAGE

BMR USING
USER-CREATED
MEDIA

Home S No No Home S Home S Home S The edition
and mode
which the
media was
created

Home S No Yes (Pro S) Pro S Pro S Home S The edition
and mode
which the
media was
created

Home S Yes (Home) No Home Home Home S The edition
and mode
which the
media was
created

Home S Yes (Home) Yes (Pro) Pro Pro Home S The edition
and mode
which the
media was
created

Pro S No No Pro S Pro S Pro S The edition
and mode
which the
media was
created

Pro S No Yes (Enterprise
S)

Enterprise S Enterprise S Pro S The edition
and mode
which the
media was
created

Pro S Yes (Pro) No Pro Pro Pro S The edition
and mode
which the
media was
created

Pro S Yes (Pro) Yes (Enterprise
or
Workstations)

Enterprise or
Workstations

Enterprise or
Workstations

Pro S The edition
and mode
which the
media was
created

Note: This applies to Windows 10 in S mode (Windows 10, version 1803 and later).

This table shows what Windows edition and mode will result from a user performs a system recovery:



Validating recovery in your deploymentValidating recovery in your deployment

Retail Demo eXperience (RDX)

BMR: Bare metal recovery
PBR: Push button reset

After you configure your Windows 10 S PC for recovery scenarios, validate that it is working properly by verifying
that these scenarios run successfully:

Run refresh recovery and validate the user files are preserved and your factory desktop customizations are
restored.
Run reset recovery and validate the user files and profile are removed and your factory desktop customizations
are restored.
Validate extensibility scripts in the simulated RS3 enforcement level using the provided policy file.
If you created a recovery package with ScanState, ensure that the manufacturing key was excluded from
capture.

In the Retail Demo Experience (RDX), Windows detects Windows 10 S editions and displays marketing messages
with info about Windows 10 S for Windows and Office.



 

Manufacturing environment
4/30/2018 • 2 minutes to read • Edit Online

Overview

Code integrity policy

WinPE

DISM
Adding a Windows 10 S image to a WIMAdding a Windows 10 S image to a WIM

Detect Windows 10 S with DISMDetect Windows 10 S with DISM

Audit mode

This topic covers the differences in the Windows 10 in S mode and Windows 10 S manufacturing environments
from other Windows manufacturing environments.

The code integrity policy (CI) blocks the execution of unsigned or improperly signed binaries. Using unsupported
binaries is only recommended when performing lab or factory image customization, or during deployment where
the execution environment is either WinPE or Audit Mode.

Once the CI policy is enabled on a system, it is enabled in two places:

1. Windows 10 in S mode, enforced at boot.
2. EFI firmware policy, enforced during firmware load and OS boot.

The Windows Preinstallation Environment (WinPE) behaves the same for Windows 10 in S mode and Windows
10 S as it does for Windows Home or Windows Professional.

For more information about WinPE, see Windows PE.

If you want a single WIM that includes multiple Windows editions including Windows 10 S, you can add/append
your Windows 10 S image to an existing WIM, which allows you to specify the Windows 10 S image index during
DISM /apply.

To see more about adding/appending images to an existing WIM, see Append, apply, and export volume images
with a Windows Image (.wim) file.

You can use DISM to detect Windows 10 S (offline in WinPE or in Audit mode). In Audit mode, use 
DISM /online /get-currentedition . If an image is Windows 10 S, the command should return S. In WinPE, use 
DISM /image:c:\ /get-currentedition .

See DISM Windows edition-servicing command-line options to see additional commands for working with
Windows editions.

Audit mode is availabe when manufacturing a Windows 10 S PC. By default, the blocked inbox components are
blocked in audit mode. If you need to use blocked inbox components during the manufacturing process, you can
enable manufacturing mode. If you enable manufacturing mode, you'll have to make sure to disable
manufacturing mode prior to shipping your PC.

To learn more about Audit Mode, see Audit Mode overview.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-s-manufacturing-considerations.md


Factory device diagnostics
During factory testing, Win32-based diagnostic tools can be run by using one of the following options:

1. Windows 10 S in Audit Mode with the manufacturing registry key in place. If you’ve previously booted the
PC without the manufacturing registry key in place, you’ll have to turn off Secure Boot before you can use
Win32-based diagnostic tools.

or

2. In a separate non-Windows 10 S test operating system.



    

Enable manufacturing mode
4/30/2018 • 2 minutes to read • Edit Online

Overview

IMPORTANTIMPORTANT

Enable manufacturing mode

To run scripts, installers, and diagnostic tools on the factory floor, Windows 10 in S mode and Windows 10 S have
a manufacturing mode. This mode allows you to run unsigned code in Audit Mode. Enable manufacturing mode
by adding a registry key to an offline image. Disable manufacturing mode by removing the registry key when
booted into audit mode.

Don't ship a Windows 10 in S mode PC with the registry in place. Remove the registry key prior to shipping the device.

Before shipping a Windows 10 in S mode PC, remove the manufacturing registry key and exclude it from
recovery packages.

Here's how to enable manufacturing mode.

On your technician PC:

Dism /Mount-Wim /WimFile:D:\sources\install.wim /index:1 /MountDir:C:\mount\windows

reg load HKLM\Windows10S C:\Mount\Windows\Windows\System32\Config\System

reg add HKLM\Windows10S\ControlSet001\Control\CI\Policy /v ManufacturingMode /t REG_DWORD /d 1

reg unload HKLM\Windows10S

Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

1. Mount your Windows 10 in S mode image.

Where D: is your Windows 10 in S mode installation media.

2. Load the SYSTEM registry hive from your mounted image into regedit on your technician PC. We'll use a
temporary hive called HKLM\Windows10S.

3. Add the manufacturing registry key.

4. Unload the registry hive from your technician PC.

5. Unmount the image and commit changes.

The Windows 10 in S mode image now has the manufacturing key that will allow you to make changes in audit
mode.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-s-manufacturing-mode.md


    Remove the manufacturing registry key

Exclude the manufacturing registry key from recovery

When you're finished making changes to your PC in audit mode, you'll remove the manufacturing registry key.

While still booted into audit mode:

reg delete HKLM\system\ControlSet001\Control\CI\Policy /v ManufacturingMode

1. Open Command Prompt.

2. Remove the registry key.

The manufacturing registry key is now removed. You can check the Registry Editor to double check that the key
has been removed.

On your Windows 10 in S mode PC in audit mode:

1. Open Registry Editor by clicking on the start menu and typing regedit  and press enter.

2. Use the registry browser in the left pane to navigate to
Computer\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\CI\Policy.

3. Under policy, you should not see a key called manufacturingmode.

When you create a recovery package, exclude the manufacturing registry key. Create an exclusion file that tells
scanstate to skip the registry key when it captures a recovery package.

<?xml version="1.0" encoding="UTF-8"?>
<migration urlid="http://www.microsoft.com/migration/1.0/migxmlext/ExcludeManufacturingMode">
<component type="System">
    <displayName>Exclude manufacturing regkey</displayName>
        <role role="Settings">
            <rules context="System">
                <unconditionalExclude>
                    <objectSet>
                        <pattern type="Registry">HKLM\SYSTEM\CurrentControlSet\Control\CI\Policy 
[ManufacturingMode]</pattern>
                    </objectSet>
                </unconditionalExclude>
            </rules>
        </role>
</component>
</migration>

Scanstate.exe /config:T:\deploymenttools\Config_SettingsOnly.xml /o /v:13 /ppkg 
C:\Recovery\Customizations\usmt.ppkg /i:exclusion.xml /l:C:\Scanstate.log

1. Create an .xml file in a text editor.

2. Copy and paste the following code. This tells ScanState to not capture the registry key in the recovery
package that it creates:

3. Save the file as exclusion.xml.

4. When you use scanstate to generate a recovery package, add /i:exclusion.xml to the scanstate command to
exclude the manufacturing key from the capture. This command creates a recovery package that excludes
the manufacturing registry key, and places it into the recovery folder.



Enable S mode
4/30/2018 • 2 minutes to read • Edit Online

Overview

Enable S Mode

This topic shows how to add S mode to a supported Windows 10 edition. The following information only applies
to Windows 10, version 1803 or later.

Beginning with Windows 10, version 1803, you can enable S mode on supported editions. This is a change from
previous versions of Windows where Windows 10 S was its own edition with its own base media. To enable S
mode, you'll create an unattend file, and then use DISM to apply the unattend file to a mounted Windows image.

We recommend enabling S mode and adding your manufacturing key at the same time. We show you how to do
this in the Windows 10 in S Mode deployment lab, as well as in the OEM deployment of Windows 10 for desktop
editions lab.

To enable S mode in a Windows image, use an Unattend file that has a setting in Pass 2 - offlineServicing, and use
DISM to apply it to our mounted Windows image.

1. Mount your Windows image.
2. Use Windows SIM to create or modify an unattend file.
3. Add the amd64_Microsoft_Windows_CodeIntegrity component to Pass 2 offline Servicing.

    <settings pass="offlineServicing">
    <component name="Microsoft-Windows-CodeIntegrity" 
                processorArchitecture="amd64" 
                publicKeyToken="31bf3856ad364e35" 
                language="neutral" 
                versionScope="nonSxS" 
                xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
                xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
        <SkuPolicyRequired>1</SkuPolicyRequired>
    </component>
    </settings>

dism /image:C:\mount\windows /apply-unattend:C:\mount\windows\windows\panther\unattend.xml

4. Set amd64_Microsoft_Windows_CodeIntegrity\SkuPolicyRequired to 1. The offline servicing pass in your
unattend.xml file should look like this:

5. Save the answer file in the Windows\Panther  folder of your mounted image as unattend.xml.

6. Use DISM to apply the unattend file and enable S Mode:

Note: Only Pass 2 - offline Servicing is processed when an unattend file is applied with DISM.

S mode is now applied to the Windows image. When the PC boots, the same Code Integrity policy that is enforced
in Windows 10 S will be enforced on your Windows installation. If you are going to boot the PC into Audit Mode,
you'll have to enable manufacturing mode. Enable manufacturing mode describes how to do that.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-s-enable-s-mode.md


Windows 10 in S mode deployment lab
6/13/2018 • 12 minutes to read • Edit Online

NOTENOTE

Get the tools you need

Format your USB key

Starting with Windows 10 in S mode, creating a deployment of Windows 10 in S mode starts with a regular base
Windows 10 image. S mode is applied by applying an unattend file to a mounted Windows image. When working
with a PC that is in S mode, the manufacturing process has some differences when compared to other versions of
Windows. When planning your deployment, you have to make sure that your drivers and apps are supported by
Windows 10 in S mode.

This lab walks you through the process of configuring a Windows 10 image in S mode for deployment. We'll
customize an image, set S mode with unattend, add the manufacturing registry key in WinPE, and then remove
the registry key in Audit Mode. Then we'll configure recovery and prepare the image for shipment.

If you're building a Windows 10 S image, we'll call out the differences between Windows 10 in S mode and Windows 10 S.

Let's get started.

To start building an image for deployment, here's what you'll need:

Windows 10 image

Technician PC running Windows 10, Version 1803 or later
Reference PC where you can deploy your image
The latest version of the ADK installed on your technician PC
A USB key that you can format
Deployment scripts
Customizations such as drivers or language packs
The latest General Distribution Release update from the Microsoft Update Catalog

For Windows 10 in S mode, use a Windows Home or Windows Professional image or
For Windows 10 S, use a Windows 10 S image

To prepare your USB drive, you'll create separate FAT32 and NTFS partitions. The following creates two partitions
on a USB drive; one 2GB FAT32 partition, and one NTFS partition that uses the rest of the available space on the
drive. You want to make sure that your USB drive has enough free space for the 2GB WinPE partiton and to hold
large images on the NTFS partition:

diskpart

1. On your technician PC, start the Deployment and Imaging Tools Environment as an administrator :

Click Start, type Deployment and Imaging Tools Environment. Right-click Deployment and
Imaging Tools Environment and select Run as administrator.

2. Open diskpart.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-10-s-deployment-sxs.md
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/Windows10SDriverRequirements
https://docs.microsoft.com/en-us/windows/uwp/porting/desktop-to-uwp-test-windows-s
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
http://go.microsoft.com/fwlink/p/?LinkId=800657
http://www.catalog.update.microsoft.com


Make a bootable WinPE partition on your USB key

Create Data USB partition

list disk
select <disk number>
clean

create partition primary size=2000
format quick fs=fat32 label="Windows PE"
assign letter=P
active

create partition primary
format fs=ntfs quick label="Data"
assign letter=T
list vol
exit

3. Select your your USB key's disk number, and run the clean  command. This command will make any data
on your USB key inaccessible. Make sure you've backed up any data that you want to keep.

Where <disk number> is the number of your USB drive

4. Create the FAT32 partiton for WinPE, label it "Windows PE" and mark it active.

5. Create the NTFS partition where you'll store your images and customizations.

On your technician PC:

copype amd64 C:\winpe_amd64

MakeWinPEMedia /UFD C:\winpe_amd64 P:

1. Open the Deployment and Imaging Tools Environment as administrator.

2. Copy the base WinPE files into a new folder :

3. Copy the WinPE files to your FAT32 partition.

When prompted, press Y to format the drive and install WinPE.

For more information about how to create a WinPE drive, see WinPE: Create USB bootable drive.

1. In File Explorer, open the deployment scripts zip and copy the scripts folder to the Data partition of your USB
drive.

copydandi amd64 T:\deploymenttools

2. From the Deployment and Imaging Tools Environment use copydandi.cmd to copy deployment and
imaging tools to your USB drive

3. Copy any other customizations you need for Audit mode.



Mount install.wim and winre.wim

Enable customizations
Enable S modeEnable S mode

Mounting a Windows image is the same process that we used to mount the WinPE image earlier. When you
mount your Windows image (install.wim), you'll be able to access a second image, WinRe.wim, which is the image
that supports recovery scenarios. Updating install.wim and WinRE.wim at the same time helps you keep the two
images in sync, which ensures that recovery goes as expected.

md c:\temp
copy d:\sources\install.wim c:\temp

Md C:\mount\windows
Dism /Mount-Wim /WimFile:C:\temp\install.wim /index:1 /MountDir:C:\mount\windows

Md c:\mount\winre 
Dism /Mount-Wim /WimFile:C:\mount\windows\Windows\System32\Recovery\winre.wim /index:1 
/MountDir:C:\mount\winre

attrib -h -a -s C:\mount\windows\Windows\System32\Recovery\winre.wim

1. Mount the Windows 10 iso in File Explorer.

2. Create a temporary folder (c:\temp) and then copy install.wim from D:\Sources (Where D: is the drive letter
of the mounted image) to the temporary folder.

3. Open the Deployment and Imaging Tools Environment as an administrator.

4. Create a folder for mounting images, and then mount install.wim.

5. Create a mount folder for the Windows RE Image file from your mounted image, and then mount the
WinRE image.

Troubleshoot: If winre.wim cannot be seen under the specified directory, use the following command to
set the file visible:

Troubleshoot: If mounting operation fails, make sure the Windows 10 version of DISM is the one installed
with the Windows ADK is being used and not an older version that might be on the Technician Computer.
Don't mount images to protected folders, such as the User\Documents folder. If DISM processes are
interrupted, consider temporarily disconnecting from the network and disabling virus protection.

For more information about mounting a Windows image, see Mount and Modify a Windows Image Using DISM.

To learn about customizing WinRE, see Customize Windows RE.

Note: This section doesn't apply if you're starting with Windows 10 S media. If this doesn't apply, skip to the
next section.

Before customizing an image, use the offline servicing pass of unattend to set a Windows PC to S mode.

1. Use Windows SIM to create an unattend file.
2. Add SkuPolicyRequired  to the offlineServicing pass



  Add the manufacturing registry keyAdd the manufacturing registry key

IMPORTANTIMPORTANT

Create exclusion.xmlCreate exclusion.xml

3. Set SkuPolicyRequired  to 1

4. Save the file as unattend.xml

MkDir c:\mount\windows\Windows\Panther
Copy unattend.xml  C:\mount\windows\Windows\Panther\unattend.xml

DISM /Image=C:\mount\windows /Apply-Unattend=C:\mount\windows\Windows\Panther\unattend.xml

5. Copy unattend.xml to the mounted Windows image:

6. Apply the unattend file to your mounted image:

When the PC boots, it will boot into S mode with CI policies enforced. If you need to make customizations to the
Windows image, you'll have to enable the manufacturing registry key. This will allow you to make changes in audit
mode.

Enabling manufacturing mode is a step you'll have to do when working with Windows 10 in S mode and
Windows 10 S. To enable customizations during the manufacturing process, you'll have to add a registry key that
gives you the ability to run unsigned code when booted into audit mode. This can help you build and test your
image when getting a PC ready to ship.

We'll add the customization registry key to the mounted image by loading the mounted image's SYSTEM registry
hive, and then then adding a key. Then we'll configure ScanState to exclude the registry key when capturing your
recovery package to ensure that the registry key doesn't get restored during reset or recovery scenarios.

Don't ship your PC with the registry in place. Remove the registry key prior to shipping the device.

reg load HKLM\Windows10S C:\Mount\Windows\Windows\System32\Config\System

reg add HKLM\Windows10S\ControlSet001\Control\CI\Policy /v ManufacturingMode /t REG_DWORD /d 1

reg unload HKLM\Windows10S

1. Load the SYSTEM registry hive from your mounted image into regedit on your technician PC. We'll use a
temporary hive called HKLM\Windows10S.

2. Add the following key to the registry have that you just mounted.

3. Unload the registry hive from your technician PC.

The mounted image now has the manufacturing key that will allow you to make changes in audit mode. You'll
have to remove it before shipping the PC.

To learn about the Windows 10 S manufacturing registry key, see Windows 10 S manufacturing mode.

Now we'll create a file that automates the exclusion of the customizations registry key when you capture settings
for recovery. This ensures that your PC doesn't restore the customization registry key during the recovery process.



Add drivers

Add a language (optional)

<?xml version="1.0" encoding="UTF-8"?>
<migration urlid="http://www.microsoft.com/migration/1.0/migxmlext/ExcludeManufacturingMode">
<component type="System">
<displayName>Exclude manufacturing regkey</displayName>
    <role role="Settings">
        <rules context="System">
            <unconditionalExclude>
                <objectSet>
                    <pattern type="Registry">HKLM\SYSTEM\CurrentControlSet\Control\CI\Policy 
[ManufacturingMode]</pattern>
                </objectSet>
            </unconditionalExclude>
        </rules>
    </role>
</component>
</migration>

1. Create an xml file in a text editor.

2. Copy and paste the following code. This tells ScanState to not capture the registry key in the recovery
package that it creates:

3. Save the file as exclusion.xml.

We'll use this config file when we capture a ScanState package for recovery later in the lab.

You can learn about excluding files and settings from a ScanState package at Exclude Files and Settings.

Like other versions of Windows, you can add drivers to a Windows 10 S image to ensure that hardware is setup
and working the first time a user boots into Windows. Make sure that the drivers you add to your Windows 10 S
are compatible with Windows 10 S and won't be blocked.

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf"
Dism /Add-Driver /Image:"C:\mount\winre" /Driver:"C:\Drivers\PnP.Media.V1\media1.inf"

Dism /Add-Driver /Image:"C:\mount\windows" /Driver:c:\drivers /Recurse 

Dism /Get-Drivers /Image:"C:\mount\windows"
Dism /Get-Drivers /Image:"C:\mount\winre"

1. Add a single driver to your Windows and WinRE images from an .inf file. In this example, we're using a
driver named media1.inf:

Where "C:\Drivers\PnP.Media.V1\media1.inf" is the .inf file for the driver you're adding.

2. Verify that the drivers are part of the images:

Check the list of packages and verify that the list contains the drivers you added.

For more information about adding drivers to an offline Windows image, see Add and Remove Drivers to an
Offline Windows Image.

In this section, we'll add the German (de-de) language pack to the mounted Windows and WinRE images.

https://docs.microsoft.com/en-us/windows/deployment/usmt/usmt-exclude-files-and-settings


Add the latest General Distribution Release (GDR)

Unmount WinRE Image and make a copy

Dism /Add-Package /Image:C:\mount\windows /PackagePath:"E:\x64\langpacks\Microsoft-Windows-Client-
Language-Pack_x64_de-de.cab "

Dism /image:C:\mount\winre /add-package /packagepath:"E:\Windows Preinstallation 
Environment\x64\WinPE_OCs\de-de\lp.cab" 

1. Add German language package to the Windows image.

Use the language packs from the 64-bit ISO:

Where E: is the drive letter of the mounted language pack ISO.

2. Add the German language pack to Windows RE. Language packs are available as part of the ADK, and
ensure that a user's language is available during recovery scenarios.

See Add and remove language packs offline using DISM for more information.

Install the latest GDR package that include the latest bug fixes and OS changes.

Important: Install GDR packages after you install language packs, AppX packages, and Features on Demand.
If you install a GDR prior to adding these, you'll have to reinstall the GDR.

dism /image:"C:\mount\windows" /add-package /packagepath:C:\temp\windows10.0-kb4020102-
x64_9d406340d67caa80a55bc056e50cf87a2e7647ce.msu
dism /image:"C:\mount\winre" /add-package /packagepath:C:\temp\windows10.0-kb4020102-
x64_9d406340d67caa80a55bc056e50cf87a2e7647ce.msu

DISM /Cleanup-Image /Image=C:\mount\winre /StartComponentCleanup /ResetBase /ScratchDir:C:\Temp

1. Download the GDR (KB 4020102) from the Microsoft Update Catalog.

2. Use DISM /add package to add the GDR to the mounted images

3. Use DISM to cleanup your image and lock in the updates so they are restored during recovery.

See Add or remove packages offline using DISM for more information about adding packages to your Windows
image.

Now that you have made all of your offline customizations, you can unmount your images.

Dism /Unmount-Image /MountDir:"C:\mount\winre" /Commit
Dism /Export-Image /SourceImageFile:c:\mount\windows\windows\system32\recovery\winre.wim /SourceIndex:1 
/DestinationImageFile:c:\mount\winre-optimized.wim
del c:\mount\windows\windows\system32\recovery\winre.wim
copy c:\mount\winre-optimized.wim c:\mount\windows\windows\system32\recovery\winre.wim

1. Close all applications that might access files from the images.

2. Commit the changes and unmount the WinRE and Windows images:

http://www.catalog.update.microsoft.com/Search.aspx?q=4020102


Unmount install.wim
Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

Copy install.wim and winre.wim to your USB drive
copy c:\temp\install.wim t:\
copy c:\temp\winre-optimized.wim t:\

Deploy the image to reference PC

Boot to audit mode and make changes

Capture your audit mode changes for the recovery tools

Remove the manufacturing registry key

T:\Deployment\walkthrough-deploy.bat t:\install.wim

1. Boot your reference PC to WinPE.

2. Use the deployment scripts to apply your modified install.wim image.

1. Boot your reference PC if it's not already booted.
2. When the device boots to OOBE, press Ctrl+Shift+F3 to enter Audit mode.
3. The PC will restart into audit mode.
4. Make changes to the PC. See the table on Planning a Windows 10 in S mode image to see which

customizations are available in audit mode.

To learn about audit mode, see Audit mode overview. To learn about Audit mode's behavior with Windows 10 S,
see Audit mode in Windows 10 S manufacturing environment.

Now that you've customized your image in Audit mode, you can use ScanState to capture the package so the
customizations are available in recovery scenarios.

md c:\Recovery\Customizations
T:\deploymenttools\scanstate /config:T:\deploymenttools\Config_SettingsOnly.xml /o /v:13 /ppkg 
c:\recovery\customizations\usmt.ppkg /i:exclusion.xml /l:C:\Scanstate.log

1. Use ScanState that you copied to your USB key to capture customizations into a provisioning package. Use
the exclusion.xml file that you created earlier to ensure that the manufacturing registry key is not restored
during recovery.

2. When the capture completes successfully, delete the ScanState logfile: del c:\scanstate.log .

When you're finished customizing your PC in audit mode, you have to remove the manufacturing registry key that
allows you to run unsigned code on Windows 10 S.

To remove the registry key, run the following command as administrator when booted into audit mode on the
reference PC:



reg delete HKLM\system\ControlSet001\Control\CI\Policy /v ManufacturingMode

Add WinRE back into your captured image

xcopy t:\winre-optimized.wim c:\windows\system32\recovery\winre.wim

Sysprep and shut down the PC

Capture the image

Deploy your image and verify customizations and recovery
Apply your imageApply your image

Verify customizationsVerify customizations

Verify recoveryVerify recovery

To ensure that your WinRE image is captured for your final deployment, copy your exported WinRE-
optimized.wim image to your Windows 10 S image.

1. Open Command Prompt.
2. Run sysprep to reseal the PC and make it ready for capture.

c:\windows\system32\sysprep\sysprep /generalize /oobe /shutdown

1. Boot the reference PC into WinPE.

diskpart
list volume
exit

dism.exe /capture-image /ImageFile:"T:\Images\Windows10S.wim" /capturedir:C:\ /Name:"Windows10S"

2. Identify the drive letter of the Windows partition in diskpart:

3. Use DISM to capture the Windows partition.

Where C:\ is the Windows partition.

See Capture and apply Windows system and recovery partitions for more information.

1. Boot your reference PC into WinPE.

T:
cd Deployment
T:\Deployment\applyimage.bat T:\images\Windows10S.wim

2. Apply your Windows 10 in S mode image (Windows10S.wim) to the PC. This will overwrite any existing
Windows installations.

1. Boot the reference PC. This is the first time booting the PC with your new Windows image.
2. If you installed additional languages, verify that these preinstalled languages appear and can be selected by the

user during OOBE.
3. Validate the desktop customizations you made correctly after OOBE is complete.



Ship the PC

To verify recovery is working as expected, perform the following validation tasks:

Run refresh recovery and validate the user files are preserved and your factory desktop customizations are
restored.
Run reset recovery and validate the user files and profile are removed and your factory desktop customizations
are restored.
Validate extensibility scripts in the simulated RS3 enforcement level using the provided policy file.
If you created a recovery package with ScanState, ensure that the manufacturing key was excluded when the
package was captured.

Now that you have an image, you are ready to build and ship Windows 10 in S mode PCs. Make sure that the
manufacturing registry key is removed and Secure Boot is enabled on shipped PCs.



Work with Windows images
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

WIM vs. VHD vs. FFU: comparing image file formats Learn the differences of available Windows image formats

Windows Full Flash Update (FFU) images Capture, deploy, and modify a Windows image using FFU

Capture and apply an image How to capture and apply Windows images

Modify an image How to make changes to Windows images

This section covers information about how to work with Windows images.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/work-with-windows-images.md


WIM vs. VHD vs. FFU: comparing image file formats
5/11/2018 • 2 minutes to read • Edit Online

Windows image (.WIM) Virtual Hard Disk
(.VHD/VHDX)

Full Flash Update (.FFU)

Common uses

Imaging style File-based Sector-based Sector-based

Compression Supports multiple types of
compression

None Xpress-Huffman is used by
default when an FFU is
captured with DISM

What does it capture?

When I apply the image,
what happens?

Can I deploy to different
sizes of hard drives?

Can I modify the images?

Comparing .WIM, .VHD/.VHDX, and .FFU: These file formats are all used to deploy Windows to new devices.
Here's how they compare:

Fastest for testing and
modifying Windows
images.

Quickly mounting and
modifying images.

Easiest for deploying
Windows to virtual PCs.

You can boot a new
device directly from a
single VHD/VHDX file.

Fastest for capturing
and deploying Windows
on a factory floor.

A set of files, up to an
entire partition.

Captures the full set of
drive information,
including partitions.

Captures the full set of
drive information,
including partitions.

Adds the files and
folders to the partition.

If there are existing files
and folders with the
same names, they're
replaced. Otherwise, the
existing files are kept.

Cleans the entire drive. Cleans the entire drive.

Yes. Yes, though the new
drive must be the same
size or larger than the
original.

Yes, though the new
drive must be the same
size or larger than the
original.

Yes. With tools like
DISM, you can mount,
modify, and unmount
the image.

Yes, you can mount a
VHD/VHDX as if it were
removable media, and
modify the files.

Yes. With tools like
DISM, you can mount,
modify, and unmount
the image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/wim-vs-ffu-image-file-formats.md


Reliability

Related topics

Includes a catalog and
hash table to validate a
signature upfront before
flashing onto a device.
The hash table is
generated during
capture, and validated
when applying the
image.

To learn more, see /Apply-Image in DISM Image Management Command-Line Options.

DISM Deployment Image Servicing and Management (DISM) Command-Line Options

VHD/VHDX Boot to VHD (Native Boot): Add a Virtual Hard Disk to the Boot Menu

Deploy Windows on a VHD (Native Boot)

FFU  Deploy Windows using Full Flash Update (FFU)

DISM Image Management Command-Line Options

FFU image format



 

Windows Full Flash Update (FFU) images
4/30/2018 • 6 minutes to read • Edit Online

What you need to work with FFUs in Windows

Capture an FFU

Deploy Windows faster on the factory floor by using the Full Flash Update (FFU) image format. FFU images
allow you to apply an image of a physical drive, including Windows, recovery, and system partition information
all at once directly to a different drive.

Unlike the file-based WIM format, FFU is a sector-based file container that stores one or more partitions. Sector-
based imaging means that FFUs take less time to deploy, but have larger files sizes than WIMs. See WIM vs.
VHD vs. FFU: comparing image file formats for information about the differences between image formats.

Starting with Windows 10, version 1709, DISM has the ability to capture, deploy, and service FFUs, with the
following limitations:

The drive that an FFU is applied to has to be the same or larger than the drive it is captured from
FFU captures of encrypted disks are not supported
Captures of disks that have Volume Shadow Copy Service (VSS) enabled are not supported
Splitting compressed FFUs is not supported

To capture, deploy, and mount FFU images with DISM, you'll need to work in a Windows 10, version 1709 or
later, or WinPE for Windows 10, version 1709 or later environment.

To capture and deploy FFUs using the instructions below, you'll also need:

A Windows PC that has been generalized with Sysprep. We'll refer to this as the reference PC. For a
walkthrough on how to create an image that's ready for deployment, see the OEM deployment of Windows
10 lab. If you're going to be deploying your FFU to a PC that has a larger hard drive than the drive that you're
capturing, choose the options to not configure recovery when deploying your initial image. This allows you to
expand your drive after you apply the FFU.
A PC to deploy the FFU image to. We'll refer to this as the destination PC. The hard drive on this PC will be
overwritten, so make sure you're using a PC that doesn't have any information you want to keep.
The latest version of the ADK, from Download the Windows ADK
Bootable WinPE media for Windows 10, version 1803 or later. See WinPE: Create USB bootable drive for
instructions on how to create WinPE Media.
Storage

USB storage, formatted as NTFS with enough space to save the FFU. 16 GB is enough space to
store an FFU of a basic Windows image. You can use the same USB drive for WinPE and storage if
you follow the instructions for creating a multipartiton USB drive. For best performance, you want
to maximize I/O between where your FFU is stored and the destination PC. For best performance
use a USB 3.0 drive to store the image, and an internal SSD for the destination device.

or

Network storage where you can keep your FFU image. For optimal performance, use a 1 Gb or
faster network.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-windows-using-full-flash-update--ffu.md
https://technet.microsoft.com/en-us/library/ee923636.aspx
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-usb-bootable-drive#prepare-a-usb-drive


Deploy Windows from WinPE using an FFU

diskpart 
list disk
exit

DISKPART> list disk

Disk ###  Status         Size     Free     Dyn  Gpt
--------  -------------  -------  -------  ---  ---
Disk 0    Online          238 GB      0 B        *
Disk 1    Online           28 GB      0 B

DISKPART>

DISM.exe /capture-ffu /imagefile=e:\WinOEM.ffu /capturedrive=\\.\PhysicalDrive0 /name:disk0 
/description:"Windows 10 FFU"

1. Boot the reference PC using WinPE bootable media.

2. Identify the drive to which you'll be capturing the image from. You can use diskpart, or add Windows
PowerShell support to WinPE and use Get-Disk for scriptability and more complex setups such as a server
with multiple disks.

The output will list your drives. Make a note of the disk number in the Disk ###  column. This is the value
that you'll use when capturing your image.

3. Use DISM to capture an image of all the partitions on the physical drive. For disk X:, the string used with 
/capturedrive  will look like this: \\.\PhysicalDriveX , where X is the disk number that diskpart provides.

For example, to capture Disk 0, you'd use /CaptureDrive:\\.\PhysicalDrive0 .

For more information about PhysicalDriveX, see CreateFile function.

To see command line options for capturing FFUs, run dism /capture-ffu /?  or see DISM Image
Management Command-Line Options. Note that you shouldn't have to specify a PlatformID when
capturing a desktop image.

The following command captures an FFU image of PhysicalDrive0 called WinOEM.ffu. The /name and
/description arguments allow you to set information about your image. This information is displayed when
you use dism /get-imageinfo . /name is required, /description is optional.

This command also gives a name and description to the FFU image. Name is a required parameter.

diskpart 
list disk
exit

1. Boot your destination PC to WinPE.

2. Connect a storage drive or map the network location that has your FFU file and note the drive letter, for
example, N.

3. Identify the drive to which you'll be applying the image:

Note the drive number in the Disk ###  column.

https://technet.microsoft.com/itpro/powershell/windows/storage/get-disk
https://msdn.microsoft.com/library/windows/desktop/aa363858.aspx


Mount an FFU for servicing

DISM /apply-ffu /ImageFile=N:\WinOEM.ffu /ApplyDrive:\\.\PhysicalDrive0

NOTENOTE

diskpart
list volume

select volume 0

extend
exit

4. Apply the image to the cleaned drive. Here, we're applying n:\WinOEM.ffu to Disk 0.

To see the commands available with /apply-ffu, run dism /apply-ffu /?  or see DISM Image Management
Command-Line Options.

5. Optional. Resize the Windows partition on the destination PC.

If the reference PC and the destination PC have different sized hard drives, you'll have to resize the
destination PC's Windows partition. The applied FFU will have the same partition sizes and layout as the
reference PC, so you'll need to expand the Windows partition to take advantage of the additional space on
the destination PC. If the Windows partition is not the last partition on the drive, you won't be able to
easily extend the Windows partition. The below instructions assume that the Windows partition is the last
partition on the drive.

If you're going to be capturing an FFU from a smaller drive than the drive it will be applied to, make sure that the
Windows partition is the last partition on the drive. ApplyImage.bat in the Sample scripts from the the OEM
Windows desktop deployment and imaging lab gives you the ability to deploy Windows for this scenario.

a. In WinPE on your destination PC, identify the volume of the Windows partiton that you have applied.

b. Select the volume of the Windows partition. We'll use Volume 0  in our example.

c. Extend the partition to fill the unused space, and exit Diskpart.

You can use DISM to mount FFU images for servicing. Like with other image formats, you can mount and modify
an FFU before committing changes and unmounting. Mounting an FFU for servicing uses the same 
/mount-image  command that you use for mounting other image types. When mounting an FFU, you'll always use
/index:1  when mounting.

Unlike WIM images, FFU images get mounted as virtual hard disks. Files appear in the specified mount folder,
but since FFUs can contain more than one partition but only have one index, DISM maps only the Windows
partition from the mounted FFU to the mount folder.

To mount an FFU

1. Open a Command Prompt as administrator.

2. Mount the image using dism /mount-image . This example mounts D:\WinOEM.ffu to C:\ffumount:



Related topics

dism /mount-image /imagefile:"D:\WinOEM.ffu" /mountdir:"C:\ffumount" /index:1

dism /image:"C:\ffumount" /enable-feature:legacycomponents

dism /unmount-image /mountdir:"C:\ffumount" /commit

dism /unmount-image /mountdir:"C:\ffumount" /discard

To see available command line options for /mount-image  run dism /mount-image /?  or see DISM image
management command line options.

3. Service your image. For example, to enable the legacy components feature:

To see available options, run dism /image:<path to mounted image> /?  or

4. Unmount your FFU image and commit or discard changes. If you use /commit, your changes will be saved
to your FFU file.

To unmount your FFU and commit changes, you'd use /unmount-image  with the /commit  option:

If you decide to not keep the changes you've made to the FFU, you can use /unmount-image  with the 
/discard  option:

Download and install the Windows ADK

FFU image format

WIM vs. VHD vs. FFU: comparing image file formats

Planning a Multicast Strategy in Configuration Manager

Capture and Apply Windows, System, and Recovery Partitions

DISM Image Management Command-Line Options

CreateFile function

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-image-management-command-line-options-s14#mount-image
https://msdn.microsoft.com/windows/hardware/commercialize/adk-install
http://go.microsoft.com/fwlink/?LinkId=286313
https://msdn.microsoft.com/library/windows/desktop/aa363858.aspx


Capture and apply a Windows image
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Create and Manage a Windows Image Using DISM How to use DISM to create and manage a Windows image

Capture Images of Hard Disk Partitions Using DISM How to capture a hard disk image using DISM

Create a WIM for Multiple Architecture Types Using DISM How to create an image that supports more than one
architecture

Split a Windows image file (.wim) to span across multiple
DVDs

How to split a Windows image across multiple media

Append a Volume Image to an Existing Image Using DISM How to combine Windows images into a single image

Create a Data Image Using DISM How to create an image that contains data instead of a
Windows image

Apply Images Using DISM How to use DISM to apply a Windows image

Capture and Apply Windows, System, and Recovery Partitions How to capture and apply

This section covers how to capture and apply a Windows image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/capture-and-apply-an-image.md


Create and Manage a Windows Image Using DISM
5/11/2018 • 2 minutes to read • Edit Online

In This Section

Related topics

Deployment Image Servicing and Management (DISM.exe) mounts a Windows image (.wim) file or virtual hard
disk (.vhd or .vhdx) for servicing. You can also use the DISM image management command to list the image index
numbers or to verify the architecture for the image that you are mounting. After you update the image, you must
unmount it and either commit or discard the changes you have made.

You can use DISM servicing commands to install, uninstall, configure, and update the features and packages in
offline Windows® images and offline Windows Preinstallation Environment (Windows PE) images. For more
information about common DISM scenarios, see What is DISM?. For more information about DISM servicing
commands, see Deployment Image Servicing and Management (DISM) Command-Line Options.

Capture Images of Hard Disk Partitions Using DISM Use the Diskpart tool and the Deployment Image
Servicing and Management (DISM) tool to capture an
image and save it as a .wim file.

Mount and Modify a Windows Image Using DISM Map the contents of a Windows image (.wim) file to a
directory to service the image or to perform common file
operations such as adding and deleting files.

Apply Images Using DISM Use the Diskpart tool and the DISM tool to apply
Windows images to one or more partitions onto a
computer for deployment.

Split a Windows Image (WIM) File to Span Across Multiple
DVDs

Split a large .wim file into several smaller files that will fit
on your selected media. Copy split .wim files onto your
selected media as .iso files.

Create a WIM for Multiple Architecture Types Using DISM Create a single .wim file that includes both 32-bit and 64-
bit Windows images.

Append a Volume Image to an Existing Image Using DISM Add a second image to an existing .wim file.

Create a Data Image Using DISM Create a .wim file that contains only files and applications
that you intend to copy to the Windows installation by
using an unattended answer file.

DISM Image Management Command-Line Options

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/create-and-manage-a-windows-image-using-dism.md


Capture Images of Hard Disk Partitions Using DISM
5/11/2018 • 3 minutes to read • Edit Online

Prerequisites

Step 1: Determining Which Partitions to Capture

PARTITION TYPE SHOULD YOU CAPTURE THIS PARTITION?

System partition (BIOS system partition or EFI System
Partition)

Optional

Microsoft Reserved partition (MSR) No

Primary partitions (Windows partitions, utility partitions) Yes

Extended partition No

Logical partitions (Windows partitions, utility partitions) Yes

Step 2: Assign Drive Letters to Partitions

You can use the Deployment Image Servicing and Management (DISM) tool to capture an image of your hard
disk for deployment and save it as a Windows® image (.wim) file. To see how this information applies to
Windows, system, and recovery partitions, see Capture and Apply Windows, System, and Recovery Partitions.

1. Windows PE. See WinPE: Create USB Bootable drive.

2. A reference computer. You can create a reference computer by deploying Windows, and then removing the
computer-specific information from the system. For more information, see Sysprep (Generalize) a
Windows installation.

This table shows the types of partitions that you must capture and those that are managed automatically.

If only a simple set of partition files is required, you don’t
have to capture this partition.

You can capture and apply images between partitions on BIOS-based and UEFI-based computers, because the
Windows image isn’t affected by the firmware. For more information, see Capture and Apply Windows, System,
and Recovery Partitions.

If any of the partitions you want to capture don’t already have a drive letter assigned, assign a letter using the
DiskPart tool.

X:> diskpart
DISKPART>

1. Start your reference computer by using Windows PE.

2. At the Windows PE command prompt, type diskpart  to open the DiskPart tool.

3. View the disks in your PC with the list disk  command. For example,

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/capture-images-of-hard-disk-partitions-using-dism.md


Step 3: Capture Partition Images using DISM

Step 4: Save Images to the Network

DISKPART> list disk

Disk ###  Status         Size     Free     Dyn  Gpt
--------  -------------  -------  -------  ---  ---
Disk 0    Online          127 GB      0 B        *

DISKPART> select disk 0

DISKPART> list partition

  Partition ###  Type              Size     Offset
  -------------  ----------------  -------  -------
  Partition 1    Recovery           300 MB  1024 KB
  Partition 2    System             100 MB   451 MB
  Partition 3    Reserved            16 MB   551 MB
  Partition 4    Primary            126 GB   567 MB

DISKPART> select partition=2

DISKPART> assign letter=S

DISKPART> exit
X:\>

4. Select the hard disk with the select disk  command. For example,

5. View the partitions with the list partition  command. For example,

6. Select the partition with the select partition  command. For example,

7. Assign a letter to the partition with the assign letter  command. For example,

8. Type exit  to return to the Windows PE command prompt.

For more information, see the DiskPart Help from the command line, or Diskpart Command line syntax.

Capture images for each customized partition.

Dism /Capture-Image /ImageFile:c:\my-windows-partition.wim /CaptureDir:C:\ /Name:"My Windows partition"
Dism /Capture-Image /ImageFile:s:\my-system-partition.wim /CaptureDir:S:\ /Name:"My system partition"

At the Windows PE command prompt, capture the images by using the DISM command together with the
/captureImage option. For example,

For more information about using the DISM tool to capture an image, see DISM Image Management
Command-Line Options.

Save your .wim files to your network or another safe location.

http://go.microsoft.com/fwlink/?LinkId=128458


Next Steps

Related topics

net use n: \\Server\Share

md N:\Images\
copy C:\my-windows-partition.wim N:\Images\
copy c:\my-system-partition.wim N:\Images\

1. Connect to your distribution share by using the net use command. For example,

If prompted, provide your network credentials.

2. Copy the partitions to your network share. For example,

After the image is captured and stored, you can:

Mount it to your reference computer for modification. For more information, see Mount and Modify a
Windows Image Using DISM.

Split the file into smaller files. For more information, see Split a Windows Image (WIM) File to Span
Across Multiple DVDs.

Apply the images to a destination computer. For more information, see Apply Images Using DISM.

Service the image. For more information, see Service a Windows Image Using DISM.

Deployment Image Servicing and Management (DISM) Command-Line Options

BCDboot Command-Line Options

Capture and Apply Windows, System, and Recovery Partitions

Boot to VHD (Native Boot): Add a Virtual Hard Disk to the Boot Menu



Create a WIM for Multiple Architecture Types Using
DISM
5/11/2018 • 2 minutes to read • Edit Online

To Create a Windows Image for Multiple Architecture Types

Dism /Export-Image /SourceImageFile:c:\windows64-bit\install.wim /SourceIndex:1 
/DestinationImageFile:c:\windowsdistribution\sources\install.wim /DestinationName:"Fabrikam 64-bit Image"

When you plan your deployment scenarios, consider how you will deploy and maintain your images for different
architecture types. There are several ways you can manage multiple Windows images for multiple architecture
types. Because you can deploy both 32-bit and 64-bit Windows images from a 32-bit preinstallation environment,
you can maintain 32-bit and 64-bit Windows images in the same Windows image (.wim) file or separate .wim files.

Because you can store multiple Windows images in a single .wim file, you can create architecture-specific .wim
files or a single .wim file that contains images for multiple architecture types.

32-bit images only

You can create a .wim file that contains Windows images for a single architecture type. In this scenario, you
build a .wim file that contains one or more Windows images for 32-bit systems only. You create separate
.wim files for different architecture types.

64-bit images only

You can create a .wim file that contains one or more of the 64-bit Windows images that you deploy.

32-bit and 64-bit images

You can create a.wim file that contains multiple Windows editions for multiple architecture types. For
example, you can create a Windows image that contains two versions of Windows, one for 32-bit
architectures, and one for 64-bit architectures.

You can create a single .wim file that includes both 32-bit and 64-bit Windows images. You must have both a 32-
bit Windows distribution and a 64-bit Install.wim file. (A Windows distribution is the collection of files on the
Windows installation media that includes not only the Install.wim file, but the additional files and directories that
are required for Setup.) Cross-platform deployment is supported only from 32-bit Windows Setup.

1. Copy the entire 32-bit Windows distribution to a temporary directory on the local computer.

2. Copy the 64-bit Install.wim file to a separate temporary directory on the local computer.

3. At a command prompt, use the Dism command to export the 64-bit Windows images to the Install.wim file
in the Windows distribution.

4. Repeat the Dism /Export-Image command for each 64-bit Windows image that you want to add to the
Windows distribution.

For example, if you copy the distribution to C:\WindowsDistribution and the 64-bit Install.wim file to
C:\Windows64-bit, you would use the following at a command prompt.

Note
It is important to add the name of the Windows image to indicate that it is for 64-bit computers only.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/create-a-wim-for-multiple-architecture-types-using-dism.md


Related topics

The 64-bit Windows image and all accompanying metadata are copied to the Install.wim file to a new index during
the export process. When you have added all Windows images to the Install.wim file, your Windows distribution is
ready to be used in your environment.

During attended installations, users will be prompted to select which architecture-specific Windows image to
install (x86 or x64 images).

In unattended installations, if you store multiple Windows editions for multiple architecture types in a single .wim
file, you must explicitly specify which image to install during Windows Setup with the MetaData  setting.

DISM Image Management Command-Line Options

Windows Setup Supported Platforms and Cross-Platform Deployments



Split a Windows image file (.wim) to span across
multiple DVDs
2/6/2018 • 2 minutes to read • Edit Online

Limitations:

Split the file

USB deployment

DVD deployment

Split a Windows image (.wim) file into a set of smaller (.swm) files.

Use this procedure when you're installing Windows from media that can't handle the Windows image file size, for
example:

DVDs (A standard single-sided DVD stores 4.7GB).

USB keys formatted as FAT32. FAT32 is required to boot many modern (UEFI-based) PCs, but has a
maximum file size of 4GB. (Workaround: Create a USB key with multiple partitions.)

You can’t modify a set of split image (.swm) files.
Applying split image (.swm) files is only supported when all of the .swm files are in the same folder. This means
for DVD deployment, you'll need to copy the files over to the destination PC before you can use Windows
Setup or DISM /Apply-Image, as shown in this topic.

Dism /Split-Image /ImageFile:C:\sources\install.wim /SWMFile:C:\sources\install.swm /FileSize:4700

1. Mount your Windows distribution ISO.

2. Split the Windows image:

where:

C:\sources\install.wim  is the name and the location of the image file that you want to split.

C:\sources\install.swm  is the destination name and the location for the split .swm files. The first
split .swm file is named install.swm file. The file names for the next files include numbers, for
example, install2.swm file, install3.swm file, and so on.

4700  is the maximum size in MB for each of the split .swm files to be created.

Store all of the .swm files in the same folder on the USB key.

For Windows Setup instructions, see the Troubleshooting section from Install Windows from a USB flash drive.

copy C:\images\install.swm D:\*

1. Copy the files to individual DVDs. For example, insert the first DVD and type:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/split-a-windows-image--wim--file-to-span-across-multiple-dvds.md


Related topics

copy C:\images\install2.swm D:\*

md C:\TempInstallFolder
copy d:\install.swm c:\TempInstallFolder\*

copy d:\install2.swm c:\TempInstallFolder\*

rd c:\TempInstallFolder /s /q

Then insert the second DVD and type:

And so on until all .swm files are copied to DVDs.

2. Boot your destination PC to Windows PE from DVD.

From Windows PE, you can either deploy using Windows Setup or a script.

3. Configure and format your hard drive partitions, as shown in Capture and Apply Windows, System, and
Recovery Partitions.

4. Copy the files to a single temporary folder. For example, insert the first DVD and type:

Then insert the second DVD and type:

And so on until all .swm files are copied.

5. Install using Windows Setup or a script.

D:\Setup.exe /InstallFrom:"C:\TempInstallFolder\install.swm"

Windows Setup: Insert a DVD with Windows Setup, and use it to install the split Windows image
files.

Use a script

Dism /Apply-Image /ImageFile:C:\TempInstallFolder\install.swm 
/SWMFile:c:\TempInstallFolder\install*.swm /Index:1 /ApplyDir:D:\

a. Apply your image using the DISM /Apply-Image /SWMFile option:

b. Set up your system and recovery partitions, as shown in Deploy Windows using a Script.

6. Clean up: remove the temporary folder

Capture and Apply Windows, System, and Recovery Partitions

WinPE: Use a single USB key for WinPE and a WIM file (.wim)

Install Windows from a USB flash drive

DISM Image Management Command-Line Options

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-a-boot-cd-dvd-iso-or-vhd


Append, apply, and export volume images with a
Windows Image (.wim) file
5/11/2018 • 2 minutes to read • Edit Online

Multiple Windows Images in a .wim file

Dism /Append-Image /ImageFile:"C:\images\install.wim /CaptureDir:D:\ /Name:"Home + drivers"

Dism /Get-ImageInfo /ImageFile:"C:\images\install.wim"

Dism /Apply-Image /ImageFile:"C:\images\install.wim" /Index:2 /ApplyDir:D:\

Dism /Apply-Image /ImageFile:"C:\images\install.wim" /Name:"Home + drivers" /ApplyDir:D:\

Manage multiple Windows images by combining them into a single .wim file. A single .wim file can take a fraction
of the drive space that multiple .wim files can take.

When you combine two or more Windows image files into a single .wim, any files that are duplicated between the
images are only stored once.

Run these commands using DISM from a command prompt with administrator privileges.

Combine images: append a volume image to an existing image

Example: append an image of the D drive to an existing image called install.wim. Each new image receives a new
index number, starting from 1.

See a list of the volume images contained in a .WIM file

Apply a volume image from the .WIM file

You can refer to an image either by image name or image index number. Examples:

Extract an image from the .WIM file

Create a new .WIM file that includes only the files you need from a single volume image, for example, when
creating recovery media. The destination .WIM file starts with a new index number: 1.

Examples:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/append-a-volume-image-to-an-existing-image-using-dism--s14.md


Dism /Export-Image /SourceImageFile:"C:\images\install.wim" /SourceIndex:2 
/DestinationImageFile:"C:\resetmedia_amd64\media\sources\install.wim"

Dism /Export-Image /SourceImageFile:"C:\images\install.wim" /SourceName:"Home + drivers" 
/DestinationImageFile:"C:\resetmedia_amd64\media\sources\install.wim"

Related topics

For more information, see DISM Image Management Command-Line Options.

Capture Images of Hard Disk Partitions Using DISM

DISM Image Management Command-Line Options



Create a Data Image Using DISM
5/11/2018 • 2 minutes to read • Edit Online

To add applications, files, and other resources to Windows during an installation, you can create a data image. By
using the Deployment Image Servicing and Management (DISM) tool, you can create additional Windows image
(.wim) files that contain only files and applications that you intend to copy to the Windows installation.

Data images enable you to add:

Applications, files, scripts, and other resources to Windows during an installation.

Files, resources, and other data to a partition other than the operating system partition.

Note
Data images must be used only to add new files to a Windows installation. Do not use data images to replace
existing Windows files. Overwriting operating system data is unsupported.

Previous methods of transferring data to a Windows installation required the use of $OEM$ folders. These folder
structures are still supported, but data images provide an easier and more efficient means of transferring
additional data to Windows.

In unattended installations, the Windows image to install is specified by the OSImage  setting in the Microsoft-
Windows-Setup component. You can add one or more DataImage  settings in the Microsoft-Windows-Setup
component that represent additional data images that you add to the system. For more information, see the
Windows Unattended Setup Reference.

To create a data image

Dism /Capture-Image /ImageFile:c:\data\myData.wim /CaptureDir:C:\data\dataFiles /Name:MyData

1. Locate the data that you will create a data image for.

2. Open a command prompt as an administrator, or boot the computer to Windows PE to open the Windows
PE command prompt.

3. Use DISM to compress your data files to a .wim file. For example:

In this example, everything under the C:\Data\DataFiles directory is added to the .wim file and the .wim file
is given the label "MyData". All files and folders under C:\Data\DataFiles are extracted to the root of the
drive specified in the answer file.

For more information about how to use DISM, see DISM Image Management Command-Line Options.

4. Copy the data image to an available location such as another partition or a network share during Windows
Setup.

To add a data image path to an answer file

1. Use Windows System Image Manager (Windows SIM) to create an answer file that contains the path to the
data image to install and the location for the installation.

2. Add the Microsoft-Windows-Setup\ DataImage  settings to the appropriate configuration pass for your
environment. For example: windowsPE .

3. Save the answer file and close Windows SIM.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/create-a-data-image-using-dism.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend


   <settings pass="windowsPE">
      <component name="Microsoft-Windows-Setup" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
         <ImageInstall>
            <DataImage wcm:action="add">
               <InstallTo>
                  <DiskID>0</DiskID>
                  <PartitionID>1</PartitionID>
               </InstallTo>
               <InstallFrom>
                  <Credentials>
                     <Domain>Fabrikam</Domain>
                     <Username>MyUsername</Username>
                     <Password>MyPassword</Password>
                  </Credentials>
               <Path>\\networkshare\share\MyData.wim</Path>
               </InstallFrom>
                  <Order>1</Order>
            </DataImage>
         </ImageInstall>
      </component>
   </settings>

NOTENOTE

setup /unattend:C:\unattend.xml

The answer file must resemble the following example:

If you're specifying a local folder in path , see Path in the Unattended Windows Setup Reference to learn about using
relative or absolute paths.

4. Run Setup.exe, specifying the location of the answer file. For example:

All the files and folders specified in the data image are extracted to the root of the drive during installation.
Executable files and scripts are not run when the data image is applied; they are only copied to the drive. You can
use FirstLogonCommands  to specify commands to run the first time a user logs on to the computer. For more
information about FirstLogonCommands , see the Windows Unattended Setup Reference.

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-setup-imageinstall-dataimage-installfrom-path
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend


Apply Images Using DISM
5/11/2018 • 3 minutes to read • Edit Online

Apply a Windows Image

This topic describes how to deploy images captured from your reference computer to one or more destination
computers using the Deployment Image Servicing and Management (DISM) tool. For more information about
configuring recommended hard drive partitions, see Configure UEFI/GPT-Based Hard Drive Partitions and
Configure BIOS/MBR-Based Hard Drive Partitions.

On the destination computer, you will create a structure for the partitions where you apply your images. The
partition structure on the destination computer must match the partition structure of the reference computer.

If you apply an image to a volume with an existing Windows installation, files from the previous installation may
not be deleted. Format the volume by using a tool such as DiskPart before applying the new image.

To partition the hard drive and apply an image

net use n: \\server\share

select disk 0
clean
create partition primary size=3000 id=27
format quick fs=ntfs label="Recovery"
assign letter="R"
create partition primary size=300
format quick fs=ntfs label="System"
assign letter="S"
active
create partition primary
format quick fs=ntfs label="Windows"
assign letter="C"
exit

1. Boot the destination computer to Windows PE. For more information, see Windows PE (WinPE) Technical
Reference.

2. Connect to the network distribution share where your Windows image is stored. For example, you can use
the net use command to do this:

If prompted, provide your network credentials.

3. At the Windows PE command prompt, type diskpart  to start the Diskpart tool.

4. Create your partition structure using the Diskpart tool. For example:

This example temporarily assigns these drive letters: Windows=C, System=S, and Recovery=R. If you’re
deploying to PCs with unformatted hard drives, change the Windows drive letter to a letter that’s near the
end of the alphabet, such as W, to avoid drive letter conflicts. Do not use X, because this drive letter is
reserved for Windows PE. After the PC reboots, the Windows partition is assigned the letter C, and the
other partitions don’t receive drive letters.

For examples of recommended partition structures, see Configure BIOS/MBR-Based Hard Drive
Partitions and Configure UEFI/GPT-Based Hard Drive Partitions.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/apply-images-using-dism.md


Related topics

Dism /apply-image /imagefile:N:\Images\my-windows-partition.wim /index:1 /ApplyDir:C:\

C:\Windows\System32\bcdboot C:\Windows /l en-US

Note
You can automate this task with the diskpart /s <script>  command. For more information, see Diskpart
Command line syntax.

5. Use the DISM tool to apply images to your Windows partition.

For each partition that you apply an image to, run the DISM /apply-image /imageFile: <image_file>
/index:<index_number> /ApplyDir :<image_path> command.

Note If the DISM /Apply-Image command fails, make sure you’re using a supported version of DISM for
that Windows image. For example, to apply a Windows 10 image, you’ll need the Windows 10 version of
DISM.

6. To set up a basic system partition, you can use the BCDboot tool to copy a simple set of system files to a
system partition. These files include boot configuration data (BCD) information that is used to start
Windows:

Use the BCDboot tool to copy common system partition files and to initialize boot configuration data:

For more information about the BCDboot tool, see BCDboot Command-Line Options.

Note
You can also set up the system partition by applying an image. Use the DISM /apply-image command.
For example:

Dism /apply-image /imagefile:N:\Images\my-system-partition.wim /index:1 /ApplyDir:S:\

You can set up the computer to reinstall your Windows image in the event of a system failure. For more
information, see Windows Recovery Environment (Windows RE) Technical Reference.

Important
Microsoft Reserved partitions (MSR) and Extended partitions are managed by the computer. Do not apply an
image to these partitions.

You can use audit mode to test the computer and to perform additional customizations before you ship it to your
end user. For more information, see Boot Windows to Audit Mode or OOBE.

You can also perform some customizations to the computer without booting it. For more information, see Service
an Applied Windows Image.

Note
If you receive the error message: Bootmgr not found. Press CTRL+ALT+DEL, this indicates that Windows
cannot identify the boot information in the active partition. If you receive this error message, check the following:

Use the DiskPart tool to check to make sure that the system partition is set to Active.

Check to make sure that the active partition includes system files.

Capture Images of Hard Disk Partitions Using DISM

Boot Windows to Audit Mode or OOBE

http://go.microsoft.com/fwlink/?LinkId=128458
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-an-applied-windows-image


DISM Image Management Command-Line Options

Applying Images using a script

http://go.microsoft.com/fwlink/?LinkId=618399


Capture and Apply Windows, System, and
Recovery Partitions
5/11/2018 • 4 minutes to read • Edit Online

Applying the image

Capture a Windows image (.WIM) file and use it to deploy Windows to new devices.

Rather than capturing each partition, you can capture just the Windows partition into an image, and then use
the files from that image to set up the rest of the partitions on the drive.

The following diagram illustrates this process:

Prepare to capture the image

Generalize the Windows image, so it can be deployed to other devices. For more information, see Sysprep
(Generalize) a Windows installation.

Capture the image

powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

Dism /Capture-Image /ImageFile:"D:\fabrikam.wim" /CaptureDir:C:\ /Name:Fabrikam

1. Boot the device using Windows PE.

2. Optional: speed up the image capture by setting the power scheme to High performance:

3. Capture the Windows partition. For example:

Where D: is a USB flash drive or other file storage location.

Here's a few ways to apply the image:

Apply the image manually

1. On the destination device, use a DiskPart script to configure and format your hard drive partitions. For
more information, see Configure UEFI/GPT-Based Hard Drive Partitions or Configure BIOS/MBR-
Based Hard Drive Partitions.

Note
If you apply an image to a volume that has an existing Windows installation, files from the previous
installation may not be deleted. Format the volume by using a tool such as DiskPart before you apply the
new image. For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/capture-and-apply-windows-system-and-recovery-partitions.md


diskpart /s D:\CreatePartitions-UEFI.txt

powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

dism /Apply-Image /ImageFile:D:\install.wim /Index:1 /ApplyDir:W:\

W:\Windows\System32\bcdboot W:\Windows /s S:

md R:\Recovery\WindowsRE
copy W:\Windows\System32\Recovery\winre.wim R:\Recovery\WindowsRE\winre.wim

W:\Windows\System32\reagentc /setreimage /path R:\Recovery\WindowsRE /target W:\Windows

Where D: is a USB flash drive or other file storage location.

In these DiskPart examples, the partitions are assigned the letters: System=S, Windows=W, and
Recovery=R.

We recommend changing the Windows drive letter to a letter that’s near the end of the alphabet, such as
W, to avoid drive letter conflicts. Do not use X, because this drive letter is reserved for Windows PE.
After the device reboots, the Windows partition is assigned the letter C, and the other partitions don’t
receive drive letters.

If you reboot, Windows PE reassigns disk letters alphabetically, starting with the letter C, without regard
to the configuration in Windows Setup. This configuration can change based on the presence of different
drives, such as USB flash drives.

2. Optional: speed up the image capture by setting the power scheme to High performance:

3. Apply the image to the Windows partition:

where W: is the Windows partition.

4. Configure the system partition by using the BCDBoot tool. This tool copies and configures system
partition files by using files from the Windows partition. For example:

5. Copy the Windows Recovery Environment (RE) tools into the recovery tools partition.

Where R: is the recovery partition

6. Register the location of the WindowsRE tools by using REAgentC.

Apply the image using a script

1. Prerequisite: Create DiskPart scripts to deploy your images. For samples, get: CreatePartitions-UEFI.txt
or CreatePartitions-BIOS.txt.

2. Copy the following script into Notepad, and then save the file as ApplyImage.bat:



Related topics

rem == ApplyImage.bat ==

rem == These commands deploy a specified Windows
rem    image file to the Windows partition, and configure
rem    the system partition.

rem    Usage:   ApplyImage WimFileName 
rem    Example: ApplyImage E:\Images\ThinImage.wim ==

rem == Set high-performance power scheme to speed deployment ==
call powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

rem == Apply the image to the Windows partition ==
dism /Apply-Image /ImageFile:%1 /Index:1 /ApplyDir:W:\

rem == Copy boot files to the System partition ==
W:\Windows\System32\bcdboot W:\Windows /s S:

:rem == Copy the Windows RE image to the
:rem    Windows RE Tools partition ==
md R:\Recovery\WindowsRE
xcopy /h W:\Windows\System32\Recovery\Winre.wim R:\Recovery\WindowsRE\

:rem == Register the location of the recovery tools ==
W:\Windows\System32\Reagentc /Setreimage /Path R:\Recovery\WindowsRE /Target W:\Windows

:rem == Verify the configuration status of the images. ==
W:\Windows\System32\Reagentc /Info /Target W:\Windows

diskpart /s D:\CreatePartitions-UEFI.txt
ApplyImage E:\Images\ThinImage.wim

3. On the destination computer, run the Diskpart and ApplyImage scripts to apply the image to the
computer and set up the system, Windows, and recovery partitions. For example:

where D:\Images\ThinImage.wim is the name of your Windows image file.

Note If the DISM /Apply-Image command fails, make sure you’re using a supported version of DISM
for that Windows image. For example, to apply a Windows 10 image, you’ll need the Windows 10
version of DISM.

Capture and apply individual partitions (BIOS devices only)

bcdboot C:\Windows

1. On your reference device, capture each of the partitions individually using DISM /Capture-Image and
then apply them to your destination devices using DISM /Apply-Image.

This method allows you flexibility in setting up your system partition. Note, for UEFI-based devices, do
not capture and apply the EFI system partition or the MSR partition – these are managed by the device.

2. Use the BCDBoot command to set up the system partition.

Capture and apply the entire drive

You can use the Full Flash Update (FFU) file format to capture and apply the entire drive. To learn more, see
Deploy Windows using Full Flash Update (FFU).



Configure UEFI/GPT-Based Hard Drive Partitions

Configure BIOS/MBR-Based Hard Drive Partitions

BCDboot Command-Line Options

REAgentC Command-Line Options



Modify a Windows image
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Service a Windows image using DISM How to make changes to a Windows image

Mount and Modify a Windows Image Using DISM How to use DISM to mount a Windows image and make
changes

Repair a Windows Image How to repair a corrupted Windows image

This section covers how to modify a Windows image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/modify-an-image.md


Service a Windows Image Using DISM
5/11/2018 • 2 minutes to read • Edit Online

In This Section

The Deployment Image Servicing and Management (DISM) tool lets users enumerate drivers and packages,
modify configuration settings, add and remove drivers without using an unattended answer file, and more. You
can use DISM offline on a WIM or VHD file, or online on a running operating system.

Offline servicing allows you to modify or service a Windows® image entirely offline, without booting it first. This
can reduce deployment costs because you can customize images to a degree before the operating system is
deployed to the computer. In addition, if you have a stored master image that you want to make sure is always up
to date, you can maintain it without booting the image.

You can also use DISM to service an image online. If you have to boot the operating system to install an
application or test and validate the installation, you can boot to audit mode and add drivers and packages, or
enable features and international settings.

Add and Remove Drivers to an Offline Windows Image Add or remove drivers from an offline image using either
DISM or an unattended answer file.

Enable or Disable Windows Features Using DISM Enable or disable features in a Windows image using
DISM. You can also remove a feature to install on-
demand, and restore a previously removed feature.

Add or Remove Packages Offline Using DISM Add or remove packages from an offline image using
either DISM or an unattended answer file.

Add and Remove Language Packs Offline Using DISM Add or remove language packs and configure
international settings in an offline image using DISM.

Sideload Apps with DISM Install line-of-business (LOB) Microsoft Store apps to a
Windows image by using Windows PowerShell® or the
Deployment Image Servicing and Management (DISM)
platform.

Preinstall Apps Using DISM Preinstall apps in a Windows image.

Customize the Start Screen Customize the Start screen to include Microsoft Store
apps and desktop apps that you use in your business.

Change the Windows Image to a Higher Edition Using
DISM

Query an image to determine which edition of Windows
the image is, and how to change the image to a higher
edition of Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/service-a-windows-image-using-dism.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/customize-the-start-screen


Related topics

Export or Import Default Application Associations Change the default programs associated with a file name
extension or protocol in a Windows image.

Service a Mounted Windows Image Use DISM to mount an image and modify it.

Service an Applied Windows Image Use DISM to apply an image and then modify it.

Understanding Servicing Strategies

Take Inventory of an Image or Component Using DISM

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-a-mounted-windows-image
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-an-applied-windows-image


Modify a Windows Image Using DISM
6/5/2018 • 4 minutes to read • Edit Online

Mount an image

Modify an Image

You can make changes to offline mounted or applied Windows images without booting into the operating system
you're going to modify.

Mounted images are WIM, VHD, or FFU files that have their contents mapped to a folder. Changes to mounted
images are made from either a Windows 10 technician PC, or from WinPE. You run run DISM commands against
a mounted image, as well as run common file operations such as copying, pasting, and renaming on a mounted
image. To save changes you make to the image, use the /commit  option when you use DISM to unmount the
image. To make changes to a mounted image, use DISM /image: .

Applied images are WIM, VHD, or FFU image files that have been applied to a specified partition. Offline
changes to an applied image are usually performed from WinPE. To make changes to an applied image, use 
DISM /image: . See Applying an image to learn how to apply an image.

You can mount and modify multiple images on a single computer. For more information, see Deployment Image
Servicing and Management (DISM) Best Practices.

You can mount an image using the /optimize option to reduce initial mount time. However, When using the
/optimize option, processes that are ordinarily performed during a mount will instead be completed the first
time that you access a directory. As a result, there may be an increase in the time that is required to access a
directory for the first time after mounting an image using the /optimize option.

NOTENOTE

DISM /Mount-image /imagefile:<path_to_Image_file> {/Index:<image_index> | /Name:<image_name>} 
/MountDir:<target_mount_directory> [/readonly] /[optimize]}

NOTENOTE

1. Open a command prompt with administrator privileges.

If you are using a version of Windows other than Windows 8 or Windows 10, use the Deployment Tools Command
Prompt that gets installed with the ADK.

2. Use DISM to mount the image

To mount a Windows image from a VHD or FFU file, you must specify /index:1 .

For more information about the options available for the /Mount-Image option in DISM, see DISM
Image Management Command-Line Options.

After you mount an image, you can use DISM to add and remove drivers, packages, language packs, enumerate
drivers and packages, modify configuration settings, and more.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/mount-and-modify-a-windows-image-using-dism.md
https://docs.microsoft.com/windows-hardware/manufacture/desktop/capture-and-apply-windows-system-and-recovery-partitions#span-idapplyingtheimagespanspan-idapplyingtheimagespanspan-idapplyingtheimagespanapplying-the-image


View and modify an imageView and modify an image

Add and remove driversAdd and remove drivers

Add and remove packagesAdd and remove packages

Add or remove languagesAdd or remove languages

Upgrade to a higher Windows editionUpgrade to a higher Windows edition

Reduce the Size of the ImageReduce the Size of the Image

Commit Changes to an Image

Unmounting an Image

You can create, view, and edit files on a mounted image, just as you would any other file on your PC. When you
modify the files in a mounted image, those file changes get saved in the image. Note that although you can add
application files and folders, you can't install applications directly into a mounted image in the same way that you
would on a running PC. If you must add an application or a device, verify that you included all of the required
files.

See Add and remove drivers to an offline Windows image to learn how to work with drivers. Note that the DISM
driver commands will only run against an offline image.

See Add or remove packages offline using DISM to learn how to work with packages.

See Add and remove language packs offline using DISM to learn how to work with languages.

Any changes you make to a mounted image are also applied to each potential target edition of Windows. Each
target edition is staged in the image. The changes will not be lost when you upgrade to a higher edition of
Windows.

See Change the Windows image to a higher edition using DISM to learn how to change editions.

You can use DISM to reduce the footprint of a Windows image by cleaning up superseded components and
resetting the base of the superseeded components.

Dism /Image:C:\test\offline /cleanup-image /StartComponentCleanup /ResetBase 

At an elevated command prompt, run the following command to reduce the size of the image file:

You can commit changes to an image without unmounting the image.

To commit changes:

Dism /Commit-Image /MountDir:C:\test\offline

At the administrator command prompt, type:

Use /CheckIntegrity to detect and track .wim file corruption when you commit changes to the image.
When you apply or mount the image, use /CheckIntegrity again to stop the operation if file corruption
was detected. /CheckIntegrity cannot be used with virtual hard disk (VHD) files.

After you modify a mounted image, you must unmount it. If you mounted your image with the default read/write
permissions, you can commit your changes. This makes your modifications a permanent part of the image.

If you modified an applied image, you don't have to do anything else. You'll see any changes you made when you
boot the PC.

To unmount an image



Troubleshooting

Related topics

Dism /Unmount-image /MountDir:<target_mount_directory> {/Commit | /Discard}

IMPORTANTIMPORTANT

1. Open a command prompt or the Deployment Tools Command Prompt with administrator privileges.

2. Use DISM to unmount the image.

where C:\test\offline  is the location of the mount directory. If you do not specify the parameters to
unmount, this option lists all of the mounted images but does not perform the unmount action.

You must use either the /commit or /discard argument when you use the /unmount option.

If the DISM commands in this topic fail, try the following:

1. Make sure that you are using the Windows 10 version of DISM that is installed with the Windows ADK.

2. Don’t mount images to protected folders, such as your User\Documents folder.

3. If DISM processes are interrupted, consider temporarily disconnecting from the network and disabling
virus protection.

4. If DISM processes are interrupted, consider running the commands from the Windows Preinstallation
Environment (WinPE) instead.

DISM Image Management Command-Line Options

Service a Windows Image Using DISM



Repair a Windows Image
5/11/2018 • 2 minutes to read • Edit Online

Repairing images during servicing

Repair a Windows image using DISM. You can repair offline Windows image in a WIM or VHD file, or an online
Windows image. An online Windows image will also attempt to repair itself if it becomes unserviceable. The
repair source for this operation is the same source that is used for Features on Demand and is determined by
Group Policy settings. For more information, see Configure a Windows Repair Source. When you use the DISM
tool to repair an online or offline image, you can use the /Source argument with the /RestoreHealth argument to
specify additional repair source locations to use to search for the required files.

For a quick check of an online image, you may be able to use the command: sfc /scannow  to scan and repair files.

For a more extensive check that can repair issues with the store, use DISM /Cleanup-Image .

To check if an image is repairable

Dism /Online /Cleanup-Image /ScanHealth

Dism /Online /Cleanup-Image /CheckHealth

1. Scan the image to check for corruption. This operation will take several minutes. For example, at a
command prompt, type the following command:

2. Check the image to see whether any corruption has been detected. For example, at a command prompt,
type:

When you use the /CheckHealth sfc argument, the DISM tool will report whether the image is healthy, repairable,
or non-repairable. If the image is non-repairable, you should discard the image and start again. If the image is
repairable, you can use the /RestoreHealth argument to repair the image.

To repair an image

Dism /Image:C:\offline /Cleanup-Image /RestoreHealth /Source:c:\test\mount\windows

Dism /Online /Cleanup-Image /RestoreHealth /Source:c:\test\mount\windows /LimitAccess

Use the /RestoreHealth argument to repair the image. For example, to repair an offline image using a
mounted image as a repair source, at a command prompt, type the following command:

Or to repair an online image using some of your own sources instead of Windows Update, type:

If you do not specify a /Source for the repair files, the default location for Features on Demand is used. For
more information, see Configure a Windows Repair Source. If you specify more than one /Source, the files
are copied from the first location where they are found and the rest of the locations are ignored. You can
use /LimitAccess to prevent the DISM tool from using Windows Update as a repair source or as a backup
repair source for online images.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/repair-a-windows-image.md


Dism /Cleanup-Mountpoints

Related topics

In some cases, an image can be corrupted while modifying it with DISM. Use /Cleanup-MountPoints to repair it.
This command will not unmount images that are already mounted, nor will it delete images that can be recovered
using the /Remount-Image command.

Use the System File Checker tool to repair missing or corrupted system files

DISM Operating System Package Servicing Command-Line Options

Configure a Windows Repair Source

http://go.microsoft.com/fwlink/p/?LinkId=717888


Configure a Windows Repair Source
5/11/2018 • 4 minutes to read • Edit Online

Choose a Repair Source

Use Windows Update to restore optional features and repair Windows imagesUse Windows Update to restore optional features and repair Windows images

Use a network location to restore optional features and repair Windows imagesUse a network location to restore optional features and repair Windows images

You can use Group Policy to specify a Windows image repair source to use within your network. The repair
source can be used to restore Windows features or to repair a corrupted Windows image.

Features on demand enables you to remove an optional feature from a Windows® image and then restore it
later. You can disable optional features and remove files associated with those features from a Windows image
using the Deployment Image Servicing and Management (DISM) tools. When you use the /Remove argument
with the DISM /Disable-Feature option, the manifest files for the feature or Server role is maintained in the
image. However, all other files for the feature are removed. This enables you to store, download, and deploy
smaller images without losing features. Once the image has been deployed, users can enable the feature on their
computers at any time by using features on demand to retrieve the required files from the repair source. For
more information, see Enable or Disable Windows Features Using DISM.

Automatic corruption repair provides files to repair Windows if the operating system has become corrupted.
Users can also use a specified repair source on your network or use Windows Update to retrieve the source files
that are required to enable a feature or to repair a Windows image. For more information, see Repair a Windows
Image.

You can use Windows Update to provide the files that are required to restore a Windows feature or repair a
corrupted operating system. You can also configure Group Policy to gather the required files from a network
location. Multiple source locations can be specified in the Group Policy.

1. Windows Update will be used by default if it is allowed by the policy settings on the computer.

2. If you want to use Windows Update as a primary or backup source for files that are used to restore
optional features or repair Windows images, you should make sure that your firewall is configured to
allow access to Windows Update.

1. You can use a mounted Windows image from a WIM file as a source to restore optional features and
repair a corrupted operating system. For example, c:\test\mount\Windows. For more information about
capturing a Windows image as a WIM file, see Capture Images of Hard Disk Partitions Using DISM.

2. You can use a running Windows installation as a source to restore optional features by sharing the
c:\Windows folder on your network.

3. You can use a Windows side-by-side folder from a network share or from a removable media, such as the
Windows DVD, as the source of the files. For example, z:\sources\SxS.

4. You can use a Windows image (.wim) file on a network share as a source to restore optional features. You
must specify the index of the Windows image in the .wim file that you want to use and you must use a 
Wim:  prefix in the path to identify this file format. For example, to specify index 3 in a file named

contoso.wim, type: Wim:\\network\images\contoso.wim:3.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-a-windows-repair-source.md


NOTENOTE

Set Group Policy

Configure Group Policy for Feature on DemandConfigure Group Policy for Feature on Demand

Maintaining a Repair Source

Servicing updatesServicing updates

Multilingual imagesMultilingual images

Related topics

When specifying a source, only use RTM media regardless of whether the source is a WIM or a mounted Windows image.
Refresh media has older file versions excluded from the media and the target operating system may need these files. Also,
make sure the source is patched to the latest Cumulative Update. If the target OS is patched to a higher level than the
source, adding features or repairing Operating Systems may fail because the target OS needs updated files that are not
present in the source.

You can use Group Policy to specify when to use Windows Update, or a network location as a repair source for
features on demand and automatic corruption repair.

1. Open the group policy editor. For example, on a computer that is running Windows 10, from the Start
screen, type Edit Group Policy, and then select Edit Group Policy to open the Group Policy Editor.

2. Click Computer Configuration, click Administrative Templates, click System, and then double-click
the Specify settings for optional component installation and component repair setting.

3. Select the settings that you want to use for Features on Demand.

If you do not use Windows Update as the repair source for features on demand and automatic corruption repair,
you should consider the following guidelines for maintaining a repair source.

You should keep any repair source current with the latest servicing updates. If you are using an image from a
WIM file for features on demand, you can use the DISM tool to service the image. For more information, see
Mount and Modify a Windows Image Using DISM. If you are using an online Windows installation shared on
your local network as a repair image, you should make sure that the computer has access to Windows Update.

You must include all of the relevant language packs with your repair source files for the locales that your image
supports. If you try to restore a feature without all of the localization components that the Windows installation
requires for that feature, the installation will fail.

You can install additional language packs after a feature is restored.

What is DISM?

Enable or Disable Windows Features Using DISM

Repair a Windows Image

DISM Operating System Package Servicing Command-Line Options



Prepare a PC
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Hard Drives and Partitions Learn how to prepare a hard drive for a Windows installation

Secure Boot Learn how to work with Secure Boot

This section covers how to prepare a PC so it's ready for Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/prepare-a-pc.md


Hard Drives and Partitions
5/11/2018 • 7 minutes to read • Edit Online

What's new in Windows 10

Drive types

Solid-state drivesSolid-state drives

Advanced format drivesAdvanced format drives

In this section, you will learn methods to deploy Windows to different drives, including hard drives, solid-state
drives (SSDs), or virtual hard drives (VHDs). You will also learn about factors that you must consider when you
deploy Windows.

Use Compact OS and single-sourcing to save more space on the hard drive: Compact OS, single-sourcing, and
image optimization.
Use the FFU image format to apply images faster to your devices: Deploy Windows using Full Flash Update
(FFU)

On UEFI/GPT-based drives, we've reduced the recommended size of the MSR partition from 128MB to 16MB.

In Windows 10 for desktop editions (Home, Pro, Enterprise, and Education), we've changed the partition
layout. While we still use a separate recovery tools image, Windows no longer needs a separate full-system
recovery image to use push-button reset features. This can save several GB of drive space.

We now recommend that you place the Windows recovery tools partition immediately after the Windows
partition. This allows Windows to modify and recreate the partition later if future updates require a larger
recovery image.

If you use scripts to deploy Windows, check out the new sample scripts we've created for different device
firmware types (the newer UEFI-based BIOS, or the legacy BIOS). To learn more, see UEFI/GPT-based
hard drive partitions and BIOS/MBR-based hard drive partitions.

It's no longer necessary to run the Windows System Assessment Tests (WinSAT) on SSD drives. Windows
detects SSD drives and tunes itself accordingly.

You can install Windows to a hard drive, such as a hard disk drive or a solid-state drive. For additional security, you
can use hard drives that the factory has pre-encrypted. A single computer may contain multiple drives.

A solid-state drive (SSD) is a hard drive that uses solid-state memory to store persistent data. An SSD must have
a minimum of 16 gigabytes (GB) of space to install Windows. For more information about drive space and RAM
considerations, see Compact OS, single-sourcing, and image optimization.

Note It's no longer necessary to run the Windows System Assessment Tests (WinSAT) on SSD drives. Windows
now detects SSD drives and will tune itself accordingly.

You can use some Advanced Format Drives to provide additional drive space.

Advanced Format 512 emulation (512e) drives are supported on either BIOS-based or UEFI-based computers.

Advanced Format 4K Native (4Kn) drives are supported on UEFI-based computers only.

Warning
For Advanced Format 4K Native drives (4-KB-per-sector) drives, the minimum partition size is 260 MB, due to a
limitation of the FAT32 file format. The minimum partition size of FAT32 drives is calculated as sector size (4KB) x

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/hard-drives-and-partitions.md


Factory-encrypted hard drivesFactory-encrypted hard drives

Multiple hard drivesMultiple hard drives

Partitions

System and utility partitionsSystem and utility partitions

65527 = 256 MB. For more information, see Configure UEFI/GPT-Based Hard Drive Partitions.

To help protect your deployment environment, you can use a factory pre-encrypted hard drive to prevent
unauthorized access before you install Windows or any other software. For more information, see Factory
Encrypted Drives.

If you install Windows on a device that has multiple hard drives, you can use the disk location path to make sure
that your images are applied to the intended drives.

To do this, use the diskpart SELECT DISK=<disk location path>  command to select each drive. For example:

SELECT DISK=PCIROOT(0)#PCI(0100)#ATA(C00T00L00)

Note
The system drive might not appear as disk 0 in the DiskPart tool. The system might assign different numbers to
drives when you reboot. Different computers that have the same drive configuration can have different disk
numbers.

To learn more, see Configure Multiple Hard Drives and Hard Disk Location Path Format.

You can divide your hard drive into multiple partitions. You can create separate system, recovery, Windows, or
data partitions.

To enhance the security of the Windows partition or a data partition, you can use BitLocker to encrypt the
partition. For more information, see BitLocker Drive Encryption.

The partition types must match the firmware of the computer. You can install Windows on hard drives that are
based on any of the following types of firmware:

Basic Input/Output System (BIOS). Uses the Master Boot Record (MBR) partition structure.

Extensible Firmware Interface (EFI) (Class 1): Uses the GUID Partition Table (GPT) partition structure.

Unified Extensible Firmware Interface (UEFI) Class 2: Uses the GPT partition structure. Also includes a
compatibility support module (CSM) that enables you to use BIOS functions, including the MBR partition
structure. This module can be enabled or disabled in the firmware.

Unified Extensible Firmware Interface (UEFI) Class 3: Uses the GPT partition structure.

To determine your system type, consult your hardware manufacturer.

A system partition is a partition that contains the hardware-specific files that are needed to load Windows.

By default, during Windows Setup, Windows stores these hardware-specific files in a separate partition. This
enables the computer to use the following:

Security tools. Some security tools, such as BitLocker, require a separate system partition.

Recovery tools. Some recovery tools, such as Windows Recovery Environment (Windows RE), require a
separate system partition.

Multiple operating systems. If a computer has multiple operating systems, such as Windows 10 for
desktop editions and Windows 7, the computer displays a list of operating systems. The user can then
select which operating system to boot. When the system boot files are on a separate partition, it is easier to

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/factory-encrypted-drives


Microsoft reserved partition (MSR)Microsoft reserved partition (MSR)

Recovery partitionsRecovery partitions

Data partitionsData partitions

See also
CONTENT TYPE REFERENCES

remove a Windows partition or replace the partition with a new copy of Windows.

We recommend adding system utility partitions before the Windows partition, because in the event that a full-
system recovery is needed, this partition order helps to prevent the recovery tools from overwriting the system
and utility partitions.

For information about how to configure system partitions while you apply images, see Capture and Apply
Windows, System, and Recovery Partitions.

The MSR is used on UEFI/GPT systems, to support software components that formerly used hidden sectors.

For more information about configuring MSR partitions, see Configure UEFI/GPT-Based Hard Drive Partitions.

For more information about MSR partitions, see Windows and GPT FAQ

We recommend adding a separate partition for the Windows Recovery Environment (Windows RE) at the end of
the hard drive. With this partition order, if future updates require adding to or replacing the Windows RE tools
partition, Windows will be able to manage the partition size automatically.

For BIOS/MBR-based systems, it's still possible to combine the Windows RE tools partition with the system
partition. To save drive space, consider creating logical partitions to get around the four-partition limit. For more
info, see Configure more than four partitions on a BIOS/MBR-based hard disk.

For Windows 10 for desktop editions, it's no longer necessary to create and maintain a separate full-system
recovery image. Windows can perform a refresh or reset using built-in tools.

A data partition is a partition that stores user data. A separate data partition can enable easier maintenance for
situations where either the primary operating system is likely to be replaced, or when multiple operating systems
exist on the same device, such as Windows 10 and Windows 7. When a device has multiple hard drives, a data
partition may be stored on another drive.

Warning
For typical single-drive configurations, we do not recommend that you use a separate data partition. There are
two main reasons:

The partition may not automatically protect data that is stored outside the user profile folders. For example, a
guest user might have access to files in an unprotected data partition.
If you change the default location of the user profile folders to any volume other than the system volume, you
cannot service your image. The computer may not apply updates, fixes, or service packs to the installation. For
a list of known issues related to changing the default folder locations, see Description of known issues with the
FolderLocation settings.

Deployment Configure UEFI/GPT-Based Hard Drive Partitions |
Configure BIOS/MBR-Based Hard Drive Partitions |
Configure More than Four Partitions on a BIOS/MBR-
Based Hard Disk

http://go.microsoft.com/fwlink/?LinkId=267523
http://go.microsoft.com/fwlink/?LinkId=142275


CONTENT TYPE REFERENCES

Multiple drives Configure Multiple Hard Drives | Hard Disk Location Path
Format | Internal and External SATA Port Configuration |
Configuring Disk Mirroring

Using smaller drives Compact OS, single-sourcing, and image optimization

Operations Capture and Apply Windows, System, and Recovery
Partitions | Deploy Windows using Full Flash Update (FFU)
| Deploy Windows on a VHD (Native Boot) | Factory
Encrypted Drives | BitLocker Drive Encryption

Troubleshooting Repair the boot menu on a dual-boot PC

Tools and settings UEFI Firmware | The Windows and GPT FAQ | BCDboot
Command-Line Options | DiskPart Command line syntax |
WIM vs. VHD vs. FFU: comparing image file formats

http://go.microsoft.com/fwlink/p/?LinkId=321830
http://go.microsoft.com/fwlink/?LinkId=733824
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/factory-encrypted-drives
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/uefi-firmware
http://go.microsoft.com/fwlink/?LinkId=88211
http://go.microsoft.com/fwlink/?LinkId=128458


 

UEFI/GPT-based hard drive partitions
7/13/2017 • 7 minutes to read • Edit Online

Drive Partition Rules

Create custom partition layouts for your hard disk drives (HDDs), solid-state drives (SSDs), and other drives
when deploying Windows to Unified Extensible Firmware Interface (UEFI)–based devices.

Note If you use a custom partition layout on Windows 10 for desktop editions (Home, Pro, Enterprise, and
Education), update the push-button recovery script so the recovery tools can recreate the custom partition
layout when needed.

In this topic:

Drive partition rules
Default layout
Sample Diskpart script

When you deploy Windows to a UEFI-based device, you must format the hard drive that includes the Windows
partition by using a GUID partition table (GPT) file system. Additional drives may use either the GPT or the
master boot record (MBR) file format.

A GPT drive may have up to 128 partitions.

Each partition can have a maximum of 18 exabytes (~18.8 million terabytes) of space.

Windows partition requirements:

System partition

The device must contain a system partition. On GPT drives, this is known as the EFI System Partition, or
the ESP. This partition is usually stored on the primary hard drive. The device boots to this partition.

The minimum size of this partition is 100 MB, and must be formatted using the FAT32 file format.

This partition is managed by the operating system, and should not contain any other files, including
Windows RE tools.

Note
For Advanced Format 4K Native drives (4-KB-per-sector) drives, the minimum size is 260 MB, due to a
limitation of the FAT32 file format. The minimum partition size of FAT32 drives is calculated as sector
size (4KB) x 65527 = 256 MB.

Advanced Format 512e drives are not affected by this limitation, because their emulated sector size is
512 bytes. 512 bytes x 65527 = 32 MB, which is less than the 100 MB minimum size for this partition.

Microsoft® reserved partition (MSR)

Beginning in Windows 10, the size of the MSR is 16 MB.

Add an MSR to each GPT drive to help with partition management. The MSR is a reserved partition
that does not receive a partition ID. It cannot store user data.

Other utility partitions

Any other utility partitions not managed by Windows must be located before the Windows, data, and

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-uefigpt-based-hard-drive-partitions.md


Windows partition

recovery image partitions. This allows end users to perform actions such as resizing the Windows
partition without affecting system utilities.

Protect end users from accidentally modifying utility partitions by identifying them using a GPT
attribute. This prevents these partitions from appearing in File Explorer.

To set partitions as utility partitions

When you are deploying Windows by using the DiskPart tool, use the attributes volume set
GPT_ATTRIBUTE_PLATFORM_REQUIRED command after you create the partition to identify the
partition as a utility partition. For more information, see the MSDN topic:
PARTITION_INFORMATION_GPT structure.

To verify that system and utility partitions exist

1. Click Start, right-click This PC, and then click Manage. The Computer Management window
opens.

2. Click Disk Management. The list of available drives and partitions appears.
3. In the list of drives and partitions, confirm that the system and utility partitions are present and are

not assigned a drive letter.

The partition must have at least 20 gigabytes (GB) of drive space for 64-bit versions, or 16 GB for
32-bit versions.
The Windows partition must be formatted using the NTFS file format.
The Windows partition must have enough 10 GB of free space after the user has completed the Out
Of Box Experience (OOBE).

Recovery tools partition

This partition must be at least 300 MB.

This partition must have enough space for the Windows Recovery Environment tools image (winre.wim,
typically between 250-300MB, depending on base language and customizations added), plus enough
free space so that the partition can be captured by backup utilities:

If the partition is less than 500 MB, it must have at least 50 MB of free space.
If the partition is 500 MB or larger, it must have at least 320 MB of free space.
If the partition is larger than 1 GB, we recommend that it should have at least 1 GB free.
This partition must use the Type ID: DE94BBA4-06D1-4D40-A16A-BFD50179D6AC.
The recovery tools should be in a separate partition than the Windows partition to support
automatic failover and to support booting partitions encrypted with Windows BitLocker Drive
Encryption.

We recommend that you place this partition immediately after the Windows partition. This allows
Windows to modify and recreate the partition later if future updates require a larger recovery image.

Data partitions

The recommended partition layout for Windows 10 does not include data partitions. However, if data
partitions are required, they should be placed after the Windows RE partition. This allows future updates
to Windows RE to grow the Windows RE partition by shrinking the Windows partition.

This layout makes it more difficult for end users to remove the data partition and merge the space with
the Windows partition. To do so, the Windows RE partition must be moved to the end of the unused
space reclaimed from the data partition, so that the Windows partition can be extended.

Windows 10 does not include functionality or utility to facilitate this process. However, manufacturers
can develop and provide such a utility if PCs are shipped with data partitions.

http://go.microsoft.com/fwlink/p/?linkid=240300


 

 

Partition layout

Sample files: configure drive partitions by using Windows PE and
DiskPart scripts

The default partition layout for UEFI-based PCs is: a system partition, an MSR, a Windows partition, and a
recovery tools partition.

This layout lets you use Windows BitLocker Drive Encryption through both Windows and through the
Windows Recovery Environment.

For image-based deployment, boot the PC to Windows PE, and then use the DiskPart tool to create the
partition structures on your destination PCs.

Note
In these DiskPart examples, the partitions are assigned the letters: System=S, Windows=W, and Recovery=R.
The MSR partition does not receive a drive letter.

We recommend changing the Windows drive letter to a letter that’s near the end of the alphabet, such as W, to
avoid drive letter conflicts. Do not use X, because this drive letter is reserved for Windows PE. After the device
reboots, the Windows partition is assigned the letter C, and the other partitions don’t receive drive letters.

If you reboot, Windows PE reassigns disk letters alphabetically, starting with the letter C, without regard to the
configuration in Windows Setup. This configuration can change based on the presence of different drives, such
as USB flash drives.

The following steps describe how to partition your hard drives and prepare to apply images. You can use the
code in the sections that follow to complete these steps.

To partition hard drives and prepare to apply images

1. Save the following code in the as a text file (CreatePartitions-UEFI.txt) on a USB flash drive.



Next steps

Related topics

rem == CreatePartitions-UEFI.txt ==
rem == These commands are used with DiskPart to
rem    create four partitions
rem    for a UEFI/GPT-based PC.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
select disk 0
clean
convert gpt
rem == 1. System partition =========================
create partition efi size=100
rem    ** NOTE: For Advanced Format 4Kn drives,
rem               change this value to size = 260 ** 
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) partition =======
create partition msr size=16
rem == 3. Windows partition ========================
rem ==    a. Create the Windows partition ==========
create partition primary 
rem ==    b. Create space for the recovery tools ===
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim) plus free space                   **
rem ==    c. Prepare the Windows partition ========= 
format quick fs=ntfs label="Windows"
assign letter="W"
rem === 4. Recovery tools partition ================
create partition primary
format quick fs=ntfs label="Recovery tools"
assign letter="R"
set id="de94bba4-06d1-4d40-a16a-bfd50179d6ac"
gpt attributes=0x8000000000000001
list volume
exit

DiskPart /s F:\CreatePartitions-UEFI.txt

2. Use Windows PE to boot the destination PC.

3. Clean and partition the drive. In this example, F is the letter of the USB flash drive.

4. If you use a custom partition layout on Windows 10 for desktop editions, update the push-button
recovery script so the recovery tools can recreate the custom partition layout when needed.

Use a deployment script to apply the Windows images on the newly created partitions. For more information,
see Capture and Apply Windows, System, and Recovery Partitions.

Configure BIOS/MBR-Based Hard Drive Partitions

BitLocker Drive Encryption

WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)

Configuring Disk Mirroring

The Windows and GPT FAQ

http://go.microsoft.com/fwlink/?LinkId=733824
http://go.microsoft.com/fwlink/?LinkId=88211


BIOS/MBR-based hard drive partitions
5/11/2018 • 6 minutes to read • Edit Online

Drive partition rules

Create custom partition layouts for your hard disk drives (HDDs), solid-state drives (SSDs), and other drives
when deploying Windows to BIOS–based devices.

Note If you use a custom partition layout on Windows 10 for desktop editions (Home, Pro, Enterprise, and
Education), update the push-button recovery script so the recovery tools can recreate the custom partition
layout when needed.

When you deploy Windows to a BIOS-based device, you must format hard drives by using an MBR file system.
Windows does not support the GUID partition table (GPT) file system on BIOS-based computers.

An MBR drive can have up to four standard partitions. Typically, these standard partitions are designated as
primary partitions. For information about how to create additional partitions beyond this limit, see Configure
More than Four Partitions on a BIOS/MBR-Based Hard Disk.

Windows partition requirements:

System partition

Each bootable drive must contain a system partition. The system partition must be configured as the
active partition.

The minimum size of this partition is 100 MB.

Windows partition

This partition must have at least 20 gigabytes (GB) of drive space for 64-bit versions, or 16 GB for 32-
bit versions.
This partition must be formatted using the NTFS file format.
This partition must have enough 10 GB of free space after the user has completed the Out Of Box
Experience (OOBE).
This partition can have a maximum of 2 terabytes (TB) of space. Software tools to extend the visible
partition space beyond 2 TB are not supported on BIOS because they can interfere with software
solutions for application compatibility and recovery.

Recovery tools partition

The Windows Recovery Environment (Windows RE) tools image (winre.wim) should be in a separate
partition than the Windows partition to support automatic failover and to support booting Windows
BitLocker Drive Encryption-encrypted partitions.

While this image can be included on the same partition as the system partition, we recommend that you
place this partition in a separate partition, immediately after the Windows partition. This allows Windows
to modify and recreate the partition later if future updates require a larger recovery image.

This partition must have enough space for the Windows Recovery Environment tools image (winre.wim,
typically between 250-300MB, depending on base language and customizations added), plus enough
free space so that the partition can be captured by backup utilities:

If the partition is less than 500 MB, it must have at least 50 MB of free space.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-biosmbr-based-hard-drive-partitions.md


Partition layout

System and utility partitions

Sample files: configuring disk layout by using Windows PE and
DiskPart scripts

If the partition is 500 MB or larger, it must have at least 320 MB of free space.
If the partition is larger than 1 GB, we recommend that it should have at least 1 GB free.
It must have at least 320 MB of free space.
We recommend that it should have at least 1 GB free.

Data partitions

The recommended partition layout for Windows 10 does not include utility or data partitions.

However, if utility or data partitions are required, they should be placed either before the Windows
partition or after the Windows RE partition. By keeping the Windows and recovery partitions together,
then when future updates of Windows RE area available, Windows will be able to grow the Windows RE
partition by shrinking the Windows partition.

This layout makes it more difficult for end users to remove the data partition and merge the space with
the Windows partition. For example, the Windows RE partition may need to be moved to the end of the
unused space reclaimed from the data partition, so that the Windows partition can be extended.
Windows 10 does not include functionality or utility to facilitate this process. However, manufacturers can
develop and provide such a utility if PCs are shipped with data partitions.

Each partition can have a maximum of 2 terabytes (TB) of space.

If you're going to be adding more than four total partitions to the disk, see Configure More than Four
Partitions on a BIOS/MBR-Based Hard Disk for more info.

If you install Windows using a bootable USB key made by Windows Imaging and Configuration Designer
(ICD), it creates the following layout by default: a system partition, a Windows partition, and a recovery tools
partition.

By default, system partitions do not appear in File Explorer. This helps protect end users from accidentally
modifying a partition.

To set partitions as utility partitions

1. When you are deploying Windows by using Windows ICD, the partition type will be set automatically.
2. When you are deploying Windows by using the DiskPart tool, use the set id=27 command after you create

the partition.

To verify that system and utility partitions exist

1. Click Start, right-click This PC, and then click Manage. The Computer Management window opens.
2. Click Disk Management. The list of available drives and partitions appears.
3. In the list of drives and partitions, confirm that the system and utility partitions are present and are not

assigned a drive letter.



For image-based deployment, boot the PC to Windows PE, and then use the DiskPart tool to create the
partition structures on your destination PCs.

Note
In these DiskPart examples, the partitions are assigned the letters: System=S, Windows=W, and Recovery=R.

We recommend changing the Windows drive letter to a letter that’s near the end of the alphabet, such as W, to
avoid drive letter conflicts. Do not use X, because this drive letter is reserved for Windows PE. After the device
reboots, the Windows partition is assigned the letter C, and the other partitions don’t receive drive letters.

If you reboot, Windows PE reassigns disk letters alphabetically, starting with the letter C, without regard to the
configuration in Windows Setup. This configuration can change based on the presence of different drives, such
as USB flash drives.

The following steps describe how to partition your hard drives and prepare to apply images. You can use the
code in the sections that follow to complete these steps.

To partition hard drives and prepare to apply images

rem == CreatePartitions-BIOS.txt ==
rem == These commands are used with DiskPart to
rem    create three partitions
rem    for a BIOS/MBR-based computer.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
select disk 0
clean
rem == 1. System partition ======================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S"
active
rem == 2. Windows partition =====================
rem ==    a. Create the Windows partition =======
create partition primary
rem ==    b. Create space for the recovery tools  
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                 **
rem ==    c. Prepare the Windows partition ====== 
format quick fs=ntfs label="Windows"
assign letter="W"
rem == 3. Recovery tools partition ==============
create partition primary
format quick fs=ntfs label="Recovery"
assign letter="R"
set id=27
list volume
exit

DiskPart /s F:\CreatePartitions-BIOS.txt

1. Save the following code as a text file (CreatePartitions-BIOS.txt) on a USB flash drive.

2. Use Windows PE to boot the destination computer.

3. Clean and partition the drive. In this example, F is the letter of the USB flash drive.

4. If you use a custom partition layout on Windows 10 for desktop editions, update the push-button
recovery script so the recovery tools can recreate the custom partition layout when needed.



Next steps

Related topics

Use a deployment script to apply the Windows images on the newly created partitions. For more information,
see Capture and Apply Windows, System, and Recovery Partitions.

Configure More than Four Partitions on a BIOS/MBR-Based Hard Disk

Configure UEFI/GPT-Based Hard Drive Partitions

BitLocker Drive Encryption

Configuring Disk Mirroring

http://go.microsoft.com/fwlink/?LinkId=733824


Configure More than Four Partitions on a
BIOS/MBR-Based Hard Disk
5/11/2018 • 2 minutes to read • Edit Online

Disk partition rules

Configuring disk partitions by using a DiskPart script in Windows PE

This topic describes how to configure more than four disk partitions when you deploy Windows on BIOS and
master boot record (MBR)-based devices.

On BIOS-based systems, you can designate one of the four standard partitions as an extended partition.

An extended partition is a special partition that can be divided into additional partitions that are called
logical partitions. An extended partition cannot store files. An extended partition does not receive a
partition ID.

You can include as many logical partitions as your disk can hold.

Logical partitions can store files. You can use a logical partition as the Windows partition.

For additional disk partition rules for BIOS-based systems, see Configure BIOS/MBR-Based Hard Drive
Partitions.

Recommendations

1. Add system and utility partitions before you add the Windows partition.

2. Add the recovery tools partition immediately after the Windows partition. When you use this partition
order, then when future updates to the recovery tools are needed, the partition can be resized
automatically.

Sample partition layout:

For image-based deployment, boot the device by using Windows PE, and then use the DiskPart tool to create the
partition structures on your destination devices. For more information, see Apply Images Using DISM.

Note
Windows PE reassigns disk letters alphabetically, beginning with the letter "C", without regard to the
configuration in Windows Setup. This configuration can change based on the presence of different drives,
including USB flash drives.

In these DiskPart examples, the partitions are assigned the letters "U", "V", "S", "W", and "R" to avoid drive-letter
conflicts. After the device reboots, Windows PE automatically assigns the letter "C" to the Windows partition. The
Utility1, Utility2, system, and recovery image partitions do not receive drive letters.

The following steps describe how to partition your hard drives and prepare to apply images. You can use the code
in the sections that follow to complete these steps.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-more-than-four-partitions-on-a-biosmbr-based-hard-disk.md


Sample code

select disk 0
clean
rem == 1. System partition ======================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S"
active
rem == 2. Utility partition =====================
create partition primary size=100
format quick fs=ntfs label="Utility1"
assign letter="U"
set id=27
rem == 3. Utility partition =====================
create partition primary size=200
format quick fs=ntfs label="Utility2"
assign letter="V"
set id=27
rem == 4. Extended partition ====================
create partition extended
rem == 4a. Windows partition ====================
rem ==    a. Create the Windows partition =======
create partition logical
rem ==    b. Create space for the recovery tools  
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                 **
rem ==    c. Prepare the Windows partition ====== 
format quick fs=ntfs label="Windows"
assign letter="C"
rem == 4b. Recovery tools partition ==============
create partition logical
format quick fs=ntfs label="Recovery"
assign letter="R"
set id=27
list volume
exit

Next Steps

Related topics

To partition hard drives and prepare to apply images

1. Save the code in the following sections as a text file (PrepareMyPartitions.txt) on a USB flash drive.

2. Use Windows PE to boot the destination device.

3. Use the DiskPart /s F:\PrepareMyPartitions.txt  command, where F : is the letter of the USB flash drive, to
partition the drives.

Save the following code as "PrepareMyPartitions.txt", and then run the script by using the DiskPart tool to
automate the configuration of the Utility1, Utility2, system, extended, Windows, and recovery tools partitions:

After you create the partitions, you can use a deployment script to apply the Windows images on the newly
created partitions. For more information, see Capture and Apply Windows, System, and Recovery Partitions.

Configure BIOS/MBR-Based Hard Drive Partitions



Configure multiple hard drives
5/11/2018 • 4 minutes to read • Edit Online

Identifying a drive location path

  Volume ###  Ltr  Label        Fs     Type        Size     Status     Info
  ----------  ---  -----------  -----  ----------  -------  ---------  --------
  Volume 1     C                NTFS   Partition    149 GB  Healthy    System

DISKPART>
```

Selecting Drives
Selecting the system driveSelecting the system drive

If you are deploying Windows to a computer that has multiple hard drives, you can verify that the image is applied
to a specific hard drive by using hardware-specific identifiers such as the location path or the hardware interrupt
value.

The location path is a string that specifies the physical location that each drive is connected to the computer, for
example: PCIROOT(0)#PCI(0100)#ATA(C00T00L00) . When manufacturing a computer, use a consistent physical
location when connecting your drives, and then use the location path string to identify each hard drive.

For BIOS-based computers or a computer that is running Virtual Disk Service (VDS), you can use the SELECT
DISK=SYSTEM and SELECT DISK=NEXT commands to select the appropriate hard drive.

DISKPART> detail disk

HITACHI HTS722016K9SA00
Disk ID: 5E27161A
Type   : ATA
Bus    : 0
Target : 0
LUN ID : 0
Location Path : PCIROOT(0)#PCI(0100)#ATA(C00T00L00)
Read-only  : No
Boot Disk  : Yes
PagefileDisk  : Yes
Hibernation File Disk  : No
CrashdumpDisk  : Yes
Clustered Disk  : No

Use the DiskPart commands: list disk and select disk <disk number> (Example: select disk 1) to
navigate between the drives on your computer.

To show the location path of a selected drive, use the DiskPart command detail disk .

In the following example, the location path of the selected drive is
PCIROOT(0)#PCI(0100)#ATA(C00T00L00).

1. BIOS-based computers: Use the command SELECT DISK=SYSTEM to select the default system drive.

This command selects the drive that has an interrupt 13h value of 80h. If the value 80h is assigned to a

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-multiple-hard-drives.md


Selecting a non-system driveSelecting a non-system drive

USB flash drive, this command selects a hard drive that has a value of 81h.

2. UEFI-based computers: To select a drive, use the DiskPart command SELECT DISK=<location path>.

Note
Do not use the SELECT DISK=SYSTEM command or the GetSystemDiskNTPath API on Unified
Extensible Firmware Interface (UEFI)-based computers to select the system drive. The SELECT
DISK=SYSTEM command and the GetSystemDiskNTPath API identify the drive that the operating system
was booted from as the system drive. If you boot from Windows® PE, this command selects the Windows
PE drive as the system drive. If you boot from a system that has multiple drives that include an EFI system
partition (ESP), this command may select the wrong drive.

SELECT DISK=PCIROOT(0)#PCI(0100)#ATA(C00T00L00)

1. Select the drive by location path. To select a drive, use the DiskPart command SELECT DISK=
<location path>, where <location path> is the location path of your drive. This command helps specify a
drive by location.

Example:

2. Select the drive by using the "NEXT" drive. Use the DiskPart command SELECT DISK=NEXT. This
command helps specify any remaining hard drives, regardless of location. To select more drives, repeat the
SELECT DISK=NEXT command to select each drive in order. If there are no more drives to select,
DiskPart returns an error.

Note
The computer maintains the context for the SELECT DISK=NEXT command as long as DiskPart
continues running. If DISKPART exits, the computer loses this context.



UEFI-based example:

```
SELECT DISK=PCIROOT(0)#PCI(0100)#ATA(C00T00L00)
clean
convert gpt
rem == 1. System partition =========================
create partition efi size=100
rem    ** NOTE: For Advanced Format 4Kn drives,
rem               change this value to size = 260 ** 
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) partition =======
create partition msr size=16
rem == 3. Windows partition ========================
rem ==    a. Create the Windows partition ==========
create partition primary 
rem ==    b. Create space for the recovery tools ===
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                    **
rem ==    c. Prepare the Windows partition ========= 
format quick fs=ntfs label="Windows"
assign letter="W"
rem === 4. Recovery tools partition ================
create partition primary
format quick fs=ntfs label="Recovery tools"
assign letter="R"
set id="de94bba4-06d1-4d40-a16a-bfd50179d6ac"
gpt attributes=0x8000000000000001
rem NON-SYSTEM DRIVE ===============================
SELECT DISK=NEXT
clean
convert gpt
rem == 1. Microsoft Reserved (MSR) partition =======
create partition msr size=16
rem == 2. Data partition ===========================
create partition primary
format quick fs=ntfs label="Data"
assign letter=z
```

Identifying the system drive after a rebootIdentifying the system drive after a reboot

SELECT DISK=PCIROOT(0)#PCI(0100)#ATA(C01T01L00)
select partition=1
assign letter=s
select partition=2
assign letter=t
select partition=3
assign letter=w

Formatting non-system drivesFormatting non-system drives

After you reboot, drive lettering may change. You can use the following example script to select the system drive
and then reassign letters to the ESP, recovery, and Windows partitions.

This example script selects the system drive and then skips past the drive without modifying the contents of the
drive. The script then selects two non-system drives and creates a single, formatted, empty partition on each drive.
The partitions do not receive an image, so it is not necessary to specifically identify them.

UEFI-based example:



SELECT DISK=PCIROOT(0)#PCI(0100)#ATA(C01T01L00)
SELECT DISK=NEXT
clean
convert gpt
create partition msr size=16
create partition primary
format quick fs=ntfs label="DataDrive1"
SELECT DISK=NEXT
clean
convert gpt
create partition primary
format quick fs=ntfs label="DataDrive2"

Related topics
Hard Disk Location Path Format

DiskPart Command line syntax

http://go.microsoft.com/fwlink/?LinkId=128458


BitLocker Drive Encryption
5/11/2018 • 2 minutes to read • Edit Online

What Is BitLocker Drive Encryption?

BitLocker Drive Encryption Partitioning Requirements

Related topics

This topic highlights the requirements for deploying a Windows BitLocker Drive Encryption solution. For more
information about BitLocker, see BitLocker Drive Encryption on the TechNet website.

BitLocker provides offline-data and operating-system protection for your computer. BitLocker helps ensure that
data that is stored on a computer that is running Windows® is not revealed if the computer is tampered with
when the installed operating system is offline. BitLocker uses a microchip that is called a Trusted Platform Module
(TPM) to provide enhanced protection for your data and to preserve early boot-component integrity. The TPM can
help protect your data from theft or unauthorized viewing by encrypting the entire Windows volume.

BitLocker is designed to offer the most seamless end-user experience with computers that have a compatible TPM
microchip and BIOS. A compatible TPM is defined as a version 1.2 TPM that has the BIOS modifications that are
required to support the Static Root of Trust Measurement, as defined by the Trusted Computing Group. The TPM
interacts with BitLocker to help provide seamless protection when the computer restarts.

The path to the TPM driver file is %WINDIR%\Inf\Tpm.inf. For information about how to add the TPM driver to
Windows Preinstallation Environment (Windows PE), see WinPE: Mount and Customize.

BitLocker must use a system partition that is separate from the Windows partition. The system partition:

Must be configured as the active partition.

Must not be encrypted or used to store user files.

Must have at least 100 megabytes (MB) of space.

Must have at least 50 MB of free space.

May be shared with a recovery partition.

For more information about BitLocker partitioning requirements, see Hard Drives and Partitions Overview.

Hard Drives and Partitions Overview

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/bitlocker-drive-encryption.md
http://go.microsoft.com/fwlink/?LinkId=116601


Hard Disk Location Path Format
5/11/2018 • 2 minutes to read • Edit Online

Location-Path Format

ELEMENT DESCRIPTION

Note

This topic describes the hard disk location-path format. This format is used to identify each disk in the DiskPart
tool by using the location path. The location-path format is based on the physical connection to the computer.

For instructions that describe how to configure Windows® to identify a drive based on the location-path format,
see Configure Multiple Hard Drives.

The basic syntax for the location path for disks that have a Small Computer System Interface (SCSI), Serial
Attached SCSI (SAS), or Redundant Array of Independent Disks (RAID) bus type is as follows:

<PnP location path of the adapter>#<Bus Type>(P<Path ID>T<Target ID>L<LUN ID>)

The basic syntax for the location path for disks that have an Advanced Technology Attachment (ATA) or Serial ATA
(SATA) bus type is as follows:

<PnP location path of the adapter>#<Bus Type>(C<Channel ID>T<Target ID>L<LUN ID>)

The following table defines the elements in the location path.

<PnP location path of the adapter> Path of the adapter. Retrieve the path by calling the
SetupDiGetDeviceProperty with the
DEVPKEY_Device_LocationPaths property.

#<Bus Type> One of the following types: ATA, SCSI, SAS, or RAID.

P<Path ID> PathId field of SCSI_ADDRESS. Retrieve the PathID by
calling IOCTL_SCSI_GET_ADDRESS.

C<Channel ID> PathId field of SCSI_ADDRESS. Retrieve the PathID by
calling IOCTL_SCSI_GET_ADDRESS.

For disks that use the ATA/SATA bus type, the Channel ID
refers to the same field as PathID. The prefix C is still
used.

T<Target ID> TargetId field of SCSI_ADDRESS. Retrieve the TargetId by
calling IOCTL_SCSI_GET_ADDRESS.

L<LUN ID> Logical Unit Number (LUN) field of SCSI_ADDRESS.
Retrieve the LUN by calling IOCTL_SCSI_GET_ADDRESS.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/hard-disk-location-path-format.md


Examples

BUS OR DISK TYPE LOCATION PATH

Related topics

The following table gives an example of a location path for each bus or disk type:

Integrated Development Environment (IDE), ATA, Parallel
ATA (PATA), or SATA

PCIROOT(0)#PCI(0100)#ATA(C01T03L00)

SCSI PCIROOT(0)#PCI(1C00)#PCI(0000)#SCSI(P00T01L01)

SAS PCIROOT(1)#PCI(0300)#SAS(P00T03L00)

Peripheral Component Interconnect (PCI) RAID PCIROOT(0)#PCI(0200)#PCI(0003)#PCI(0100)#RAID(P02T
00L00)

Configure Multiple Hard Drives

DiskPart Command-Line Syntax

http://go.microsoft.com/fwlink/?LinkId=128458


Windows and GPT FAQ
7/18/2018 • 21 minutes to read • Edit Online

GPT
What is a GPT disk?What is a GPT disk?

What is wrong with MBR partitioning?What is wrong with MBR partitioning?

Answers to frequently asked questions about the GUID Partition Table (GPT).

This version of the Windows and GPT FAQ applies to Windows 10 and Windows Server 2016. For a previous
version of this FAQ, see Windows and GPT FAQ on MSDN.

Since the introduction of the personal computer, the data storage area on a hard disk has been divided into smaller
areas called sectors. These sectors are grouped into partitions creating separate volumes, or 'drives' on a disk. The
partitions were organized using a scheme called the Master Boot Record (MBR). The MBR is a table of disk
locations, or addresses, along with a certain length, of each of the partitions present on the disk. The MBR itself
occupies a small amount of the disk and is read during the boot phase to determine where to locate the operating
system to boot into. The MBR information is also used by the operating system as a map of the volumes present
on the disk.

Eventually, data density for disks became too large for the MBR scheme to account for all the available data
locations. Also, the layout, or format, of the MBR was designed for early computers and not flexible enough to
accommodate newer disk configurations. A new partitioning method was needed so the GUID Partition Table
(GPT) partitioning scheme was created.

The GUID Partition Table (GPT) was introduced as part of the Unified Extensible Firmware Interface (UEFI)
initiative. GPT provides a more flexible mechanism for partitioning disks than the older Master Boot Record (MBR)
partitioning scheme that was common to PCs.

A partition is a contiguous space of storage on a physical or logical disk that functions as if it were a physically
separate disk. Partitions are visible to the system firmware and the installed operating systems. Access to a
partition is controlled by the system firmware before the system boots the operating system, and then by the
operating system after it is started.

MBR disks support only four partition table entries. For more than four partitions, a secondary structure known as
an extended partition is necessary. Extended partitions can then be subdivided into one or more logical disks.

Windows creates MBR disk partitions and logical drives on cylinder boundaries based on the reported geometry,
although this information no longer has any relationship to the physical characteristics of the hardware (disk driver
or RAID controller). Starting with Windows Vista and Windows Server 2008, more logical boundaries are selected
when the hardware provides better hints at the true cache or physical alignment. Because this partition
information is stored on the drive itself, the operating system is not dependent on the alignment.

MBR partitioning rules are complex and poorly specified. For example, does cylinder alignment mean that each
partition must be at least one cylinder in length? An MBR partition is identified by a two-byte field, and
coordination is necessary to avoid collision. IBM originally provided that coordination, but today there is no single
authoritative list of partition identifiers.

Another common practice is using partitioned or "hidden" sectors to hold specific information by using
undocumented processes and results in problems that are difficult to debug. In the past, vendor-specific
implementations and tools were released to the public, which made support difficult.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-and-gpt-faq.md
https://msdn.microsoft.com/en-us/library/windows/hardware/dn640535.aspx


Why do we need GPT?Why do we need GPT?

Where can I find the specification for GPT disk partitioning?Where can I find the specification for GPT disk partitioning?

What is the GPT format for basic disks?What is the GPT format for basic disks?

What is the GPT format for dynamic disks?What is the GPT format for dynamic disks?

Is UEFI required for a GPT disk?Is UEFI required for a GPT disk?

How big can a GPT disk be?How big can a GPT disk be?

How many partitions can a GPT disk have?How many partitions can a GPT disk have?

GPT disks allow for growth. The number of partitions on a GPT disk isn't constrained by temporary schemes such
as container partitions as defined by the MBR Extended Boot Record (EBR). The GPT disk partition format is well
defined and fully self-identifying. Data critical to platform operation is located in partitions and not in
unpartitioned or "hidden" sectors. GPT disks use primary and backup partition tables for redundancy and CRC32
fields for improved partition data structure integrity. The GPT partition format uses version number and size fields
for future expansion.

Each GPT partition has a unique identification GUID and a partition content type, so no coordination is necessary
to prevent partition identifier collision. Each GPT partition has a 36-character Unicode name. This means that any
software can present a human-readable name for the partition without any additional understanding of the
partition.

Chapter 5 of the Unified Extensible Firmware Interface (UEFI) specification (version 2.3) defines the GPT format.
This specification is available at http://www.uefi.org/specifications.

Basic disks are the most commonly used storage types with Windows. "Basic disk" refers to a disk that contains
partitions, such as primary partitions and logical drives, usually formatted with a file system to become a volume
for file storage.

The protective MBR area on a GPT partition table exists for backward compatibility with disk management utilities
that operate on MBR. The GPT header defines the range of logical block addresses that are usable by partition
entries. The GPT header also defines its location on the disk, its GUID, and a 32-bit cyclic redundancy check
(CRC32) checksum that is used to verify the integrity of the GPT header. Each entry in the GUID partition table
begins with a partition type GUID. The 16-byte partition type GUID, which is similar to a System ID in the
partition table of an MBR disk, identifies the type of data that the partition contains and identifies how the
partition is used, for example, whether it is a basic disk or a dynamic disk. Note that each GUID partition entry has
a backup copy.

For more information about basic disks, see Basic and Dynamic Disks.

Dynamic disks were first introduced with Windows 2000 and provide features that basic disks don't, such as the
ability to create volumes that span multiple disks (spanned and striped volumes) and the ability to create fault-
tolerant volumes (mirrored and RAID-5 volumes). Dynamic disks can use the MBR or GPT partition styles on
systems that support both. For more information about dynamic disks, see Basic and Dynamic Disks.

No. GPT disks are self-identifying. All the information needed to interpret the partitioning scheme of a GPT disk is
completely contained in structures in specified locations on the physical media.

In theory, a GPT disk can be up to 2^64 logical blocks in length. Logical blocks are commonly 512 bytes in size.

The maximum partition (and disk) size depends on the operating system version. Windows XP and the original
release of Windows Server 2003 have a limit of 2TB per physical disk, including all partitions. For Windows
Server 2003 SP1, Windows XP x64 edition, and later versions, the maximum raw partition of 18 exabytes can be
supported. (Windows file systems currently are limited to 256 terabytes each.)

The specification allows an almost unlimited number of partitions. However, the Windows implementation restricts
this to 128 partitions. The number of partitions is limited by the amount of space reserved for partition entries in
the GPT.

http://www.uefi.org/specifications
https://msdn.microsoft.com/en-us/library/aa363785.aspx
https://msdn.microsoft.com/en-us/library/aa363785.aspx


Can a disk be both GPT and MBR?Can a disk be both GPT and MBR?

What is a Protective MBR?What is a Protective MBR?

Why does the GPT have a Protective MBR?Why does the GPT have a Protective MBR?

Why would a GPT-partitioned disk appear to have an MBR on it?Why would a GPT-partitioned disk appear to have an MBR on it?

Windows disk support
Can Windows XP x64 read, write, and boot from GPT disks?Can Windows XP x64 read, write, and boot from GPT disks?

Can the 32-bit version of Windows XP read, write, and boot from GPT disks?Can the 32-bit version of Windows XP read, write, and boot from GPT disks?

Can the 32- and 64-bit versions of Windows Server 2003 read, write, and boot from GPT disks?Can the 32- and 64-bit versions of Windows Server 2003 read, write, and boot from GPT disks?

Can Windows Vista, Windows Server 2008, and later read, write, and boot from GPT disks?Can Windows Vista, Windows Server 2008, and later read, write, and boot from GPT disks?

Can Windows 2000, Windows NT 4, or Windows 95/98 read, write, and boot from GPT?Can Windows 2000, Windows NT 4, or Windows 95/98 read, write, and boot from GPT?

Is it possible to move a GPT disk to another computer?Is it possible to move a GPT disk to another computer?

What about mixing and matching GPT and MBR disks on the same system?What about mixing and matching GPT and MBR disks on the same system?

No. However, all GPT disks contain a Protective MBR.

The Protective MBR, beginning in sector 0, precedes the GPT partition table on the disk. The MBR contains one
type 0xEE partition that spans the disk.

The Protective MBR protects GPT disks from previously released MBR disk tools such as Microsoft MS-DOS
FDISK or Microsoft Windows NT Disk Administrator. These tools are not aware of GPT and don't know how to
properly access a GPT disk. Legacy software that does not know about GPT interprets only the Protected MBR
when it accesses a GPT disk. These tools will view a GPT disk as having a single encompassing (possibly
unrecognized) partition by interpreting the Protected MBR, rather than mistaking the disk for one that is
unpartitioned.

This occurrs when you use an MBR-only-aware disk tool to access the GPT disk. For more information, see the
following questions:

Can a disk be both GPT and MBR?
What is a Protective MBR?
Why does the GPT have a Protective MBR?

Windows XP x64 Edition can use GPT disks for data only.

No. The 32-bit version will see only the Protective MBR. The EE partition will not be mounted or otherwise
exposed to application software.

Starting with Windows Server 2003 Service Pack 1, all versions of Windows Server can use GPT partitioned disks
for data. Booting is only supported for 64-bit editions on Itanium-based systems.

Yes, all versions can use GPT partitioned disks for data. Booting is only supported for 64-bit editions on UEFI-
based systems.

No. Again, legacy software will see only the Protective MBR.

You can move, or migrate, data-only GPT disks to other systems that are running Windows XP (64-bit edition
only) or later versions of the operating system (32- or 64-bit editions). You can migrate data-only GPT disks after
the system has been shutdown or after the safe removal of the disk.

GPT and MBR disks can be mixed on systems that support GPT, as described earlier. However, you must be aware
of the following restrictions:

Systems that support UEFI require that boot partition must reside on a GPT disk. Other hard disks can be
either MBR or GPT.



What about removable media?What about removable media?

What is a superfloppy?What is a superfloppy?

What is the default behavior of the 32-bit version of Windows XP, Windows Server 2003 and Windows XP x64What is the default behavior of the 32-bit version of Windows XP, Windows Server 2003 and Windows XP x64
when partitioning media?when partitioning media?

How can a drive letter in the operating system be mapped to a partition in UEFI firmware?How can a drive letter in the operating system be mapped to a partition in UEFI firmware?

How can an ESP partition be created?How can an ESP partition be created?

What can be changed on a partition?What can be changed on a partition?

What partitioning does Windows support on detachable disks?What partitioning does Windows support on detachable disks?

Windows GPT required partitions: EFI System Partition
What is the Extensible Firmware Interface System Partition (ESP)?What is the Extensible Firmware Interface System Partition (ESP)?

Both MBR and GPT disks can be present in a single dynamic disk group. Volume sets can span both MBR and
GPT disks.

Removable media must be MBR, GPT, or "superfloppy."

Removable media without either GPT or MBR formatting is considered a "superfloppy". The entire media is
treated as a single partition.

The media manufacturer performs any MBR partitioning of removable media. If the media has an MBR, only one
partition is supported. There is little user-discernible difference between MBR-partitioned media and
superfloppies.

Examples of removable media include floppy disk drives, JAZ disk cartridges, magneto-optical media, DVD-ROM,
and CD-ROM. Hard disk drives on external buses such as SCSI or IEEE 1394 are not considered removable.

What is the default behavior of Windows XP 64-Bit Edition Version 2003 when partitioning media?

For Windows XP 64-Bit Edition Version 2003 only (for Itanium-based systems), fixed disks are partitioned by
using GPT partitioning. GPT disks can be converted to MBR disks only if all existing partitioning is first deleted,
with associated loss of data.

Only MBR disks can be used.

There is no inherent mapping between drive letter and partition that can be used to determine one from the other.
A basic data partition must be identified by its partition GUID.

ESP partitions can be created by using the UEFI firmware utility Diskpart.efi or the Windows command line utility
Diskpart.exe.

You shouldn't directly change any partition header entry. Don't use disk tools or utilities to make alterations or
changes.

Detachable disks are typically expected to migrate between computers or simply to be unavailable to the operating
system at times. Examples of detachable disks are USB disks, which can be easily disconnected by the end-user.
Windows XP supports only MBR partitioning on detachable disks. Later versions of Windows support GPT
partitions on detachable disks.

For more about removable media, see the following questions:

What about removable media?
What is a superfloppy?

The ESP contains the NTLDR, HAL, Boot.txt, and other files that are needed to boot the system, such as drivers.
The Partition GUID defines the ESP:



Do only GPT Disks have ESPs?Do only GPT Disks have ESPs?

How big is the ESP?How big is the ESP?

Can there be two ESPs on a single disk?Can there be two ESPs on a single disk?

What about two ESPs on two different disks?What about two ESPs on two different disks?

What does Microsoft place in the ESP?What does Microsoft place in the ESP?

Where should the ESP be placed on the disk?Where should the ESP be placed on the disk?

What should a system or device manufacturer place in the ESP?What should a system or device manufacturer place in the ESP?

Where should a system manufacturer place files such as platform diagnostics or other value-added files?Where should a system manufacturer place files such as platform diagnostics or other value-added files?

What is a Microsoft Reserved Partition (MSR)?What is a Microsoft Reserved Partition (MSR)?

DEFINE_GUID (PARTITION_SYSTEM_GUID, 0xC12A7328L, 0xF81F, 0x11D2, 0xBA, 0x4B, 0x00, 0xA0, 0xC9, 0x3E, 0xC9,
0x3B)

No, MBR disks can also have ESPs. UEFI specifies booting from either GPT or MBR. The ESP on an MBR disk is
identified by partition type 0xEF. However, Windows does not support booting UEFI from MBR disks or 0xEF
partitions.

The ESP is approximately 100MBs.

Such a configuration shouldn't be created, and is not supported in Windows.

ESP partitions can be replicated for high-availability configurations. Replication must be done manually and the
contents must be synchronized manually when using software volumes. Hardware vendors may provide additional
solutions for high availability. ESP partitions cannot be mirrored.

Microsoft places the HAL, loader, and other files that are needed to boot the operating system in the ESP.

The ESP should be first on the disk. The primary benefit to placing the ESP first, is that it is impossible to span
volumes when the ESP is logically between the two data partitions that you are attempting to span.

The ESP should only include files that are required for booting an operating system, platform tools that run before
operating system boot, or files that must be accessed before operating system boot. For example, files that are
required for performing pre-boot system maintenance must be placed in the ESP.

Other value-add files or diagnostics used while the operating system is running should not be placed in the ESP. It
is important to note that the space in the ESP is a limited system resource; its primary purpose is to provide
storage for the files that are needed to boot the operating system.

The preferred option is for system manufacturers to place value-add contents in an OEM-specific partition. Just
like MBR OEM partitions, the contents of GPT OEM (or other unrecognized) partitions are not exposed (given
drive letters or returned in volume lists). Users are warned that deleting the partition can cause the system to fail
to operate. An OEM-specific partition should be placed before the MSR and after any ESP on the disk. Although
not architectural, this placement has the same benefits as placing the ESP first. For example, it is also impossible to
span volumes when an OEM-specific partition is logically between the two data partitions that you are attempting
to span.

Placement in the ESP is an option for applications or files that execute in the pre-operating system boot
environment. However, the ESP is architecturally shared space and represents a limited resource. Consuming
space in the ESP should be considered carefully. Files that are not relevant to the pre-operating system boot
environment should not be placed in the ESP.

The Microsoft Reserved Partition (MSR) reserves space on each disk drive for subsequent use by operating
system software. GPT disks do not allow hidden sectors. Software components that formerly used hidden sectors
now allocate portions of the MSR for component-specific partitions. For example, converting a basic disk to a
dynamic disk causes the MSR on that disk to be reduced in size and a newly created partition holds the dynamic
disk database. The MSR has the Partition GUID:



What disks require an MSR?What disks require an MSR?

Who creates the MSR?Who creates the MSR?

Why must the MSR be created when the disk is first partitioned?Why must the MSR be created when the disk is first partitioned?

How big is the MSR?How big is the MSR?

Windows GPT ESP implementation
What partitions are required by Windows?What partitions are required by Windows?

What is a basic data partition?What is a basic data partition?

How is a basic data partition identified?How is a basic data partition identified?

Will end-users see the ESP partition?Will end-users see the ESP partition?

Will end-users see the MSR and OEM-specific partitions?Will end-users see the MSR and OEM-specific partitions?

DEFINE_GUID (PARTITION_MSFT_RESERVED_GUID, 0xE3C9E316L, 0x0B5C, 0x4DB8, 0x81, 0x7D, 0xF9, 0x2D, 0xF0, 0x02,
0x15, 0xAE)

Every GPT disk must contain an MSR. The order of partitions on the disk should be ESP (if any), OEM (if any) and
MSR followed by primary data partition(s). It is particularly important that the MSR be created before other
primary data partitions.

The MSR must be created when disk-partitioning information is first written to the drive. If the manufacturer
partitions the disk, the manufacturer must create the MSR at the same time. If Windows partitions the disk during
setup, Windows creates the MSR.

After the disk is partitioned, there will be no free space left to create an MSR.

When initially created, the size of the MSR depends on the size of the disk drive:

On drives less than 16GB in size, the MSR is 32MB.
On drives greater than or equal to 16GB, the MSR is 128 MB.

As the MSR is divided into other partitions, it becomes smaller.

For UEFI systems, the boot drive must contain an ESP, an MSR, and at least one basic data partition that contains
the operating system. Only one ESP should exist on a system even if multiple operating systems are installed on
that system. In a mirrored boot configuration there may actually be two drives with an ESP but they are
considered to be a redundant copy of the same ESP. Each data drive must contain at least an MSR and one basic
data partition.

All basic data partitions on the drive should be contiguous. As noted above, placing an OEM-specific or other
unrecognized partition between data partitions imposes limitations on later volume spanning.

Basic data partitions correspond to primary MBR partitions 0x6 (FAT), 0x7 (NTFS), or 0xB (FAT32). Each basic
partition can be mounted using a drive letter or mount point, other volume device object, or both. Each basic data
partition is represented in Windows as a volume device object, and optionally as a mount point or a drive letter.

It has the following partition type GUID:

DEFINE_GUID (PARTITION_BASIC_DATA_GUID, 0xEBD0A0A2L, 0xB9E5, 0x4433, 0x87, 0xC0, 0x68, 0xB6, 0xB7,
0x26, 0x99, 0xC7);

The ESP partition isn't hidden, but also doesn't have an assigned drive letter. It will not appear in Explorer unless a
drive letter gets assigned to it, but some tools will be able to list it.

Users will not see these partitions exposed in Windows Explorer, nor is any recognized file system exposed to
legacy programs such as Context Indexing. The OEM-specific and other unrecognized partitions will be visible
only in the Disk Management MMC snap-in since they will not have a recognizable file system.



What partitions are mounted by default by Windows?What partitions are mounted by default by Windows?

How can the user see the ESP, OEM, and other unrecognized partitions?How can the user see the ESP, OEM, and other unrecognized partitions?

What about dynamic disks?What about dynamic disks?

What happens when a basic disk is converted to dynamic?What happens when a basic disk is converted to dynamic?

Can a system contain a mix of GPT and MBR dynamic disks?Can a system contain a mix of GPT and MBR dynamic disks?

How can a specific partition be mounted?How can a specific partition be mounted?

TOOL WINDOWS FIRMWARE

Diskpart.efi Disk Partition Tool ESP MSR Data

Windows exposes only basic data partitions. Other partitions with FAT file systems may be mounted, but not
exposed only programmatically. Only basic data partitions are assigned drive letters or mount points.

The ESP FAT file system is mounted, but not exposed. This allows programs running under Windows to update the
contents of the ESP. Assigning a drive letter to the ESP using mountvol /s  will allow access to the partition. Access
to the ESP requires admin privilege. Although the MSR, and any partitions created from the MSR, could have
recognizable file systems, none are exposed.

Any OEM-specific partitions or partitions associated with other operating systems are not recognized by
Windows. Unrecognized partitions with recognizable file systems are treated like the ESP. They will be mounted,
but not exposed. Unlike MBR disks, there is no practical difference between OEM-specific partitions and other
operating system partitions; all are "unrecognized."

The user can use disk management tools such as the Disk Management utility or the diskpart.exe Windows
command line. The MSR and any partitions created from the MSR are only visible from the command line.

Dynamic disks use two different GPT partitions?

A data container partition that corresponds to the MBR partition 0x42, with the following GUID:
DEFINE_GUID (PARTITION_LDM_DATA_GUID, 0xAF9B60A0L, 0x1431, 0x4F62, 0xBC, 0x68, 0x33, 0x11, 0x71, 0x4A,
0x69, 0xAD)

;

A partition to contain the dynamic configuration database, with the following GUID:
DEFINE_GUID(PARTITION_LDM_METADATA_GUID, 0x5808C8AAL, 0x7E8F, 0x42E0, 0x85, 0xD2, 0xE1, 0xE9, 0x04, 0x34,
0xCF, 0xB3

);

Volumes are created in the data container and mounted by default. Again, this is exactly the same as the contents
of 0x42 MBR partitions.

For a drive to be eligible for conversion to dynamic, all basic data partitions on the drive must be contiguous. If
other unrecognized partitions separate basic data partitions, the disk can't be converted. This is one of the reasons
that the MSR must be created before any basic data partitions. The first step in conversion is to separate a portion
of the MSR to create the configuration database partition. All non-bootable basic partitions are then combined
into a single data container partition. Boot partitions are retained as separate data container partitions. This is
analogous to conversion of primary partitions.

Windows XP and later versions of Windows differ from Windows 2000 in that basic and extended partitions are
preferentially converted to a single 0x42 partition, rather than being retained as multiple distinct 0x42 partitions as
on Windows 2000.

Yes. For more information, see What about mixing and matching GPT and MBR disks on the same system?

You can access the GPT disk partitions of different types using the tools that are listed in the following table.



Diskpart.exe Disk Partition Tool ESP MSR Data

Diskmgmt.msc Logical Disk Manager ESP Data

Explorer.exe File Explorer Data

TOOL WINDOWS FIRMWARE

How are GPT disks managed in Windows?How are GPT disks managed in Windows?

What about FTdisk sets?What about FTdisk sets?

Can a disk be converted from GPT to MBR, and vice versa?Can a disk be converted from GPT to MBR, and vice versa?

What file systems are supported on GPT disks?What file systems are supported on GPT disks?

Manipulating GPT disks and their contents
How do I create a GPT disk?How do I create a GPT disk?

How do I convert an MBR or GPT disk?How do I convert an MBR or GPT disk?

Is it possible to make a sector-by-sector copy of a GPT disk?Is it possible to make a sector-by-sector copy of a GPT disk?

Is there any way to copy a whole GPT disk using the OPK imaging tools?Is there any way to copy a whole GPT disk using the OPK imaging tools?

By using the Microsoft Platform SDK APIs, you can also develop your own tools to access the GPT disk partitions
at their primitive levels.

GPT and MBR disks are managed the same way. Disks can be formatted as GPT or MBR by using the Diskpart.exe
command prompt utility or by using the Disk Administrator snap-in. Volumes can be created on both GPT and
MBR disks, and both kinds of disks can be mixed in the same dynamic disk group.

Starting with Windows XP, there is no FTdisk set support on Windows for MBR or GPT disks. The only support for
logical volumes is through dynamic disks.

Yes, Microsoft offers MBR2GPT.exe which converts disks from MBR to GPT.

NTFS is recommended on all basic data partitions and all dynamic volumes. Windows Setup and the Disk
Management snap-in offer only NTFS. To circumvent that, the partition or volume must be formatted explicitly via
the Format command-line tool.

You can create a GPT disk only on an empty, unpartitioned disk (raw disk or empty MBR disk). For more
information about creating GPT disks, see Using GPT Drives.

You can convert an existing partition format to another format. For more information, see the following TechNet
articles:

Change a Master Boot Record Disk into a GUID Partition Table Disk
Change a GUID Partition Table Disk into a Master Boot Record Disk

No. The Disk and Partition GUIDs will no longer be unique. This must never happen. You can make a sector-by-
sector copy of the contents of ESP or basic data partitions.

Yes. However, there are some key caveats. The OEM Preinstallation Kit (OPK) initializes the Disk and Partition
GUIDs to zero. On first boot of Windows, the operating system generates unique GUIDs. The OPK only supports
generation of ESP, MSR, and basic data partitions.

If an application has recorded any Disk or Partition GUIDs it may break. Any applications, drivers, utilities, or
firmware implementations supplied by system manufacturers or application vendors that rely on GUIDs should be
capable of handling GUIDs that change from the OPK initialization values to those generated by the operating
system.

https://docs.microsoft.com/en-us/windows/deployment/mbr-to-gpt
https://msdn.microsoft.com/en-us/windows/hardware/gg463524
https://technet.microsoft.com/library/cc725671.aspx
https://technet.microsoft.com/library/cc725797.aspx


What is the Diskpart.efi MAKE command?What is the Diskpart.efi MAKE command?

What happens if a duplicate Disk or Partition GUID is detected?What happens if a duplicate Disk or Partition GUID is detected?

It is a way for OEMs to simplify operating system preinstallation and system recovery. This command can easily be
extended to create a "default" disk configuration for the platform. For example, the system manufacturer could
extend the MAKE command to automatically partition the boot drive with an ESP, MSR, an OEM-specific partition,
and one basic data partition.

For example, consider a possible disk configuration called BOOT_DISK. In the event of business failure recovery,
MAKE BOOT_DISK would allow the customer to completely repartition a boot disk to the original factory defaults.

Windows will generate new GUIDs for any duplicate Disk GUID, MSR Partition GUID, or MSR basic data GUID
upon detection. This is similar to the duplicate MBR signature handling in Windows 2000. Duplicate GUIDs on a
dynamic container or database partition cause unpredictable results.



Secure Boot
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Windows Secure Boot Key Creation and Management
Guidance

Secure Boot Key Generation and Signing Using HSM (Example)

UEFI Validation Option ROM Validation Guidance

Disabling Secure Boot How to disable Secure Boot

Secure Boot isn't configured correctly: troubleshooting How to troubleshoot Secure Boot

BCD System Store Settings for UEFI BCD system store settings for UEFI

Validating Windows UEFI Firmware Update Platform
Functionality

How to validate Windows UEFI firmware update platform
functionality

This section covers how to work with Secure Boot in Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/secure-boot-landing.md


 

Windows Secure Boot Key Creation and
Management Guidance
5/11/2018 • 40 minutes to read • Edit Online

1. Secure Boot, Windows and Key Management

Vishal Manan, Architect, OEM Consulting, vmanan@microsoft.com

Arie van der Hoeven, Architect, OEM Consulting, ariev@microsoft.com

This document helps guide OEMs and ODMs in creation and management of the Secure Boot keys and
certificates in a manufacturing environment. It addresses questions related to creation, storage and retrieval of
Platform Keys (PKs), secure firmware update keys, and third party Key Exchange Keys (KEKs).

Note: These steps are not specific to PC OEMs. Enterprises and customers can also use these steps to configure
their servers to support Secure Boot.

Windows requirements for UEFI and Secure Boot can be found in the Windows Hardware Certification
Requirements. This paper does not introduce new requirements or represent an official Windows program. It is
intended as guidance beyond certification requirements, to assist in building efficient and secure processes for
creating and managing Secure Boot Keys. This is important because UEFI Secure Boot is based on the usage of
Public Key Infrastructure to authenticate code before allowed to execute.

The reader is expected to know the fundamentals of UEFI, basic understanding of Secure Boot (Chapter 27 of the
UEFI specification), and PKI security model.

Requirements, tests, and tools validating Secure Boot on Windows are available today through the Windows
Hardware Certification Kit (HCK). However, these HCK resources do not address creation and management of
keys for Windows deployments. This paper addresses key management as a resource to help guide partners
through deployment of the keys used by the firmware. It is not intended as prescriptive guidance and does not
include any new requirements.

On this page:

1. Secure Boot, Windows and Key Management contains information on boot security and PKI architecture
as it applies to Windows and Secure Boot.

2. Key Management Solutions is intended to help partners design a key management and design solution
that fits their needs.

3. Summary and Resources includes appendices, checklists, APIs, and other references.

This document serves as a starting point in developing customer ready PCs, factory deployment tools and key
security best practices.

The UEFI (Unified Extensible Firmware Interface) specification defines a firmware execution authentication
process called Secure Boot. As an industry standard, Secure Boot defines how platform firmware manages
certificates, authenticates firmware, and how the operating system interfaces with this process.

Secure Boot is based on the Public Key Infrastructure (PKI) process to authenticate modules before they are
allowed to execute. These modules can include firmware drivers, option ROMs, UEFI drivers on disk, UEFI
applications, or UEFI boot loaders. Through image authentication before execution, Secure Boot reduces the risk
of pre-boot malware attacks such as rootkits. Microsoft relies on UEFI Secure Boot in Windows 8 and above as

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance.md
mailto:vmanan@microsoft.com
mailto:ariev@microsoft.com
http://go.microsoft.com/fwlink/p/?linkid=320504
http://go.microsoft.com/fwlink/p/?LinkID=220187
http://go.microsoft.com/fwlink/p/?linkid=254893


1.1 Public-Key Infrastructure (PKI) and Secure Boot1.1 Public-Key Infrastructure (PKI) and Secure Boot

part of its Trusted Boot security architecture to improve platform security for our customers. Secure Boot is
required for Windows 8 and above client PCs, and for Windows Server 2016 as defined in the Windows
Hardware Compatibility Requirements.

The Secure Boot process works as follows and as shown in Figure 1:

1. Firmware Boot Components: The firmware verifies the OS loader is trusted (Windows or another
trusted operating system.)

2. Windows boot components: BootMgr, WinLoad, Windows Kernel Startup. Windows boot
components verify the signature on each component. Any non-trusted components will not be loaded and
instead will trigger Secure Boot remediation.

Antivirus and Antimalware Software initialization: This software is checked for a special
signature issued by Microsoft verifying that it is a trusted boot critical driver, and will launch early in
the boot process.

Boot Critical Driver initialization: The signatures on all Boot-critical drivers are checked as part
of Secure Boot verification in WinLoad.

3. Additional OS Initialization

4. Windows Logon Screen

Figure 1: Windows Trusted Boot Architecture

Implementation of UEFI Secure Boot is part of Microsoft’s Trusted Boot Architecture, introduced in Windows 8.1.
A growing trend in the evolution of malware exploits is targeting the boot path as a preferred attack vector. This
class of attack has been difficult to guard against, since antimalware products can be disabled by malicious
software that prevents them from loading entirely. With Windows Trusted Boot architecture and its establishment
of a root of trust with Secure Boot, the customer is protected from malicious code executing in the boot path by
ensuring that only signed, certified “known good” code and boot loaders can execute before the operating system
itself loads.

The PKI establishes authenticity and trust in a system. Secure Boot leverages PKI for two high-level purposes:

1. During boot to determine if early boot modules are trusted for execution.

2. To authenticate requests to service requests include modification of Secure Boot databases and updates to
platform firmware.

A PKI consists of:



1.2 Public Key Cryptography1.2 Public Key Cryptography

A certificate authority (CA) that issues the digital certificates.

A registration authority which verifies the identity of users requesting a certificate from the CA.

A central directory in which to store and index keys.

A certificate management system.

Public key cryptography uses a pair of mathematically related cryptographic keys, known as the public and private
key. If you know one of the keys, you cannot easily calculate what the other one is. If one key is used to encrypt
information, then only the corresponding key can decrypt that information. For Secure Boot, the private key is
used to digitally sign code and the public key is used to verify the signature on that code to prove its authenticity.
If a private key is compromised, then systems with corresponding public keys are no longer secure. This can lead
to boot kit attacks and will damage the reputation of the entity responsible for ensuring the security of the private
key.

In a Secure Boot public key system you have the following:

1.2.1 RSA 2048 Encryption

RSA-2048 is an asymmetric cryptographic algorithm. The space needed to store an RSA-2048 modulus in
raw form is 2048 bits.

1.2.2 Self-signed certificate

A certificate signed by the private key that matches the public key of the certificate is known as a self-
signed certificate. Root certification authority (CA) certificates fall into this category.

1.2.3 Certification Authority

The certification authority (CA) issues signed certificates that affirm the identity of the certificate subject
and bind that identity to the public key contained in the certificate. The CA signs the certificate by using its
private key. It issues the corresponding public key to all interested parties in a self-signed root CA
certificate.

In Secure Boot, Certification Authorities (CAs) include the OEM (or their delegates) and Microsoft. The CAs
generate the key pairs that form the root of trust and then use the private keys to sign legitimate operations
such as allowed early boot EFI modules and firmware servicing requests. The corresponding public keys
are shipped embedded into the UEFI firmware on Secure Boot-enabled PCs and are used to verify these
operations.

(More information on usage of CAs and key exchanges is readily available on the internet which relates to
the Secure Boot model.)

1.2.4 Public Key

The public Platform Key ships on the PC and is accessible or “public”. In this document we will use the
suffix “pub” to denote public key. For example, PKpub denotes the public half of the PK.

1.2.5 Private Key

For PKI to work the private key needs to be securely managed. It should be accessible to a few highly
trusted individuals in an organization and located in a physically secure location with strong access policy
restrictions in place. In this document we will use the suffix “priv” to denote private key. For example, the
PKpriv indicates private half of the PK.

1.2.6 Certificates

The primary use for digital certificates is to verify the origin of signed data, such as binaries etc. A common



1.3 Secure Boot PKI requirements1.3 Secure Boot PKI requirements

use of certificates is for internet message security using Transport Layer Security (TLS) or Secure Sockets
Layer (SSL). Verifying the signed data with a certificate lets the recipient know the origin of the data and if
it has been altered in transit.

A digital certificate in general contains, at a high level, a distinguished name (DN), a public key, and a
signature. The DN identifies an entity -- a company, for example -- that holds the private key that matches
the public key of the certificate. Signing the certificate with a private key and placing the signature in the
certificate ties the private key to the public key.

Certificates can contain some other types of data. For example, an X.509 certificate includes the format of
the certificate, the serial number of the certificate, the algorithm used to sign the certificate, the name of the
CA that issued the certificate, the name and public key of the entity requesting the certificate, and the CA's
signature.

1.2.7 Chaining certificates

From: Certificate chains:

Figure 2: Three-certificate chain

User certificates are often signed by a different private key, such as a private key of the CA. This constitutes
a two-certificate chain. Verifying that a user certificate is genuine involves verifying its signature, which
requires the public key of the CA, from its certificate. But before the public key of the CA can be used, the
enclosing CA certificate needs to be verified. Because the CA certificate is self-signed, the CA public key is
used to verify the certificate.

A user certificate need not be signed by the private key of the root CA. It could be signed by the private key
of an intermediary whose certificate is signed by the private key of the CA. This is an instance of a three-
certificate chain: user certificate, intermediary certificate, and CA certificate. But more than one
intermediary can be part of the chain, so certificate chains can be of any length.

The UEFI-defined root of trust consists of the Platform Key and any keys an OEM or ODM includes in the
firmware core. Pre-UEFI security and a root of trust are not addressed by the UEFI Secure Boot process, but
instead by National Institute of Standards and Technology (NIST), and Trusted Computing Group (TCG)
publications referenced in this paper.

1.3.1 Secure Boot requirements

You’ll need to consider the following parameters for implementing Secure Boot:

Customer requirements

Windows Hardware Compatibility requirements

Key generation and management requirements.

You would need to pick hardware for Secure Boot key management like Hardware Security Modules
(HSMs), consider special requirements on PCs to ship to governments and other agencies and finally the
process of creating, populating and managing the life cycle of various Secure Boot keys.

1.3.2 Secure Boot related keys

The keys used for Secure Boot are below:

http://go.microsoft.com/fwlink/?LinkId=321183


Figure 3: Keys related to Secure Boot

Figure 3 above represents the signatures and keys in a PC with Secure Boot. The platform is secured
through a platform key that the OEM installs in firmware during manufacturing. Other keys are used by
Secure Boot to protect access to databases that store keys to allow or disallow execution of firmware.

The authorized database (db) contains public keys and certificates that represent trusted firmware
components and operating system loaders. The forbidden signature database (dbx) contains hashes of
malicious and vulnerable components as well as compromised keys and certificates and blocks execution of
those malicious components. The strength of these policies is based on signing firmware using
Authenticode and Public Key Infrastructure (PKI). PKI is a well-established process for creating, managing,
and revoking certificates that establish trust during information exchange. PKI is at the core of the security
model for Secure Boot.

Below are more details on these keys.

1.3.3 Platform Key (PK)

As per section 27.5.1 of the UEFI 2.3.1 Errata C, the platform key establishes a trust relationship between
the platform owner and the platform firmware. The platform owner enrolls the public half of the key
(PKpub) into the platform firmware as specified in Section 7.2.1 of the UEFI 2.3.1 Errata C. This step
moves the platform into user mode from setup mode. Microsoft recommends that the Platform Key be of
type EFI_CERT_X509_GUID with public key algorithm RSA, public key length of 2048 bits, and signature
algorithm sha256RSA. The platform owner may use type EFI_CERT_RSA2048_GUID if storage space is a
concern. Public keys are used to check signatures as described earlier in this document. The platform owner
can later use the private half of the key (PKpriv):

To change platform ownership you must put the firmware into UEFI defined setup mode which
disables Secure Boot. We recommend reverting to setup mode only if there is a need to do this
during manufacturing.

For desktop PC, OEMs manage PK and necessary PKI associated with it. For Servers, OEMs by
default manage PK and necessary PKI. Enterprise customers or Server customers can also
customize PK, replacing the OEM-trusted PK with a custom-proprietary PK to lock down the trust in
UEFI Secure Boot firmware to itself.

1.3.3.1 To enroll or update a Key Exchange Key (KEK) Enrolling the Platform Key

The platform owner enrolls the public half of the Platform Key (PKpub) by calling the UEFI Boot Service
SetVariable() as specified in Section 7.2.1 of UEFI Spec 2.3.1 errata C, and resetting the platform. If the
platform is in setup mode, then the new PKpub shall be signed with its PKpriv counterpart. If the platform
is in user mode, then the new PKpub must be signed with the current PKpriv. If the PK is of type
EFI_CERT_X509_GUID , then this must be signed by the immediate PKpriv, not a private key of any
certificate issued under the PK.

1.3.3.2 Clearing the Platform Key

The platform owner clears the public half of the Platform Key (PKpub) by calling the UEFI Boot Ser¬vice
SetVariable() with a variable size of 0 and resetting the platform. If the platform is in setup mode, then the
empty variable does not need to be authenticated. If the platform is in user mode, then the empty variable



must be signed with the current PKpriv; see Section 7.2(Variable Services) under UEFI specification 2.3.1
Errata C for details. It is strongly recommended that the production PKpriv never be used to sign a package
to reset the platform since this allows Secure Boot to be disabled programmatically. This is primarily a pre-
production test scenario.

The platform key may also be cleared using a secure platform-specific method. In this case, the global
variable Setup Mode must also be updated to 1.

Figure 4: Platform Key State diagram

1.3.3.3 PK generation

As per UEFI recommendations, the public key must be stored in non-volatile storage which is tamper and
delete resistant on the PC. The Private keys stay secure at Partner or in the OEM’s Security Office and only
the public key is loaded onto the platform. There are more details under section 2.2.1 and 2.3.

The number of PK generated is at the discretion of the Platform owner (OEM). These keys could be:

1. One per PC. Having one unique key for each device. This may be required for government agencies,
financial institutions, or other server customers with high-security needs. It may require additional
storage and crypto processing power to generate private and public keys for large numbers of PCs.
This adds the complexity of mapping devices with their corresponding PK when pushing out
firmware updates to the devices in the future. There are a few different HSM solutions available to
manage large number of keys based on the HSM vendor. For more info, see Secure Boot Key
Generation Using HSM.

2. One per model. Having one key per PC model. The tradeoff here is that if a key is compromised all
the machines within the same model would be vulnerable. This is recommended by Microsoft for
desktop PCs.

3. One per product line. If a key is compromised a whole product line would be vulnerable.

4. One per OEM. While this may be the simplest to set up, if the key is compromised, every PC you
manufacture would be vulnerable. To speed up operation on the factory floor, the PK and potentially
other keys could be pre-generated and stored in a safe location. These could be later retrieved and
used in the assembly line. Chapters 2 and 3 have more details.

1.3.3.4 Rekeying the PK

This may be needed if the PK gets compromised or as a requirement by a customer that for security
reasons may decide to enroll their own PK.

Rekeying could be done either for a model or PC based on what method was selected to create PK. All the
newer PCs will get signed with the newly created PK.

Updating the PK on a production PC would require either a variable update signed with the existing PK
that replaces the PK or a firmware update package. An OEM could also create a SetVariable() package and
distribute that with a simple application such as PowerShell that just changes the PK. The firmware update
package would be signed by the secure firmware update key and verified by firmware. If doing a firmware
update to update the PK, care should be taken to ensure the KEK, db, and dbx are preserved.

On all PCs, it is recommended to not use the PK as the secure firmware update key. If the PKpriv is
compromised then so is the secure firmware update key (since they are the same). In this case the update
to enroll a new PKpub might not be possible since the process of updating has also been compromised.

http://go.microsoft.com/fwlink/p/?LinkID=220187
http://go.microsoft.com/fwlink/?LinkId=321184


On SOCs PCs, there is another reason to not use the PK as the secure firmware update key. This is because
the secure firmware update key is permanently burnt into fuses on PCs that meet Windows Hardware
Certification requirements.

1.3.4 Key Exchange Key (KEK)Key exchange keys establish a trust relationship between the operating
system and the platform firmware. Each operating system (and potentially, each 3rd party application
which need to communicate with platform firmware) enrolls a public key (KEKpub) into the platform
firmware.

1.3.4.1 Enrolling Key Exchange Keys

Key exchange keys are stored in a signature database as described in 1.4 Signature Databases (Db and
Dbx). The signature database is stored as an authenticated UEFI variable.

The platform owner enrolls the key exchange keys by either calling SetVariable() as specified in Section
7.2(Variable Services) under UEFI specification 2.3.1 Errata C. with the EFI_VARIABLE_APPEND_WRITE
attribute set and the Data parameter containing the new key(s), or by reading the database using
GetVariable(), appending the new key exchange key to the existing keys and then writing the database
using SetVariable()as specified in Section 7.2(Variable Services) under UEFI specification 2.3.1 Errata C
without the EFI_VARIABLE_APPEND_WRITE attribute set.

If the platform is in setup mode, the signature database variable does not need to be signed but the
parameters to the SetVariable() call shall still be prepared as specified for authenticated variables in Section
7.2.1. If the platform is in user mode, the signature database must be signed with the current PKpriv

1.3.4.2 Clearing the KEK

It is possible to “clear” (delete) the KEK. Note that if the PK is not installed on the platform, “clear” requests
are not required to be signed. If they are signed, then to clear the KEK requires a PK-signed package, and to
clear either db or dbx requires a package signed by any entity present in the KEK.

1.3.4.3 Microsoft KEK

The Microsoft KEK is required to enable revocation of bad images by updating the dbx and potentially for
updating db to prepare for newer Windows signed images.

Include the Microsoft Corporation KEK CA 2011 in the KEK database, with the following values:

SHA-1 cert hash: 31 59 0b fd 89 c9 d7 4e d0 87 df ac 66 33 4b 39 31 25 4b 30 .

SignatureOwner GUID: {77fa9abd-0359-4d32-bd60-28f4e78f784b} .

Microsoft will provide the certificate to partners and it can be added either as an
EFI_CERT_X509_GUID or an EFI_CERT_RSA2048_GUID type signature.

The Microsoft KEK certificate can be downloaded from: http://go.microsoft.com/fwlink/?LinkId=321185.

1.3.4.4 KEKDefault The platform vendor may provide a default set of Key Exchange Keys in the
KEKDefault variable. Please reference UEFI specification section 27.3.3 for more information.

1.3.4.5 OEM/3rd party KEK - adding multiple KEK

Customers and Platform Owners don’t need to have their own KEK. On non-Windows RT PCs the OEM
may have additional KEKs to allow additional OEM or a trusted 3rd party control of the db and dbx.

1.3.5 Secure Boot firmware update keyThe Secure firmware update key is used to sign the firmware
when it needs to be updated. This key has to have a minimum key strength of RSA-2048. All firmware
updates must be signed securely by the OEM, their trusted delegate such as the ODM or IBV (Independent
BIOS Vendor), or by a secure signing service.

http://go.microsoft.com/fwlink/p/?LinkID=220187
http://go.microsoft.com/fwlink/p/?LinkID=220187
http://go.microsoft.com/fwlink/?LinkId=321185
http://go.microsoft.com/fwlink/p/?LinkID=220187


As per NIST publication 800-147 Field Firmware Update must support all elements of guidelines:

Any update to the firmware flash store must be signed by creator.

Firmware must check signature of the update.

1.3.6 Creation of keys for Secure Firmware Update

The same key will be used to sign all firmware updates since the public half will be residing on the PC. You
could also sign the firmware update with a key which chains to Secure Firmware update key.

There could be one key per PC like PK or one per model or one per product line. If there is one key per PC
that would mean that millions of unique update packages will need to be generated. Please consider based
on resource availability what method would work for you. Having a key per model or product line is a good
compromise.

The Secure Firmware Update public key (or its hash to save space) would be stored in some protected
storage on the platform – generally protected flash (PC) or one-time-programmable fuses (SOC).

If only the hash of this key is stored (to save space), then the firmware update will include the key, and the
first stage of the update process will be verifying that the public key in the update matches the hash stored
on the platform.

Capsules are a means by which the OS can pass data to UEFI environment across a reboot. Windows calls
the UEFI UpdateCapsule() to deliver system and PC firmware updates. At boot time prior to calling
ExitBootServices(),Windows will pass in any new firmware updates found in the Windows Driver Store into
UpdateCapsule(). UEFI system firmware can use this process to update system and PC firmware. By
leveraging this Windows firmware support an OEM can rely on the same common format and process for
updating firmware for both system and PC firmware. Firmware must implement the ACPI ESRT table in
order to support UEFI UpdateCapsule() for Windows.

For details on implementing support for the Windows UEFI Firmware Update Platform consult the
following documentation: Windows UEFI Firmware Update Platform.

Update capsules can be in memory or on the disk. Windows supports in memory updates.

1.3.6.1 Capsule (Capsule-in-Memory)

Following is the flow of events for an In-memory update capsule to work.

1. A capsule is put in memory by an application in the OS

2. Mailbox event is set to inform BIOS of pending update

3. PC reboots, verifies the capsule image and update is performed by the BIOS

1.3.7 Workflow of a typical firmware update

1. Download and install the firmware driver.

2. Reboot.

3. OS Loader detects and verifies the firmware.

4. OS Loader passes a binary blob to UEFI.

5. UEFI performs the firmware update (This process is owned by the silicon vendor).

6. OS Loader detection completes successfully.

7. OS finishes booting.

http://go.microsoft.com/fwlink/?LinkId=321186


  1.4 Signature Databases (Db and Dbx)1.4 Signature Databases (Db and Dbx)

1.5 Keys Required for Secure Boot on all PCs1.5 Keys Required for Secure Boot on all PCs

KEY/DB NAME VARIABLE OWNER NOTES

1.4.1 Allowed Signature database (db)

The contents of the EFI _IMAGE_SECURITY_DATABASE db control what images are trusted when
verifying loaded images. The database may contain multiple certificates, keys, and hashes in order to
identify allowed images.

The Microsoft Windows Production PCA 2011 with a SHA-1 Cert Hash of 
58 0a 6f 4c c4 e4 b6 69 b9 eb dc 1b 2b 3e 08 7b 80 d0 67 8d  must be included in db in order to allow the

Windows OS Loader to load. The Windows CA can be downloaded from here:
http://go.microsoft.com/fwlink/p/?linkid=321192.

On non-Windows RT PCs the OEM should consider including the Microsoft Corporation UEFI CA 2011
with a SHA-1 Certificate Hash of 46 de f6 3b 5c e6 1c f8 ba 0d e2 e6 63 9c 10 19 d0 ed 14 f3 . Signing
UEFI drivers and applications with this certificate will allow UEFI drivers and applications from 3rd parties
to run on the PC without requiring additional steps for the user. The UEFI CA can be downloaded from
here: http://go.microsoft.com/fwlink/p/?linkid=321194.

On non-Windows RT PCs the OEM may also have additional items in the db to allow other operating
systems or OEM-approved UEFI drivers or apps, but these images must not compromise the security of
the PC in any way.

1.4.2 DbDefault: The platform vendor may provide a default set of entries for the Signature Database in
the dbDefault variable. For more information see section 27.5.3 in the UEFI specification.

1.4.3 Forbidden Signature Database (dbx)

The contents of EFI_IMAGE_SIGNATURE_DATABASE1 dbx must be checked when verifying images
before checking db and any matches must prevent the image from executing. The database may contain
multiple certificates, keys, and hashes in order to identify forbidden images. The Windows Hardware
Certification Requirements state that a dbx must be present, so any dummy value, such as the SHA-256
hash of 0 , may be used as a safe placeholder until such time as Microsoft begins delivering dbx updates.
Click Here to download the latest UEFI revocation list from Microsoft.

1.4.4 DbxDefault: The platform vendor may provide a default set of entries for the Signature Database in
the dbxDefault variable. For more information see section 27.5.3 in the UEFI specification.

PKpub PK OEM PK – 1 only. Must be
RSA 2048 or stronger.

Microsoft Corporation
KEK CA 2011

KEK Microsoft Allows updates to db
and dbx:

http://go.microsoft.com/
fwlink/p/?
linkid=321185.

Microsoft Windows
Production CA 2011

db Microsoft This CA in the Signature
Database (db) allows
Windows to boot:
http://go.microsoft.com/
fwlink/?LinkId=321192.

http://go.microsoft.com/fwlink/p/?linkid=321192
http://go.microsoft.com/fwlink/p/?linkid=321194
http://www.uefi.org/revocationlistfile
http://go.microsoft.com/fwlink/p/?linkid=321185
http://go.microsoft.com/fwlink/?LinkId=321192


 

KEY/DB NAME VARIABLE OWNER NOTES

2. Key Management Solutions

2.1 Metrics used2.1 Metrics used

Forbidden Signature
Database

dbx Microsoft List of known bad Keys,
CAs or images from
Microsoft

Secure firmware update
key

OEM Recommendation is to
have this key be
different from PK

Table 1: Keys/db needed for Secure Boot

Below are given some of the metrics we used for comparison.

The following metrics can help you select a HSM PC based on the requirements of UEFI specification 2.3.1 Errata
C and your needs.

Public Key Infrastructure (PKI) related

Does it support RSA 2048 or higher? - The UEFI specification 2.3.1 Errata C recommends the keys to be
RSA-2048 or better.

Does it have the ability to generate keys and sign?

How many keys can it store? Does it store keys on HSM or an attached server?

Authentication method for key retrieval.

Some PCs support multiple authentication entities to be present for key retrieval.

Pricing

What is the price point? HSMs can range in price from $1,500 to $70,000 depending on available features.

Manufacturing environment

Speed of operation on factory floor. Crypto processors can speed up key creation and access.

Ease of setup, deployment, maintenance.

Skillset and training required?

Network access for backup and High Availability

Standards and Compliance

What level of FIPS compliance does it have? Is it tamper resistant?

Support for other standards, for example, MS crypto APIs.

Does it meet government and other agency requirements?

Reliability and disaster recovery

Does it allow for Key Backup?

Backups can be stored both onsite in a safe location that is a different physical location than the CA

http://go.microsoft.com/fwlink/p/?LinkID=220187
http://go.microsoft.com/fwlink/p/?LinkID=220187


2.2 Key Management Options2.2 Key Management Options

computer and HSM and /or at an offsite location.

Does it allow for High Availability for disaster recovery?

2.2.1 Hardware Security Module (HSM)

Based on the above criteria this is probably the most suitable and secure solution. Most HSM have FIPS
140-2 level 3 compliance. FIPS 140-2 level 3 compliance is strict on authentication and requires that keys
are not exported or imported from the HSM.

They support multiple ways of key storage. They could be stored either locally on the HSM itself or on the
server attached to the HSM. On the server the keys are encrypted and stored and is preferable for
solutions which requires lots of keys to be stored.

The cryptographic module security policy shall specify a physical security policy, including physical security
mechanisms that are implemented in a cryptographic module such as, tamper-evident seals, locks, tamper
response and zeroization switches, and alarms. It also allows specifying actions required by the operator(s)
to ensure that physical security is maintained such as periodic inspection of tamper-evident seals or testing
of tamper response and zeroization switches.

2.2.1.1 Network HSM

This solution is the best in its class in terms of security, adherence to standards, key generation, storage and
retrieval. Most of these PCs support high availability and have ability to backup keys.

The costs of these products can be in tens of thousands of dollars based on the extra services they offer.

2.2.1.2 Standalone HSM

These work great with standalone servers. One can use Microsoft CAPI and CNG or any other secure API
supported by HSM. These HSMs come in variety of form factors supporting USB, PCIe and PCMCIA
buses.

They optionally support key backup and high availability.

2.2.2 Custom solutions providers

Public Key cryptography can be challenging and require understanding of cryptographic concepts which
maybe new. There are custom solution providers who could help with the getting Secure Boot to work in
the manufacturing environment.

There are varieties of custom solutions offered by BIOS vendors, HSM companies and PKI consulting
companies to get Secure Boot PKI working in the manufacturing environment.

Some of the providers are listed below:

2.2.2.1 BIOS vendors

There are some BIOS vendors which may be able to provide custom solutions.

2.2.2.2 HSM vendors

Some HSM vendors may be able to provide custom consulting. For more info, see Secure Boot Key
Generation and Signing Using HSM (Example).

2.2.3 Trusted Platform Module (TPM)

A Trusted Platform Module (TPM) is a hardware chip on the motherboard that stores cryptographic keys
used for encryption. Many computers include a TPM, but if the PC doesn’t include it, it is not feasible to
add one. Once enabled, the Trusted Platform Module can help secure full disk encryption products such as



2.3 HSM Key generation and storage for Secure Boot keys2.3 HSM Key generation and storage for Secure Boot keys

makecert -pe -ss MY -$ individual -n "CN=your name here" -len 2048 -r

Microsoft BitLocker capabilities. It keeps hard drives locked, or sealed, until the PC completes a system
verification or authentication process.

The TPM can generate, store, and protect keys used in the encryption and decryption process.

The drawbacks of TPMs are that it may not have fast crypto processors to speed up processing in the
manufacturing environment. They also are not suitable for storing large number of keys. Backup and high
availability and standards compliance to FIPS 140-2 level 3 may not be available.

2.2.4 Smart Cards

A smart card can generate and store keys. They do share some features which HSM support like
authentication and tamper proofing, but they don’t include much key storage or backup. They require
manual intervention and may not be suitable for automation and use in production environment as the
performance maybe low.

The drawbacks of Smart cards are similar to TPMs. They may not have fast crypto processors to speed up
processing in the manufacturing environment. They also are not suitable for storing large number of keys.
Backup and high availability and standards compliance to FIPS 140-2 level 3 may not be available.

2.2.5 Extended Validation Certificate

EV Certificates are high assurance certificates whose private keys are stored in hardware tokens. This helps
establish stronger key management practices. EV certificates have the same drawbacks as Smart cards.

2.2.6 Software-centric approaches (NOT RECOMMENDED)

Use crypto APIs for key management. This may involve storing a key in a key container on an encrypted
hard drive and possible for additional sandboxing and security use a Virtual machine.

These solutions are not as secure as using an HSM and expose a higher attack vector.

2.2.6.1 Makecert (NOT RECOMMENDED)

Makecert is a Microsoft tool and can be used as follows for key generation. To make sure that the attack
surface is minimized you may need to “air gap” the PC. The PC that has the PKpriv on should not be
connected to the network. It should be in a secure location and ideally should at least use a smart card
reader if not a real HSM.

For more info, see Certificate Creation Tool (Makecert.exe).

This solution is not recommended.

2.3.1 Storing Private keys

The space requirement for each RSA-2048 key is 2048 bits. The actual location of the storage of the keys
depends on the solution chosen. HSM are a good way of storing keys.

The physical location of the PCs on the factory floor would need to be a protected area with limited user
access like a secure cage.

Depending on your requirements these keys could also be stored in a diverse geographical location or
backed up in a different location.

The rekeying requirements for these keys could vary based on the customer (see Appendix A for Federal
bridge certificate authority rekeying guidelines).

http://go.microsoft.com/fwlink/p/?linkid=211849


2.4 Secure Boot and 3rd party signing2.4 Secure Boot and 3rd party signing

These could be done once per year. You may need to have access to these keys for up to 30 years
(depending on the rekeying requirements etc.).

2.3.2 Retrieving the private Keys

The keys may need to be retrieved for many reasons.

1. The PK may need to be retrieved to issue an updated PK due to it being compromised or to adhere
to government /other agency regulations.

2. KEKpri will be used to update the db and dbx.

3. Secure firmware update key –pri will be used to sign newer updates.

2.3.3 Authentication

As per FIPS 140-2 authentication is based on level of access.

Level 2

Security Level 2 requires, at a minimum, role-based authentication in which a cryptographic module
authenticates the authorization of an operator to assume a specific role and perform a corresponding set of
services.

Level 3

Security Level 3 requires identity-based authentication mechanisms, enhancing the security provided by
the role-based authentication mechanisms specified for Security Level 2. A cryptographic module
authenticates the identity of an operator and verifies that the identified operator is authorized to assume a
specific role and perform a corresponding set of services.

PCs like HSM’s support Security Level 3, which requires identity-based “k of m authentication”. This means
k entities are given access to the HSM with a token but at a given point at least k out of the m tokens need
to be present for authentication to work to get access to private keys from HSM.

For example, you could have 3 out of 5 tokens should be authenticated to access HSM. Those members
could be the security officers, transaction authorizer and/or members from Executive Management.

HSM Tokens

You could have a policy on the HSM which require the token to be present:

Locally

Remotely

Configured to be automated

As a good practice, please use a combination of token and per token password.

2.4.1 UEFI driver signing

UEFI Drivers must be signed by a CA or key in the db as described elsewhere in the document, or have the
hash of the driver image included in db. Microsoft will be providing a UEFI driver signing service similar to
the WHQL driver signing service using the Microsoft Corporation UEFI CA 2011. Any drivers signed by
this will run seamlessly on any PCs that include the Microsoft UEFI CA. It is also possible for an OEM to
sign trusted drivers and include the OEM CA in the db, or to include hashes of the drivers in the db. In all
cases a UEFI driver (Option ROM) shall not execute if it is not trusted in the db.

Any drivers that are included in the system firmware image do not need to be re-verified. Being part of the



 3. Summary and Resources

overall system image provides sufficient assurance that the driver is trusted on the PC.

Microsoft has this made available to anyone who wants to sign UEFI drivers. This certificate is part of the
Windows HCK Secure Boot tests. Follow [this blog]
((https://blogs.msdn.microsoft.com/windows_hardware_certification/2013/12/03/microsoft-uefi-ca-
signing-policy-updates/) to read more about UEFI CA signing policy and updates.

2.4.2 Boot loaders

The Microsoft UEFI driver signing certificate can be used for signing other OSs. For example, Fedora’s
Linux boot loader will be signed by it.

This solution doesn’t require any more certificates to be added to the key Db. In addition to being cost
effective, it can be used for any Linux distribution. This solution would work for any hardware which
supports Windows so it is useful for a wide range of hardware.

The UEFI-CA can be downloaded from here: http://go.microsoft.com/fwlink/p/?LinkID=321194. The
following links have more information on Windows HCK UEFI signing and submission:

Windows Dev Center Hardware Dashboard

Windows Certification Dashboard Administration

UEFI Firmware Signing

Windows Hardware Certification blog: UEFI signing CA update

This section intends to summarize the above sections and show a step by step approach:

1. Establish a secure CA or identify a partner to securely generate and store keys

If you are not using a 3rd party solution:

a. Install and configure the HSM software on the HSM server. Check your HSM reference
manual for installation instructions. The server will either be connected to a standalone or network
HSM.

For info about HSM configuration, see Section 2.2.1, 2.3 and Appendix C.

Most HSMs offer FIPS 140-2 level 2 and 3 compliance. Configure the HSM for either level 2 or level
3 compliance. Level 3 compliance has stricter requirements around authentication and key access
and hence is more secure. Level 3 is recommended.

b. Configure HSM for High Availability, Backup and Authentication. Check your HSM reference
manual.

Follow HSM provider guidelines on setting up HSM for High Availability and backup.

Also, Network HSMs typically have multiple network ports to segregate traffic; allowing a server to
communicate with network HSMs on a network separate from the regular production network.

Once team members who are part of the security team have been identified and tokens assigned to
them. You will need to setup HSM hardware for k-of-m authentication.

c. Secure Boot Keys and certificate pre-generation. See Sections 1.3 to 1.5

Use HSM APIs to pre-generate (generate in advance) the PK and Firmware Update Key and
certificates.

https://blogs.msdn.microsoft.com/windows_hardware_certification/2013/12/03/microsoft-uefi-ca-signing-policy-updates/
http://go.microsoft.com/fwlink/p/?LinkID=321194
http://go.microsoft.com/fwlink/p/?LinkID=321287
http://go.microsoft.com/fwlink/?LinkId=321286
http://go.microsoft.com/fwlink/?LinkId=321285
http://go.microsoft.com/fwlink/p/?linkid=398267


Required - PK (recommend 1 per model), Firmware Update key (recommend 1 per model),
Microsoft KEK, Db, DbxNOTE: The Microsoft KEK, db, and dbx don’t have to be generated by the
OEM and are mentioned for completeness.Optional - OEM/3rd party KEK db, dbx and any other
keys which would go into OEM Db.

2. Apply a Windows image to the PC.

3. Install Microsoft db and dbx. See Section 1.3.6 and Appendix B – Secure Boot APIs.

a. Install the Microsoft Windows Production PCA 2011 into db.

b. Install an empty dbx if Microsoft does not provide one. Windows will automatically update DBX to
the latest DBX through Windows Update on first reboot.

Note
Use PowerShell cmdlets which are part of the Windows HCK tests or use methods provided by BIOS
vendor.

4. Install Microsoft KEK. See Section 1.3.3.

Install Microsoft KEK into the UEFI KEK database

Caution
Use PowerShell cmdlets which are part of the Windows HCK tests or use methods provided by BIOS
vendor.

5. Optional step - OEM/3rd party secure boot components. See Section 1.3.4 and 1.4.

a. Identify if you have need for creating a OEM/3rd party KEK, db and dbx.

b. Sign OEM/3rd party db and dbx with OEM/3rd party KEK(generated earlier) using HSM API.

c. Install OEM/3rd party KEK, db and dbx.

6. UEFI driver signing – See Section 2.4.

If supporting add-in cards or other UEFI drivers/apps/bootloaders, install Microsoft Corporation UEFI
CA 2011 into UEFI db.

7. Secure boot firmware update key - See Section 1.3.5.

a. Non-Windows RT PCs only: Install the Secure firmware update public key or its hash to save space.

b. On SoC only, you may need to do something different, for example, burn Secure firmware update
key: public or its hash.

8. Enabling Secure Boot. See Appendix B – Secure Boot APIs.

a. Install the OEM/ODM PKpub (certificate preferred, but key is okay) into the UEFI PK.

b. Enroll the PK using Secure Boot API. The PC should be now enabled for Secure Boot.

Note
If you install the PK at the end, the MS KEK, db, dbx don’t need to be signed – no SignerInfo must be
present. This is a shortcut.

9. Testing Secure Boot: Execute any proprietary tests and Windows HCK tests as per instructions. See
Appendix B – Secure Boot APIs.

10. Ship platform: The PKpriv will likely never be used again, keep it safe.

11. Servicing: Future firmware updates are securely signed with the Secure Firmware Update “private” key



   

3.1 Resources3.1 Resources

Appendix A – Secure Boot PKI checklist for manufacturing

Appendix B – Secure Boot APIs

using the signing service.

Security Strategies White Paper - http://go.microsoft.com/fwlink/p/?linkid=321288

Windows HCK Submission -http://go.microsoft.com/fwlink/p/?linkid=321287

Below is a high-level checklist summarizing the steps needed for enabling Secure Boot on non-Windows RT PCs.

Setting up Secure Boot

1. Define security strategy (identify threats, define proactive and reactive strategy) as per the white paper in
section 4.

2. Identify security team as per the white paper in section 4.

3. Establish a secure CA or identify a partner (recommended solution) to securely generate and store keys.

4. Identify policy for how frequently you will be rekeying keys. This may depend on if you have any special
customer requirements like governments or other agencies.

5. Have a contingency plan in case the Secure Boot Key is compromised.

6. Identify how many PK and other keys will you be generating as per section 1.3.3 and 1.5.

This will be based on customer base, key storage solution and security of PCs.

You can skip steps 7-8 if you are using the recommended solution of using a 3rd party for key
management.

7. Procure server and hardware for key management. – network or standalone HSM per section 2.2.1.
Consider whether you will need one or several HSMs for high availability and your key back up strategy.

8. Identify at least 3-4 team members who will have an authentication token for authentication on HSM.

9. Use HSM or 3rd party to pre-generate Secure Boot-related keys and certificates. The keys will depend on
the PC type: SoC, Windows RT or non-Windows RT. For more info, see Sections 1.3 through 1.5.

10. Populate the firmware with the appropriate keys.

11. Enroll the Secure Boot Platform Key to enable Secure Boot. See Appendix B for more details.

12. Execute any proprietary tests and HCK Secure Boot tests as per instructions. See Appendix B for more
details.

13. Ship the PC. The PKpriv will likely never be used again, keep it safe.

Servicing (Updating firmware)

You may need to update firmware for several reasons such as updating an UEFI component or fixing Secure Boot
key compromise or periodic rekeying of Secure Boot keys.

For more info, see Section 1.3.5 and section 1.3.6.

1. Secure Boot API

The following APIs are related to UEFI/Secure Boot:

http://go.microsoft.com/fwlink/p/?linkid=321288
http://go.microsoft.com/fwlink/p/?linkid=321287


a. GetFirmwareEnvironmentVariableEx: Retrieves the value of the specified firmware environment
variable.

b. SetFirmwareEnvironmentVariableEx: Sets the value of the specified firmware environment variable.

c. GetFirmwareType: Retrieves the firmware type.

2. Setting PK

Use the Set-SecureBootUEFI cmdlet to turn on Secure Boot. After your code sets the PK, system
enforcement of Secure Boot does not take effect until the next reboot. Prior to the reboot, your code could
call GetFirmwareEnvironmentVariableEx() or the PowerShell cmdlet: Get-SecureBootUEFI to confirm the
contents of the Secure Boot databases.

3. Verification

You can use Msinfo32.exe or PowerShell cmdlets to check Secure Boot variable state. There is no WMI
interface. You could also test by having someone insert an incorrectly-signed bootable USB stick (for
example, from the Windows HCK Secure Boot Manual Logo Test) and verify that it fails to boot.

4. Secure Boot Powershell Cmdlets

Confirm-SecureBootUEFI: Is UEFI Secure Boot “ON”, True or False?

SetupMode == 0 && SecureBoot == 1

Set-SecureBootUEFI: Set or Append authenticated SecureBoot UEFI variables

Get-SecureBootUEFI: Get authenticated SecureBoot UEFI variable values

Format-SecureBootUEFI: Creates EFI_SIGNATURE_LISTs &
EFI_VARIABLE_AUTHENTICATION_2 serializations

5. Windows HCK and Secure Boot Instructions

The following steps apply to system tests and non-class driver PC tests.

a. Disable Secure Boot protections.

Enter your BIOS configuration and disable Secure Boot.

b. Install the HCK Client software.

c. Run all of the Windows HCK tests, except for the following:

BitLocker TPM and Recovery password tests with PCR[7]

BitLocker TPM and Recovery password tests for ARM PCs with Secure Boot

Secure Boot Logo Test

Secure Boot Manual Logo Test

d. Enter your BIOS configuration, enable Secure Boot, and restore Secure Boot to the Default
configuration.

e. Run the following BitLocker and Secure Boot tests:

BitLocker TPM and Recovery password tests with PCR[7]

BitLocker TPM and Recovery password tests for ARM PCs with Secure Boot

Secure Boot Logo Test (automated)

http://go.microsoft.com/fwlink/?LinkId=398262
http://go.microsoft.com/fwlink/?LinkId=398263
http://go.microsoft.com/fwlink/?LinkId=398264


f. Enter the BIOS configuration and clear the Secure Boot configuration. This restores the PC to Setup
Mode by deleting PK and other keys.

Note
Support for clearing is required for x86/x64 PCs.

g. Run the Secure Boot Manual Logo Test.

Note
Secure Boot requires Windows HCK signed or VeriSign drivers on non-Windows RT PCs

6. Windows HCK Secure Boot Logo Test (automated)

This test will check for proper out-of-box Secure Boot configuration. This includes:

Secure Boot is Enabled.

The PK is not a known, test PK.

KEK contains the production Microsoft KEK.

db contains the production Windows CA.

dbx present.

Many 1kB variables are created/deleted.

A 32kB variable is created/deleted.

7. Windows HCK Secure Boot manual test folder layout

The Windows HCK Secure Boot Manual Logo test folder layout is described below:

“\Test”  folder has the following:

Manufacturing and Servicing Test

Programmatically Enable Secure Boot in test configuration

Servicing Tests

Append a cert to db, verify function

Append a hash to dbx, verify function

Append a cert to dbx, verify function

Append 600+ hashes to dbx, verify size

Programmatically change the PK

“\Generate”  folder has scripts which show the following:

How test certificates were created

The test certificates and private keys are included

How all of the tests were created

Turning certificates and hashes into signed packages

You can run this yourself, substitute your own certificates

“\certs”  folder has all of the certificates you need to boot Windows:



-   `“ManualTests\example\OutOfBox”` folder has scripts which you can leverage for installation of Secure Boot 
on production PCs.

    The “ManualTests\\generate\\tests\\subcreate\_outofbox\_example.ps1” demonstrates how these examples were 
generated and have “TODO” sections when a partner can substitute their PK and other metadata.

Appendix C – Federal Bridge Certification Authority Certificate Policy
Assurance Mappings

Related topics

Note
Please don’t use the methodology used in “ManualTests\generate\TestCerts” to generate keys and
certificates. This is meant for Windows HCK test purposes only. It uses keys which are stored on disk
which is very insecure and not recommended. This is not meant for use in a production
environment.

1. Windows HCK UEFI signing and submission

The following links have more information:

Hardware Developer Center Dashboard

UEFI Firmware Signing

Windows Certification Dashboard Administration

Windows Hardware Certification blog: Microsoft UEFI CA Signing policy updates

1. Rudimentary

This level provides the lowest degree of assurance concerning identity of the individual. One of the primary
functions of this level is to provide data integrity to the information being signed. This level is relevant to
environments in which the risk of malicious activity is considered to be low. It is not suitable for
transactions requiring authentication, and is generally insufficient for transactions requiring confidentiality,
but may be used for the latter where certificates having higher levels of assurance are unavailable.

2. Basic

This level provides a basic level of assurance relevant to environments where there are risks and
consequences of data compromise, but they are not considered to be of major significance. This may
include access to private information where the likelihood of malicious access is not high. It is assumed at
this security level that users are not likely to be malicious.

3. Medium

This level is relevant to environments where risks and consequences of data compromise are moderate.
This may include transactions having substantial monetary value or risk of fraud, or involving access to
private information where the likelihood of malicious access is substantial.

4. High

This level is appropriate for use where the threats to data are high, or the consequences of the failure of
security services are high. This may include very high value transactions or high levels of fraud risk.

Secure Boot Key Generation and Signing Using HSM (Example)

UEFI Validation Option ROM Validation Guidance

http://go.microsoft.com/fwlink/p/?linkid=321287
http://go.microsoft.com/fwlink/p/?linkid=321285
http://go.microsoft.com/fwlink/p/?linkid=321286
http://go.microsoft.com/fwlink/?LinkId=398267


Secure Boot Overview

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview


Secure Boot Key Generation and Signing Using HSM
(Example)
5/11/2018 • 12 minutes to read • Edit Online

Requirements
Tools NeededTools Needed

Hardware Security Module (HSM)Hardware Security Module (HSM)

Approach

Find the Cryptographic Service Provider (CSP)Find the Cryptographic Service Provider (CSP)

Version 1.3

Here's an example of how to generate Secure Boot keys (PK and others) by using a hardware security module
(HSM).

You'll need to know the Secure Boot Public Key Infrastructure (PKI). For more info, see Windows 8.1 Secure Boot
Key Creation and Management Guidance.

certreq.exe – Available Inbox

certutil.exe – Available Inbox

Signtool.exe – Available in the latest Windows SDK

The whitepaper demonstrates the key generation using examples from the nCipher (now Thales) PCI HSM model
nC1003P/nC3023P/nC3033P and the SafeNet Luna HSMs. Most of the concepts apply to other HSM vendors as
well.

For other HSMs, contact your manufacturer for additional instructions on how to tailor your approach with the
HSM Cryptographic Service Provider (CSP).

We use the Microsoft certificate creation tool: certreq.exe to generate the Secure Boot Platform Key (PK) and
other keys needed for Secure Boot.

The certreq tool can be adapted to use an HSM by providing the Cryptographic Service Provider (CSP) to be the
HSM.

You can use either the certutil.exe tool or a tool used by the HSM to list the CSPs.

This example uses the certutil tool to show the CSPs on the Thales/nCipher HSM:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/secure-boot-key-generation-and-signing-using-hsm--example.md


C:\secureboot_training\certreq> certutil -csplist
Provider Name: Microsoft Base Cryptographic Provider v1.0
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft Base DSS and Diffie-Hellman Cryptographic Provider
Provider Type: 13 - PROV_DSS_DH

Provider Name: Microsoft Base DSS Cryptographic Provider
Provider Type: 3 - PROV_DSS

Provider Name: Microsoft Base Smart Card Crypto Provider
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft DH SChannel Cryptographic Provider
Provider Type: 18 - PROV_DH_SCHANNEL

Provider Name: Microsoft Enhanced Cryptographic Provider v1.0
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft Enhanced DSS and Diffie-Hellman Cryptographic Provider
Provider Type: 13 - PROV_DSS_DH

Provider Name: Microsoft Enhanced RSA and AES Cryptographic Provider
Provider Type: 24 - PROV_RSA_AES

Provider Name: Microsoft RSA SChannel Cryptographic Provider
Provider Type: 12 - PROV_RSA_SCHANNEL

Provider Name: Microsoft Strong Cryptographic Provider
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft Software Key Storage Provider

Provider Name: nCipher Security World Key Storage Provider

Provider Name: Microsoft Smart Card Key Storage Provider
CertUtil: -csplist command completed successfully.

C:\Program Files\nCipher\nfast\bin> cnglist --list-providers
Microsoft Primitive Provider
Microsoft Smart Card Key Storage Provider
Microsoft Software Key Storage Provider
Microsoft SSL Protocol Provider
nCipher Primitive Provider
nCipher Security World Key Storage Provider

For the SHA-256 digesting algorithm, use the CNG provider : 
"nCipher Security World Key Storage Provider" . Legacy providers do not support SHA-256 and are not

suitable for use with Secure Boot.

This example uses the built-in Thales/nCipher tool to list the CSP:

For the SHA-256 digesting algorithm, use the CNG provider : 
"nCipher Security World Key Storage Provider" . Legacy providers do not support SHA-256 and are not

suitable for use with Secure Boot.

This example uses the SafeNet Luna HSMs tool to list the CSP:



certreq.exe -new request.inf PK.cer

C:\>certutil -csplist
------------------------------------------------------------------------------------------
Provider Name: Luna Cryptographic Services for Microsoft Windows
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Luna enhanced RSA and AES provider for Microsoft Windows
Provider Type: 24 - PROV_RSA_AES

Provider Name: Luna SChannel Cryptographic Services for Microsoft Windows
Provider Type: 12 - PROV_RSA_SCHANNEL

Provider Name: Microsoft Base Cryptographic Provider v1.0
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft Base DSS and Diffie-Hellman Cryptographic Provider
Provider Type: 13 - PROV_DSS_DH

Provider Name: Microsoft Base DSS Cryptographic Provider
Provider Type: 3 - PROV_DSS

Provider Name: Microsoft Base Smart Card Crypto Provider
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft DH SChannel Cryptographic Provider
Provider Type: 18 - PROV_DH_SCHANNEL

Provider Name: Microsoft Enhanced Cryptographic Provider v1.0
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft Enhanced DSS and Diffie-Hellman Cryptographic Provider
Provider Type: 13 - PROV_DSS_DH

Provider Name: Microsoft Enhanced RSA and AES Cryptographic Provider
Provider Type: 24 - PROV_RSA_AES

Provider Name: Microsoft RSA SChannel Cryptographic Provider
Provider Type: 12 - PROV_RSA_SCHANNEL

Provider Name: Microsoft Strong Cryptographic Provider
Provider Type: 1 - PROV_RSA_FULL

Provider Name: Microsoft Software Key Storage Provider

Provider Name: Microsoft Smart Card Key Storage Provider

Provider Name: SafeNet Key Storage Provider
CertUtil: -csplist command completed successfully.
------------------------------------------------------------------------------------------

For SHA-256 digest algorithm you will need to use a CNG provider – “SafeNet Key Storage Provider”.
Legacy providers do not support SHA-256 and are not suitable for use with Secure Boot.

To generate the key:

Sample request.inf file:



[Version]
Signature= "$Windows NT$"
[NewRequest]
ValidityPeriod = Years
ValidityPeriodUnits = 6
Subject = "CN=Corporation TODO Platform Key,O=TODO Corporation,L=TODO_City,S=TODO_State,C=TODO_Country"
MachineKeySet = true
RequestType=Cert
Exportable =  FALSE 
HashAlgorithm = SHA256
KeyAlgorithm = RSA
KeyLength = 2048
KeyContainer = "PKContainer"
ProviderName = "nCipher Security World Key Storage Provider"
KeyUsage = 0xf0

Validating certificate (self-signed)Validating certificate (self-signed)

certutil -store -v my  "<Certificate_serial_number_or_thumbprint>"

my
================ Certificate 16 ================
X509 Certificate:
Version: 3
Serial Number: 7569d364a2e77b814274c81ae6360ffe
Signature Algorithm:
    Algorithm ObjectId: 1.2.840.113549.1.1.11 sha256RSA
    Algorithm Parameters:
    05 00
Issuer:
    CN=test self-signed

 NotBefore: 1/21/2013 7:25 PM
 NotAfter: 1/21/2015 7:35 PM

Subject:
    CN=test self-signed

Public Key Algorithm:
    Algorithm ObjectId: 1.2.840.113549.1.1.1 RSA (RSA_SIGN)
    Algorithm Parameters:
    05 00
Public Key Length: 2048 bits
Public Key: UnusedBits = 0
    0000  30 82 01 0a 02 82 01 01  00 cf e3 83 c7 a4 05 dd
    0010  be 05 76 b6 26 16 ae ba  0f a1 c6 3f 4f 58 11 2a
    0020  4c fe fc 44 f5 d2 11 36  75 c8 c9 90 15 d3 06 94

Update the following values:

Subject: Replace the TODO’s with real data 
"CN=Corporation TODO Platform Key,O=TODO Corporation,L=TODO_City,S=TODO_State,C=TODO_Country" .

ValidityPeriod, ValidityPeriodUnits: Use the validity period of 6 years. While a PK may only be valid for
2 years, the 6-year period allows for potential future servicing.

KeyContainer: Enter the container id that you used to create the Key with the HSM. You may be asked to
provide the tokens that you have used to create the Security World for the Thales HSM.

Verify that the certificate has been generated correctly:

For example: certutil -store -v my "7569d364a2e77b814274c81ae6360ffe"

Sample output:



    0020  4c fe fc 44 f5 d2 11 36  75 c8 c9 90 15 d3 06 94
    0030  18 ea 10 d8 4c 77 60 1f  45 75 25 6f 21 08 84 d3
    0040  8f 6f 70 07 1b 3e eb 26  94 b8 aa 0d fd 0c 13 f1
    0050  7f 76 0c 33 a4 ad b4 7a  f3 c1 f1 d8 c9 a0 ba d2
    0060  c5 9e 2b ce 36 7e 34 9b  81 26 74 0b 32 47 48 48
    0070  08 ab c0 e7 c3 a2 8e e4  1f b8 6f 38 a2 31 84 65
    0080  75 67 db 01 fc 41 a8 98  83 ad ba 2f 4e 59 c3 6b
    0090  93 84 e0 ab de bd 6f 8f  61 9b b3 42 b3 fb 19 f7
    00a0  46 3a ad d7 e9 d1 fa 2b  a7 72 8d 76 ac 9f 6d c3
    00b0  79 ba 37 e4 6d 72 b1 6f  22 82 80 77 a7 92 3f b7
    00c0  e2 1f e0 c6 90 9a 82 ef  40 47 29 fb c3 83 7e 38
    00d0  01 35 1f 66 6c 1b 93 0d  c2 fc 5c e2 4e bd e1 85
    00e0  c3 7e a9 51 6f 57 82 86  37 79 92 63 b2 e0 42 4f
    00f0  25 5c 1b 03 50 29 2d ee  40 31 c3 a1 c3 cf 62 31
    0100  e0 8c 60 2f d4 34 56 f1  bf 02 03 01 00 01
Certificate Extensions: 2
    2.5.29.15: Flags = 1(Critical), Length = 4
    Key Usage
        Digital Signature, Non-Repudiation, Key Encipherment, Data Encipherment (f0)

    2.5.29.14: Flags = 0, Length = 16
    Subject Key Identifier
        5b 3b 53 ed e3 0f a9 48 90 e0 93 09 0f f9 7b 32 3a 8d 89 4f

Signature Algorithm:
    Algorithm ObjectId: 1.2.840.113549.1.1.11 sha256RSA
    Algorithm Parameters:
    05 00
Signature: UnusedBits=0
    0000  3c 08 5f e0 a7 42 2a bc  58 61 64 43 b6 f4 23 99
    0010  ca 58 b1 8c a3 6b eb 9c  31 a0 ce 25 3a d5 b4 74
    0020  c2 0c 9c 00 1e c8 0f d2  05 3d fc 5d 6f 17 cd ac
    0030  4d 14 9e d4 2b 45 1e ad  5f 5b ee 23 a8 29 65 b3
    0040  cd c4 fd 5c e6 6a bd 95  ce f0 f9 be 31 19 87 90
    0050  f8 86 c4 31 a8 b3 d5 b3  14 24 5b de f8 c0 f9 9c
    0060  96 a2 b5 89 39 41 bd 4b  5f 04 16 10 c0 5c b8 fb
    0070  1d 8d 64 b2 87 00 72 46  b9 5e d0 3a 75 8d ea 5a
    0080  f6 5d 9c c5 03 cd c8 54  b7 7a ef c8 3e 3f 4b f6
    0090  d2 c7 70 67 29 92 70 44  fc c6 2e c9 42 dd 6e 01
    00a0  c5 71 27 20 51 ed 34 3c  98 c2 bc 1f 57 16 71 86
    00b0  24 e3 0e 41 57 82 ba 41  df b5 6d f9 4d e4 72 80
    00c0  6f 8d ab 10 06 cd 69 6b  d0 82 ac db 04 da 6b a5
    00d0  83 14 1a a0 6d 90 c4 01  5d 24 68 ac 10 ca db 96
    00e0  44 8b ef f1 13 7f 22 15  32 93 4e 2d 23 ce 7f fb
    00f0  18 9f d0 1c c1 45 2c e6  bb 23 7f 9e 22 ea fc 88
Signature matches Public Key
Root Certificate: Subject matches Issuer
Key Id Hash(rfc-sha1): 5b 3b 53 ed e3 0f a9 48 90 e0 93 09 0f f9 7b 32 3a 8d 89 4f
Key Id Hash(sha1): 1e 07 bb 05 ce d2 db 9c 9f ab d1 46 b8 32 20 e3 41 dc 4c 08
Cert Hash(md5): 45 ab 9b e4 6e 91 53 b5 96 81 10 8e 01 45 6c 54
Cert Hash(sha1): 37 ed 7c 3e ee 76 a2 d0 42 3a e3 1a 16 9f 74 d0 3c 7f 34 2c

  CERT_REQUEST_ORIGINATOR_PROP_ID(71):
    VM-DESKTEST.ntdev.corp.microsoft.com

  CERT_KEY_PROV_INFO_PROP_ID(2):
    Key Container = PKContainer
    Provider = nCipher Security World Key Storage Provider
    ProviderType = 0
    Flags = 20
    KeySpec = 0

  CERT_SHA1_HASH_PROP_ID(3):
    37 ed 7c 3e ee 76 a2 d0 42 3a e3 1a 16 9f 74 d0 3c 7f 34 2c

  CERT_SUBJECT_PUBLIC_KEY_MD5_HASH_PROP_ID(25):
    12 eb 13 79 64 61 08 e9 a6 75 f2 9a 5c 49 b4 f9

  CERT_KEY_IDENTIFIER_PROP_ID(20):
    5b 3b 53 ed e3 0f a9 48 90 e0 93 09 0f f9 7b 32 3a 8d 89 4f



    5b 3b 53 ed e3 0f a9 48 90 e0 93 09 0f f9 7b 32 3a 8d 89 4f

  CERT_SIGNATURE_HASH_PROP_ID(15):
       0000  38 c4 1b 14 d8 74 95 42  1b fb 7d 72 d2 0b 03 ad
    0010  bd e8 aa 19 14 9e a2 41  30 fe b4 d4 93 b6 9f 3b

  CERT_MD5_HASH_PROP_ID(4):
    45 ab 9b e4 6e 91 53 b5 96 81 10 8e 01 45 6c 54
  UI Policy = 0
    Version: 0

PKContainer

  Export Policy = 0
  Key Usage = 3
    NCRYPT_ALLOW_DECRYPT_FLAG -- 1
    NCRYPT_ALLOW_SIGNING_FLAG -- 2

  D:AI(A;ID;FA;;;SY)(A;ID;FA;;;BA)(A;ID;0x1200a9;;;BU)

    Allow WriteNT AUTHORITY\SYSTEM
    Allow WriteBUILTIN\Administrators
    Allow WriteBUILTIN\Users

Private key is NOT exportable
Signature test passed
CertUtil: -store command completed successfully.

Backing up the certificateBacking up the certificate

Signing with PK certificate (servicing scenario)

Determine the certificate hash (sha1)Determine the certificate hash (sha1)

We recommend backing up your certificates. This way, if either the certificate store or the server goes down, you
can add the certificate back to the store. For more info on certreq.exe, see Advanced Certificate Enrollment and
Management: Appendix 3: Certreq.exe Syntax

Note, the PK is a self-signed certificate, and is also used to sign the KEK.

There are 2 parts to PK signing / initial provisioning. Please talk to your Microsoft contact to get these scripts:

subcreate_set_PK_example_initial_provisioning_example.ps1 . Used by the signtool to sign the PK comes
later in the servicing case.

subcreate_set_PK_service_example.ps1 . Since we are dealing with the HSM case, the following line applies
in the script applies.

This section applies to signing with your PK certificate and may not be applicable for initial provisioning of system.
However, you can use the method here to test your service scenario.

Determine the SHA1 hash of the certificate. You can get the SHA1 hash by using either of the following methods:

C:\>certutil -store My PKContainer

In Windows, open the Certificate file, select the Details tab, and check the value for Thumbprint.

Or use the following command:

Sample output:

http://go.microsoft.com/fwlink/?LinkId=317912


Sign with signtool with the certificate store specified as a referenceSign with signtool with the certificate store specified as a reference

C:\> signtool.exe  sign /v /fd sha256 /sha1 "db314da0d0ef87d42b42f74b9c38a1f9173ef7a2" /sm /p7  .\ /p7co 
1.2.840.113549.1.7.1 /p7ce  DetachedSignedData KEK.bin

The following certificate was selected:
    Issued to: test self-signed
    Issued by: test self-signed
    Expires:   Fri Jan 30 15:34:32 2019
    SHA1 hash: DB314DA0D0EF87D42B42F74B9C38A1F9173EF7A2

Done Adding Additional Store
Successfully signed: KEK.bin

Number of files successfully Signed: 1
Number of warnings: 0
Number of errors: 0

Appendix A – Using Thales KeySafe for viewing keys

My
================ Certificate 5 ================
Serial Number: 58efcfd8f929c5bd41152a8ec413051e
Issuer: CN=test self-signed
 NotBefore: 1/30/2013 3:24 PM
 NotAfter: 1/30/2019 3:34 PM
Subject: CN=test self-signed
Signature matches Public Key
Root Certificate: Subject matches Issuer
Template:
Cert Hash(sha1): db 31 4d a0 d0 ef 87 d4 2b 42 f7 4b 9c 38 a1 f9 17 3e f7 a2
  Key Container = PKContainer
  Provider = nCipher Security World Key Storage Provider
Private key is NOT exportable
Signature test passed
CertUtil: -store command completed successfully.

Use the SHA1 hash to sign the KEK certificate:

Where KEK.bin is the filename of the binary certificate you want to sign.

Sample output:

For more info, see Sign Tool (SignTool.exe) and Windows 8.1 Secure Boot Key Creation and Management
Guidance.

Thales KeySafe is based on a GUI.

To use KeySafe, you must have installed JRE/JDK 1.4.2, 1.5, or 1.6. Install Java before you install the nCipher
software.

Configure the hardserver config file under the %NFAST_KMDATA%\config\  folder :

Edit settings in the server_startup  section:

nonpriv_port. This field specifies the port on which the hardserver listens for local non-privileged TCP
connections.

Default to connecting to port 9000.

If the NFAST_SERVER_PORT  environment variable is set, it overrides any value set for nonpriv_port

http://go.microsoft.com/fwlink/?LinkId=317911


Appendix B: Using SafeNet CMU Utility to view keys

priv_port. This field specifies the port on which the hardserver listens for local privileged TCP connections.

Default to connecting to port 9001.

If the NFAST_SERVER_PRIVPORT  environment variable is set, it overrides any value set for priv_port

The following are screenshots from the Thales KeySafe GUI:

The following image is generated by launching the KeySafe utility and then navigating to the KeyList menu.

For more info, see the nCipher/Thales Users Guide.

For more details, please consult the SafeNet Luna HSM documentation.



C:\Program Files\SafeNet\LunaClient>cmu list
Please enter password for token in slot 1: ********
handle=72       label=PKContainer
handle=43       label=PKContainer

C:\Program Files\SafeNet\LunaClient>cmu getattribute
Please enter password for token in slot 1: ********
Select object to query
Handler Label
72      PKContainer
43      PKContainer
Enter handler (or 0 for exit): 72
class=privateKey
token=true
private=true
label=PKContainer
keytype=RSA
subject=
id=3081cd300d02050080000010020401000000300c02050080000011020346494d3053020500800
00014024a660064006400340064006400330061002d0064003900610064002d00340066006200630
02d0062003000320031002d006300660034006100650064006100650035006400350033000000301
d0205008000001302140100000000000000000000000000000000000000300d02050080000015020
400000000300d02050080000016020400000000300d02050080000017020400000000300d0205008
0000018020400000000
sensitive=true
decrypt=true
unwrap=true
sign=true
derive=false
startdate=
enddate=
modulus=b56a518c2744a3341dd1ed27cfe5dc6cabac7d4b820c00d60cb2a4b713f28b3e1836b619
b61b79be76d1870e09961972c83cc338a2065880ec4f6fb00c48f1f953c7fff132be9df36f13bcda
f0f873bcfaa81734290f85ff123072b258fb16b0833722af72f90fd29c533153b0ba52d502ab11c4
81cd6e60733cfa39a811c7ff381ba57081c818881a6bbeeb60091ab9f26f6cd177dcff884d7d9edb
e69e61b316ef12785f5957a1e6bb0b21497b328e475f82e7efac71815d2c153b5991ebfacf4bb75c
72afff513a55f68f260f09aa9d687639a24e1ce35fd5588d27c2ff69b7e6c9b5fcb4ec7d55674e85
45f051d4945ae5d46d958056aaf7e01943eda91d
modulusbits=2048
publicexponent=010001
extractable=true
local=true
neverextractable=false
alwayssensitive=true
modifiable=true

Related topics
Windows 8.1 Secure Boot Key Creation and Management Guidance

Secure Boot Overview

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview


 

UEFI Validation Option ROM Guidance
5/11/2018 • 18 minutes to read • Edit Online

Introduction

Vishal Manan, Architect, OEM Consulting, vmanan@microsoft.com

Jeremiah Cox, Sr. SDET, Windows Security & Identity Team, jerecox@microsoft.com

Tony Lin, Engineering Service Engineer, TW-WIN Plan Ecosystem, tolin@microsoft.com

Version 1.3

This document helps OEMs and ODMs validate that their firmware checks the signatures of its option ROM as
part of the Secure Boot chain of trust.

This guide assumes you know the fundamentals of UEFI, basic understanding of Secure Boot (Chapters 1, 2, 13,
20 and 27 of the UEFI specification), and PKI security model.

On this page:

Introduction

1. UEFI and Option ROMs

2. Problem statement

3. Who is affected?

4. How to test for it?

5. How to fix it

6. Resources

Appendix A: Alternate approach to testing using unsigned option ROM drivers

Appendix B: Scripts for enabling Secure Boot with NULL db

Option ROMs (or OpROMs) are firmware run by the PC BIOS during platform initialization. They are usually
stored on a plug-in card, though they can reside on the system board.

Devices that typically require option ROMs are video cards, network adapters, and storage drivers for RAID
modules. These option ROMs also typically provide firmware drivers to the PC.

They include a variety of types of firmware drivers, including legacy PC-AT, Open Firmware, and EFI option
ROMs. Examples of firmware drivers include Video BIOS on video cards, PXE boot drivers for Ethernet adapters,
and storage drivers on RAID controllers. These devices typically have Option ROMs that provide firmware drivers.

The Unified Extensible Firmware Interface (UEFI) has support for Legacy mode option ROMs.

As per latest UEFI specification (currently at 2.3.1 Errata C – section 2.5.1.2), ISA (legacy) option ROMs are not a
part of the UEFI Specification. For the purposes of this discussion, only PCI-based UEFI-compatible option ROMs
will be considered.

Option ROMs can be used when it's not be possible to embed a device's firmware in the PC firmware. When the
option ROM carries the driver, the IHV can leverage that driver, and keep the driver and device in one place.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/uefi-validation-option-rom-validation-guidance.md
mailto:vmanan@microsoft.com
mailto: jerecox@microsoft.com
mailto: tolin@microsoft.com


 

Supporting both UEFI BIOS and Legacy BIOSSupporting both UEFI BIOS and Legacy BIOS

1. UEFI and Option ROMs

This document talks about why you need to validate option ROMs and shows some techniques of doing it.

Many manufacturers create devices that include option ROMs and firmware for many types of PCs. Common
combos include:

Legacy ROM Only

UEFI Native OpROM

Legacy ROM + UEFI EBC OpROM

Legacy ROM + UEFI x64 OpROM

Legacy ROM + UEFI x64 + UEFI IA32

Legacy ROM + UEFI x64 + UEFI IA32 + UEFI EBC OpROM

UEFI BIOS can load and execute legacy firmware drivers when a Compatibility Support Module (CSM) is enabled.
Note that when Secure Boot is enabled, execution of the Compatibility Support Module and legacy ROMs is
prohibited because legacy firmware drivers do not support authentication.If the Option ROM format in the BIOS
configuration is set to legacy ROM, it will always use the legacy ROM on the device.

If the Option ROM format is set to UEFI Compatible, it will use the newer EFI ROM if one is present and the
legacy ROM if one is not.

UEFI drivers are necessary for many of the new firmware level security features as well as to enable UEFI boot
sequences. For example, installing Windows from an optical disk which is attached to a non-UEFI compatible
storage controller is not possible when a system is booting in UEFI mode when Secure Boot is enabled.

Figure 2: UEFI Driver Security Consideration, Source: UEFI 2.3.1 Errata C

From Section 31.1.4 from the UEFI 2.3.1 Errata C:

Since the UEFI user profile details a number of security-related privileges, it is important that the User Identity
Manager and User Credential Providers and the environment in which they execute are trusted.

This includes:



Protecting the storage area where these drivers are stored.

Protecting the means by which these drivers are selected.

Protecting the execution environment of these drivers from unverified drivers.

The data structures used by these drivers should not be corrupted by unauthorized drivers while they are
still being used.

Components like User Identity Manager, the User Credential drivers and on board drivers maybe located in a
secure location like write-protected flash drive which is trusted by platform policy.

Some other drivers may reside on an unprotected storage locations like option ROMs or a hard drive partition
and may be easily replaced. These drivers must be verified.

For example, either the default platform policy must successfully be able to verify drivers listed in the Driver####
load options, or else the user must be identified prior to processing these drivers. Otherwise, the driver execution
should be deferred. If the user profile is changed through a subsequent call to Identify () or through dynamic
authentication, the Driver#### options may not be processed again.

The user profile database is closed using different UEFI signal events based on whether it can be protected.

UEFI Drivers & UEFI option ROMs will only be executed for devices in the boot path.

PCI spec allows multiple option ROM images on the same device. These option ROMS could be Legacy x86 &
UEFI. UEFI firmware sets platform policy for picking the option ROM. That can make the optional adapter's ROM
execute as its own control device.

The firmware verifies signatures during BDS and DXE phases. The sequence of events is as follows:

1. Initialize PCI and derivative Buses

2. Probe PCI Devices for option ROMs

3. Found option ROMs are mapped in memory

4. DXE phase loads any UEFI drivers in ROMs

UEFI option ROMs can be anywhere in memory. The default is to let the ROM on the card manage the device.
UEFI allows platform to control policy around what option ROM controls what device using
EFI_PL ATFORM_DRIVER_OVERRIDE. UEFI supports option ROMs to register a configuration interface.

On a PC with Secure Boot enabled, option ROM drivers pose a security threat if they are not signed or not
validated. Signature validation for option ROMs is a WHCK requirement. The same is true while servicing option
ROMs to make sure that the update is validated prior to installation.

From the UEFI 2.3.1 Eratta C specification:

1. Mandatory. Signed Firmware Code Integrity Check. Firmware that is installed by the OEM and is either
read-only or protected by a secure firmware update process, as defined above, may be considered protected.
Systems shall verify that all unprotected firmware components, UEFI drivers, and UEFI applications
are sigend using minimum RSA-2048 with SHA-256 (MD5 and SHA-1 are prohibited), and verify that
UEFI applications and drivers that are not signed as per these requirements will fail to run (this is the default
policy for acceptable signature algorithms). If an images signature is not found in the authorized database, or is
found in the forbidden database, the image must not be started, and instead, information about it shall be
placed in the Image Execution Information Table.11. Mandatory. Verify Signature of all Boot Apps and
Boot Loaders. Upon power-on, the platform shall start executing boot firmware and use public key
cryptography as per algorithm policy to verify the signatures of all images in the boot sequence up-to and
including the Windows Boot Manager.



 

 

2. Problem statement

2.1. Vulnerability2.1. Vulnerability

## Pcd for OptionRom.
  #  Image verification policy settings:
  #  ALWAYS_EXECUTE                         0x00000000
  #  NEVER_EXECUTE                          0x00000001
  #  ALLOW_EXECUTE_ON_SECURITY_VIOLATION    0x00000002
  #  DEFER_EXECUTE_ON_SECURITY_VIOLATION    0x00000003
  #  DENY_EXECUTE_ON_SECURITY_VIOLATION     0x00000004
  #  QUERY_USER_ON_SECURITY_VIOLATION       0x00000005
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x00|UINT32|0x00000001

[PcdsFixedAtBuild]
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x04

3. Who is affected?

Some builds of Secure Boot-enabled UEFI BIOS, including Tiano Core, did not by default authenticate UEFI
option ROMs because signed UEFI option ROMs were not available during Secure Boot development. This
exposes an attack surface/vulnerability in UEFI Secure Boot.

This vulnerability was still present in EDK II and UDK2010 as of August 2013. The source maintainers are aware
of the issue and a bug is filed. Any firmware derived from EDK II and UDK2010 should verify how Option ROM
verification is managed. Option ROM verification behavior is controlled by a PCD value 
PcdOptionRomImageVerificationPolicy  in the EDK II SecurityPkg package.

The source code for the TianoCore vulnerability is SecurityPkg\SecurityPkg.dec file:

The default value (0x00) is ALWAYS_EXECUTE, which does not properly perform verification of signed drivers in
Option ROMs for add-in peripherals. This is not an ideal value for any system implementing UEFI Secure Boot
functionality.

Recommended Value (Best Security): DENY_EXECUTE_ON_SECURITY_VIOLATION (0x04)

Recommended Value (Best Flexibility): QUERY_USER_ON_SECURITY_VIOLATION (0x05)

In EDK II & UDK2010, proper coding practice uses an override mechanism to modify PCD values for platform
firmware. Therefore, the value for PcdOptionRomImageVerificationPolicy  should not be changed in 
SecurityPkg\SecurityPkg.dec . The override value should be set in the platform’s DSC file. An example is shown

below using Nt32Pkg\Nt32Pkg.dsc:

The PCD override should be placed under the [PcdsFixedAtBuild]  section of the DSC file. The exact mechanism
for overriding parameters may differ depending on BIOS vendor tools.

Note
This vulnerability may exist in early implementations of UEFI Secure Boot BIOS from independent BIOS vendors.
Contact your BIOS vendor to determine if your version may be impacted.

A UEFI PC which implements Secure Boot and has a UEFI option ROM driver which is not signed. Furthermore,
the firmware for compatibility to get the existing cards working may have a security vulnerability which doesn’t
verify option ROMs.

Laptops, netbooks, ultrabooks, & tablets: most are not affected. Option ROMs are typically present on
backplane buses such as PCI/e, ISA, and their derivatives (ExpressCard, miniPCI, CardBus, PCCard, LPC,
ThunderBolt etc). If a laptop has none of these exposed, then its attack surface is greatly reduced. Moreover, it is



 4. How to test for it?

likely UEFI drivers for onboard laptop components are integrated into the core BIOS firmware volume, not
located on a separate option ROM. Thus most laptops are not at risk. Also, when Legacy option ROMs are
disabled, it looks like UEFI only supports PCI-based option ROMs.

However, if you have a desktop, motherboard or a server which has a UEFI BIOS and implement Secure Boot, you
may be affected. On a server ’s dedicated RAID controller, or add-in storage controller for SATA, FC etc. or
Ethernet PCIe network cards may have option ROMs. Add-in controllers supporting a wide array of functionality
on servers are common so this especially applies to the server space.

This can potentially affect 32-bit and 64-bit PCs, both class 2 and class 3.

If a Secure Boot platform supports option ROMs from devices not permanently attached to the platform and it
supports the ability to authenticate those option ROMs, then it must support the option ROM validation methods
described in Network Protocols — UDP and MTFTP and the authenticated EFI variables described in UEFI
specification 2.3.1 Errata C Section 7.2.

If you are developing the firmware and it is based on Tiano Core please check for vulnerability mentioned in the
section 2.1. If you are using another IBV’s firmware please check with them. Or you could do the test it yourself as
mentioned below.

You will need the following:

PC under test with UEFI firmware

PCI device with Option ROM on the PC under test (like a video card)

Make sure Secure Boot is enabled

Steps for testing:

1. Insert a UEFI add on PCI card with UEFI Option ROM to the PC under test.

If you are using a PCI video card for testing, hookup an external monitor.

2. Enable Secure Boot with the settings below:

PK: Your PK or self-signed Test PK

KEK: MS KEK, PK-signed Fabrikam test KEK or another KEK

DB: NULL. (This must be NULL.)

DBX: NULL.

SecureBoot: The UEFI variable should be set to true

3. Reboot the PC

4. Expect the following result:

If the UEFI firmware is implemented correctly, the UEFI option ROM driver wouldn’t load since the
presence of an option ROM will make the firmware check the “Db” for a certificate. Since the “Db” is
NULL the UEFI driver will fail to load. For example, if you are using the video card to test, you will
see that nothing shows up on display.

If the firmware isn’t implemented correctly, UEFI driver will load from the option ROM since the
firmware doesn’t check for signatures in “Db”. For example, if you are using the video card for test,
you will see that the monitor hooked to the option ROM card will have display.



 

 

5. How to fix it

5.1. Signing the driver5.1. Signing the driver

5.2. Validation of update5.2. Validation of update

6. Resources

Note
It doesn’t matter if the UEFI option ROM driver is signed or not, the option ROM will not load when DB is null
and SB is enabled (PK and KEK are enrolled).

Please refer to sample scripts available in the WHCK for generating the PK and KEK. You can download the scripts
from here: http://go.microsoft.com/fwlink/?LinkId=321292 . Appendix B has sample scripts and more details.

You can also reference Appendix A for another approach to performing the above test. This approach doesn’t
require setting the DB to Null but needs an unsigned UEFI option ROM driver from the IHV.

If the above test fails, work with your IBV to acquire the necessary versions and configure them to validate option
ROMs. Make sure that the firmware passes the test. For PCs which have shipped you will need to do a secure
firmware update. Please refer to NIST publication 800-147 and/or see Windows 8.1 Secure Boot Key Creation
and Management Guidance.

You can test the PC and leverage Windows HCK as a test tool (not a certification tool) for testing the secure
firmware update.

In case you find that you may have unsigned drivers on UEFI option ROMs please read below on how to fix that.

Sign each option ROM driver individually. That will break the format of the PCI Option ROM. You only need to
sign the UEFI driver before creating the combined Option ROM.

Before inserting the UEFI driver in the OpROM, sign the UEFI image and test it with Secure Boot ON & OFF at
the UEFI Shell (load/unload the driver file). Then put the signed driver into the combined option ROM.

You can direct your IHV to Microsoft SysDev center to get their UEFI option ROMs signed through a service
available through SysDev center.

Run the test you mentioned above to verify that the vulnerability does not exist. Use the HCK tests to ensure that
there are no functional regressions.

UEFI Platform Initialization Specification, Volume 5 Standards, 1.2.1 Errata A:
http://go.microsoft.com/fwlink/p/?linkid=220187

Relevant info from UEFI 2.3.1 spec:

2.5.1: Legacy Option ROM Issues

10: Protocols –UEFI Driver Model

13.4.2: PCI Option ROMs

20: EFI Byte Code Virtual Machine

28: HII Overview

29: HII Protocols

30: HII Configuration Processing and Browser Protocol

UEFI Forum Learning Center

UEFI IHV resources @ intel.com

http://go.microsoft.com/fwlink/?LinkId=321292
http://go.microsoft.com/fwlink/p/?linkid=321186
http://go.microsoft.com/fwlink/p/?linkid=220187
http://go.microsoft.com/fwlink/p/?LinkId=321289
http://go.microsoft.com/fwlink/?LinkId=321290


 

 

Appendix A: Alternate approach to testing using unsigned option
ROM drivers

Appendix B: Scripts for enabling Secure Boot with NULL db

Use the TianoCore edk2-devel mailing list for support from other UEFI developers

TechNet: Best Practices for Enterprise Security: Security strategies

UEFI specification errata C

Trusted Computing Group

Tianocore UEFI Development Kit

UEFI Firmware

Intel Press: Beyond BIOS 2nd Edition

Windows 8.1 Secure Boot Key Creation and Management Guidance

Validating Windows UEFI Firmware Update Platform Functionality

This approach relies on getting tools from IHV to make sure that the UEFI option ROM driver is signed.

You will need the following:

PC under test with UEFI firmware

PCI device with an unsigned Option ROM driver attached to the PC under test (like a Video card)

Make sure Secure Boot is enabled

Option IHV tools to detect signature on option ROM driver if it isn’t apparent that the option ROM driver is
signed or not

If the firmware is implemented correctly, and the option ROM is unsigned the card should fail the check by
firmware and not load the driver on the card. The PC should report an error code such as
EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND . In case you are using a video card, you may see that the PC
shows just a black screen since the option ROM driver didn’t load.

If the firmware is implemented incorrectly, this test would work.

You can either use your current set of Secure Boot variables (PK and KEK) or generate test ones for testing this.

Below are steps used to generate the test PK, KEK and setting Db to NULL. Make sure that Secure Boot is not
enabled; otherwise these steps would require signed UEFI bin files.

Note
We set the Secure Boot variable – Db, KEK and PK in reverse order so we don’t have to sign the UEFI bin files.

Prior to this step the PC should be in setup mode.

1. Create KEK and PK certificates

This step requires the makecert.exe tool available in the Windows SDK.

http://go.microsoft.com/fwlink/?LinkId=398276
http://go.microsoft.com/fwlink/p/?linkid=321288
http://go.microsoft.com/fwlink/p/?LinkID=220187
http://go.microsoft.com/fwlink/p/?LinkID=78378
http://go.microsoft.com/fwlink/?LinkId=398277
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/uefi-firmware
http://go.microsoft.com/fwlink/?LinkId=398278
http://go.microsoft.com/fwlink/?LinkId=321291
http://go.microsoft.com/fwlink/?LinkId=271979


MakeCert.exe -cy authority -len 2048 -m 60 -a sha256  -pe -ss my -n "CN=DO NOT SHIP - Fabrikam Test KEK 
CA" Fabrikam_Test_KEK_CA.cer
MakeCert.exe -cy authority -len 2048 -m 60 -a sha256  -pe -ss my -n "CN=DO NOT SHIP - Fabrikam Test PK" 
TestPK.cer

2. Script to generate test PK

You can either use your own PK or leverage the scripts from the WHCK for this
http://go.microsoft.com/fwlink/?LinkId=321292

A sample is provided below.

http://go.microsoft.com/fwlink/?LinkId=321292


# this scripts demonstrates how to format the Platform key 
# NOTE The PK is actually set in the Enable_OEM_SecureBoot.ps1 script 
Import-Module secureboot
$d = (pwd).Path

###############################################################################
# Complete the following parameters
###############################################################################

$certname = "TestPK"
# TODO change this path to where you have the PK.cer file 
# This is where you plugin the certificate generated by the HSM 
$certpath = $d + "\" + $certname + ".cer"

# Each signature has an owner SignatureOwner, which is a GUID identifying the agent which inserted the 
signature in the database. 
# Agents might include the operating PC or an OEM-supplied driver or application. 
# Agents may examine this field to understand whether they should manage the signature or not.
# TODO replace with OEM SignatureOwner GUID.
# You can use tools like Guidgen.exe tool in SDK or a similar tool to generate a GUID
$sigowner = "55555555-5555-5555-5555-555555555555"

$var = "PK"
$efi_guid = "{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}"
$append = $false

###############################################################################
# Everything else is calculated
###############################################################################

# Workaround relative path bug
# TODO substitute OEM with your OEM name 
$siglist =  $certname + "_SigList.bin"
$serialization = $certname + "_SigList_Serialization_for_" + $var + ".bin"
$signature = $serialization + ".p7"

$appendstring = "set_" 
$attribute = "0x27"
$example = "Example_SetVariable_Data-" + $certname + "_" + $appendstring + $var + ".bin" 

Format-SecureBootUEFI -Name $var -SignatureOwner $sigowner -ContentFilePath $siglist -FormatWithCert -
Certificate $certpath -SignableFilePath $serialization -Time 2011-05-21T13:30:00Z  -AppendWrite:$append

# OutputFilePath - Specifies the name of the file created that contains the contents of what is set. 
# If this parameter is specified, then the content are not actually set, just stored into this file.
# Please note if -OutputFilePath is provided the PK is not set like in this case. The master script 
sets it at the end.

# Time - you can change the time below as long as it isn't in the future. Nothing wrong with keeping it 
as is.

Set-SecureBootUEFI -Name $var -Time 2011-05-21T13:30:00Z -ContentFilePath $siglist  -OutputFilePath 
$example -AppendWrite:$append

3. Generate test KEK or use your own OEM KEK

You can leverage your own OEM KEK or scripts from the WHCK for this. You can also use the
Fabrikam_PK_SigList.bin from http://go.microsoft.com/fwlink/?LinkId=321292 instead of generating your
own test KEK.

A sample is provided below.

http://go.microsoft.com/fwlink/?LinkId=321292


# script to add option OEM KEK
Import-Module secureboot
$d = (pwd).Path

###############################################################################
# Complete the following parameters
###############################################################################

$certname = "Fabrikam_Test_KEK_CA"
# TODO change this path to where you have the PK.cer file 
# This is where you plugin the certificate generated by the HSM 
$certpath = $d + "\" + $certname + ".cer"

# TODO change this path to where you have the OEM_KEK.cer file 
# Each signature has an owner SignatureOwner, which is a GUID identifying the agent which inserted the 
signature in the database. 
# Agents might include the operating system or an OEM-supplied driver or application. 
# Agents may examine this field to understand whether they should manage the signature or not.
# TODO replace with OEM SignatureOwner GUID.
# You can use tools like Guidgen.exe tool in SDK or a similar tool to generate a GUID

$sigowner = "00000000-0000-0000-0000-000000000000"

$var = "KEK"
$efi_guid = "{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}"
$append = $false

###############################################################################
# Everything else is calculated
###############################################################################

$siglist = $certname + "_SigList.bin"
$serialization = $certname + "_SigList_Serialization_for_" + $var + ".bin"
$signature = $serialization + ".p7"
if ($append -eq $false) 
{ 
    $appendstring = "set_" 
    $attribute = "0x27"
} else 
{   
    $appendstring = "append_" 
    $attribute = "0x67"
}
$example = "Example_SetVariable_Data-" + $certname + "_" + $appendstring + $var + ".bin" 

Format-SecureBootUEFI -Name $var -SignatureOwner $sigowner -ContentFilePath $siglist -FormatWithCert -
CertificateFilePath $certpath -SignableFilePath $serialization -Time 2011-05-21T13:30:00Z -
AppendWrite:$append 

# -Time You can change the time below as long as it isn't in the future. Nothing wrong with keeping it 
as is.

Set-SecureBootUEFI -Name $var -Time 2011-05-21T13:30:00Z -ContentFilePath $siglist -OutputFilePath 
$example -AppendWrite:$append

4. Set Db to Null and set KEK and PK

The first thing this script does is set the Db to Null.

Note
Please keep in mind if the Fabrikam Test KEK CA is the only KEK CA present (meaning there is no Windows
KEK CA), the PC may boot into Windows RE.



Related topics

# Prior to script execution, run "Set-ExecutionPolicy Bypass -Force"

Import-Module secureboot
try 
{
    Write-Host "Deleting db..."
    Set-SecureBootUEFI -Name db -Time "2011-06-06T13:30:00Z" -Content $null
}
catch
{
}
Write-Host "Setting Fabrikam KEK..."
Set-SecureBootUEFI -Time 2011-05-21T13:30:00Z  -ContentFilePath Fabrikam_Test_KEK_CA_SigList.bin  -Name 
KEK

Write-Host "Setting self-signed Test PK..."
Set-SecureBootUEFI -Time 2011-05-21T13:30:00Z -ContentFilePath TestPK_SigList.bin  -Name PK

Write-Host "`n... operation complete.  `nSetupMode should now be 0 and SecureBoot should also be 0. 
Reboot and verify that Windows is correctly authenticated, and that SecureBoot changes to 1."

5. Plug in the option ROM card and test

The test should either pass or fail based on firmware correctness. For example:

If the option ROM in the firmware is implemented correctly, and you are using a video card for testing, then
there should be no display to the attached monitor.

However, if you are using incorrect firmware, the video card should have output on the display.

Windows Secure Boot Key Creation and Management Guidance

Secure Boot Overview

Validating Windows UEFI Firmware Update Platform Functionality

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview


Disabling Secure Boot
5/11/2018 • 3 minutes to read • Edit Online

Disable Secure Boot

Re-enable Secure Boot

You may need to disable Secure Boot to run some PC graphics cards, hardware, or operating systems such as
Linux or previous version of Windows.

Secure Boot helps to make sure that your PC boots using only firmware that is trusted by the manufacturer. You
can disable Secure Boot through the PC’s firmware (BIOS) menus, but the way you disable it varies by PC
manufacturer. If you are having trouble disabling Secure Boot after following the steps below, contact your
manufacturer for help.

For logo-certified Windows RT 8.1 and Windows RT PCs, Secure Boot is required to be configured so that it
cannot be disabled.

Warning

After disabling Secure Boot and installing other software and hardware, it may be difficult to re-activate
Secure Boot without restoring your PC to the factory state.

Be careful when changing BIOS settings. The BIOS menu is designed for advanced users, and it's possible
to change a setting that could prevent your PC from starting correctly. Be sure to follow the manufacturer's
instructions exactly.

1. Before disabling Secure Boot, consider whether it is necessary. From time to time, your manufacturer may
update the list of trusted hardware, drivers, and operating systems for your PC. To check for updates, go to
Windows Update, or check your manufacturer's website.

2. Open the PC BIOS menu. You can often access this menu by pressing a key during the bootup sequence,
such as F1, F2, F12, or Esc.

Or, from Windows, hold the Shift key while selecting Restart. Go to Troubleshoot > Advanced Options:
UEFI Firmware Settings.

3. Find the Secure Boot setting, and if possible, set it to Disabled. This option is usually in either the
Security tab, the Boot tab, or the Authentication tab.

4. Save changes and exit. The PC reboots.

5. Install the graphics card, hardware, or operating system that’s not compatible with Secure Boot.

In some cases, you may need to change other settings in the firmware, such as enabling a Compatibility
Support Module (CSM) to support legacy BIOS operating systems. To use a CSM, you may also need to
reformat the hard drive using the Master Boot Record (MBR) format, and then reinstall Windows. For more
info, see Windows Setup: Installing using the MBR or GPT partition style.

6. If you’re using Windows 8.1, you may see a watermark on the desktop alerting you that Secure Boot is not
configured correctly. Get this update to remove the Secure Boot desktop watermark.

1. Uninstall any graphics cards, hardware, or operating systems that aren’t compatible with Secure Boot.

2. Open the PC BIOS menu. You can often access this menu by pressing a key during the bootup sequence,

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/disabling-secure-boot.md
http://go.microsoft.com/fwlink/p/?linkid=329932


Related topics

such as F1, F2, F12, or Esc.

Or, from Windows: go to Settings charm > Change PC settings > Update and Recovery > Recovery
> Advanced Startup: Restart now. When the PC reboots, go to Troubleshoot > Advanced Options:
UEFI Firmware Settings.

3. Find the Secure Boot setting, and if possible, set it to Enabled. This option is usually in either the Security
tab, the Boot tab, or the Authentication tab.

On some PCs, select Custom, and then load the Secure Boot keys that are built into the PC.

If the PC does not allow you to enable Secure Boot, try resetting the BIOS back to the factory settings.

4. Save changes and exit. The PC reboots.

5. If the PC is not able to boot after enabling Secure Boot, go back into the BIOS menus, disable Secure Boot,
and try to boot the PC again.

6. In some cases, you may need to refresh or reset your PC to its original state before you can turn on Secure
Boot. For more info, see How to restore, refresh, or reset your PC.

7. If the above steps don’t work, and you still want to use the Secure Boot feature, contact your manufacturer
for help.

For additional troubleshooting steps for PC manufacturers: see Secure Boot isn't configured correctly:
Determine if the PC is in a manufacturing mode (info for manufacturers).

Secure Boot Overview

Secure Boot isn't configured correctly: troubleshooting

http://go.microsoft.com/fwlink/p/?linkid=279534
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-isnt-configured-correctly-determine-if-the-pc-is-in-a-manufacturing-mode--info-for-manufacturers
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview


Secure Boot isn't configured correctly:
troubleshooting
5/11/2018 • 2 minutes to read • Edit Online

What is Secure Boot?

Is my PC unsafe?

Can I just dismiss this alert or remove the watermark?

I'd like to use this feature. How can I enable it?

The "Secure Boot isn't configured correctly" watermark appears on the Windows desktop when the PC is capable
of using the Secure Boot security feature, but the feature is not activated or configured correctly.

This message may appear after updating your PC from Windows 8 to Windows 8.1.

Secure Boot helps to make sure that your PC boots using only firmware that is trusted by the manufacturer. For
more info on Secure Boot, see Secure Boot Overview.

Your PC may be OK, but it's not as protected as it could be, because Secure Boot isn't running.

You may need to disable Secure Boot to run some hardware, graphics cards, or operating systems such as Linux or
previous versions of Windows. For more info, see Disabling Secure Boot.

You check the status of Secure Boot on your PC. click on Start , and type msinfo32 and press enter. Under System
Summary, you can see your BIOS mode and Secure Boot State. If Bios Mode is UEFI, and Secure Boot State is Off,
then Secure Boot is disabled.

Yes. Go to Windows Update for a patch that gets rid of the watermark.

Windows 8.1 and Windows Server 2012 R2 users can also download this patch manually: Update removes
the "Windows 8.1 SecureBoot isn't configured correctly" watermark in Windows 8.1 and Windows Server
2012 R2 (Microsoft Knowledge Base Article ID 2902864)

Windows RT 8.1: Get this patch through Windows update.

Try enabling Secure Boot through using the PC BIOS menus.

Warning
Be careful when changing BIOS settings. The BIOS menu is designed for advanced users, and it's possible to
change a setting that could prevent your PC from starting correctly. Be sure to follow the manufacturer's
instructions exactly.

Enabling Secure Boot

1. Open the PC BIOS menu. You can often access this menu by pressing a key during the bootup sequence,
such as F1, F2, F12, or Esc.

Or, from Windows: go to Settings charm > Change PC settings > Update and Recovery > Recovery
> Advanced Startup: Restart now. When the PC reboots, go to Troubleshoot > Advanced Options:
UEFI Firmware Settings.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/secure-boot-isnt-configured-correctly-troubleshooting.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview
http://go.microsoft.com/fwlink/p/?linkid=329932


Related topics

2. Find the Secure Boot setting, and if possible, set it to Enabled. This option is usually in either the Security
tab, the Boot tab, or the Authentication tab.

On some PCs, select Custom, and then load the Secure Boot keys that are built into the PC.

If the PC does not allow you to enable Secure Boot, try resetting the BIOS back to the factory settings.

3. Save changes and exit. The PC reboots.

4. If the PC is not able to boot after enabling Secure Boot, go back into the BIOS menus, disable Secure Boot,
and try to boot the PC again.

5. In some cases, you may need to refresh or reset your PC to its original state before you can turn on Secure
Boot. For more info, see How to restore, refresh, or reset your PC.

6. If the above steps don’t work, and you still want to use the Secure Boot feature, contact your manufacturer
for help.

For additional troubleshooting steps for PC manufacturers: see Secure Boot isn't configured correctly:
Determine if the PC is in a manufacturing mode (info for manufacturers).

Why is there a "SecureBoot isn't configured correctly" watermark on my desktop?

Secure Boot Overview

Microsoft Support KB article 2902864

Disabling Secure Boot

http://go.microsoft.com/fwlink/p/?linkid=279534
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-isnt-configured-correctly-determine-if-the-pc-is-in-a-manufacturing-mode--info-for-manufacturers
http://go.microsoft.com/fwlink/?LinkId=624321
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-overview
http://support.microsoft.com/kb/2902864


 

BCD System Store Settings for UEFI
5/11/2018 • 6 minutes to read • Edit Online

Windows Boot Manager Settings for UEFI

## Windows Boot Manager

identifier              {bootmgr}
device                  partition=\Device\HarddiskVolume1
path                    \EFI\Microsoft\Boot\bootmgfw.efi
description             Windows Boot Manager

Device SettingDevice Setting

DISKPART> select disk 0
DISKPART> list volume

  Volume ###  Ltr  Label   Fs     Type        Size     Status     Info
  ----------  ---  ------  -----  ----------  -------  ---------  ------
  Volume 0     D           NTFS   Partition    103 GB  Healthy
  Volume 1     C           NTFS   Partition     49 GB  Healthy    Boot
  Volume 2     S           FAT32  Partition    200 MB  Healthy    System

For a typical deployment scenario, you do not need to modify the BCD store. This topic discusses the various BCD
settings in the BCD store that you can modify. On UEFI systems, this includes settings for the following boot
applications:

1. Windows Boot Manager

2. Windows Boot Loader

3. Windows Memory Tester

The following sections describe the available settings for each of these boot applications in detail and how to
modify each application for UEFI systems.

For simplicity, the BCDEdit examples in this section modify the BCD system store. To modify another store, such as
a copy of the BCD-template, include the store name in the command line.

Windows Boot Manager ( {bootmgr} ) manages the boot process. UEFI-based systems contain a firmware boot
manager, Bootmgfw.efi, that loads an EFI application that is based on variables that are stored in NVRAM.

The BCD settings for the device  and path  elements in Windows Boot Manager indicate the firmware boot
manager. The template that is named BCD-template for Windows includes the following settings for Windows
Boot Manager.

The device  element specifies the volume that contains Windows Boot Manager. For UEFI systems, the device

element for Windows Boot Manager is set to the system partition volume letter. To determine the correct volume
letter, use the Diskpart tool to view the disk partitions. The following example assumes that the system has a single
hard drive that has multiple partitions, including a system partition that has been assigned a drive letter of S.

The following Diskpart commands select disk 0 and then list the details of the volumes on that disk, including their
drive letters. It shows volume 2 as the system partition.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/bcd-system-store-settings-for-uefi.md


 

Diskpart
select disk 0
list volume
select volume 2   // assuming volume 2 is the system partition
assign letter=s

Bcdedit /set {bootmgr} device partition=s:// system partition

Path SettingPath Setting

bcdedit /store bcd-template /enum all

Bcdedit /set {bootmgr} path \efi\microsoft\boot\bootmgfw.efi

Other SettingsOther Settings

Bcdedit /set {fwbootmgr} displayorder {bootmgr} /addfirst

Bcdedit /set {bootmgr} displayorder {<GUID>} /addfirst

Windows Boot Loader Settings

If the system partition does not have an assigned drive letter, assign one by using the Diskpart assign command.
The following example assumes that the system partition is volume 2 and assigns it S as the drive letter.

After you have determined the system partition volume, set the device  element for Windows Boot Manager to
the corresponding drive letter. The following example sets device  to drive S.

The path  element specifies the location of the Windows Boot Manager application on that volume. For UEFI
systems, path  indicates the firmware boot manager, whose path is \EFI\Microsoft\Boot\Bootmgfw.efi.

You can confirm that BCD-template has the correct path by enumerating the values in the store, as follows:

To explicitly set path  to \EFI\Microsoft\Boot\Bootmgfw.efi, use the following command.

You should set Windows Boot Manager to be the first item in the display order of the UEFI firmware, as shown in
the following example.

You should also specify the topmost Windows boot loader application in the Windows Boot Manager display
order. The following example shows how to put a specified Windows boot loader at the top of the display order.

In the preceding example, <GUID> is the identifier for the specified Windows boot loader object. The next section
discusses this identifier in greater detail.

Note
A multiboot system that has multiple installed operating systems has multiple instances of the Windows boot
loader. Each instance of the Windows boot loader has its own identifier. You can set the default Windows boot
loader ( {default} ) to any of these identifiers.

A BCD store has at least one instance, and optionally multiple instances, of the Windows boot loader. A separate
BCD object represents each instance. Each instance loads one of the installed versions of Windows that has a
configuration that the object's elements have specified. Each Windows boot loader object has its own identifier, and
the object's device  and path  settings indicate the correct partition and boot application.



 

## Windows Boot Loader

identifier              {9f25ee7a-e7b7-11db-94b5-f7e662935912}
device                  partition=C:
path                    \Windows\system32\winload.efi
description             Microsoft Windows Server
locale                  en-US
inherit                 {bootloadersettings}
osdevice                partition=C:
systemroot              \Windows

Bcdedit /default {9f25ee7a-e7b7-11db-94b5-f7e662935912}

Device and OSDevice SettingsDevice and OSDevice Settings

Bcdedit /set {default} device partition=c:
Bcdedit /set {default} osdevice partition=c:

Path SettingPath Setting

Bcdedit /set {default} path \windows\system32\winload.efi

Windows Memory Tester Settings

BCD-template  for Windows has a single Windows boot loader object that has the following settings.

The identifier for this Windows boot loader is {9f25ee7a-e7b7-11db-94b5-f7e662935912}. You can use this GUID
on your system or let the BCDEdit tool generate a new GUID for you.

To simplify BCDEdit commands, you can specify one of the Windows boot loaders in the BCD system store as the
default loader. You can then use the standard identifier ( {default} ) in place of the full GUID.The following
example specifies the Windows boot loader for EFI as the default boot loader, assuming that it uses the identifier
GUID from BCD-template.

The following elements specify key locations:

The device  element specifies the partition that contains the boot application.

The osdevice  element specifies the partition that contains the system root.

For the Windows boot loader for EFI, both elements are usually set to the drive letter of the Windows system
partition. However, if BitLocker is enabled or a computer has multiple installed versions of Windows, osdevice

and device  might be set to different partitions.BCD-template sets both elements to drive C, which is the typical
value. You can also explicitly set the osdevice  and device  values, as shown in the following example. The example
also assumes that you have specified the Windows boot loader for EFI as the default boot-loader object.

The path  element of a Windows boot loader specifies the location of the boot loader on that volume. For UEFI
systems, path  indicates the Windows boot loader for EFI, whose path is \Windows\System32\Winload.efi.

You can confirm that BCD-template has the correct path  value by enumerating the values in the store. You can
also explicitly set the path  value, as shown in the following example.

The Windows memory tester ( {memdiag} ) runs memory diagnostics at boot time. The BCD settings for the
application's device  and path  elements indicate the correct application.

Note



## Windows Memory Tester

identifier              {memdiag}
device                  partition=\Device\HarddiskVolume1
path                    \boot\memtest.exe
description             Windows Memory Diagnostic

Device SettingDevice Setting

Bcdedit /set {bootmgr} device partition=s:  // system partition

Path SettingPath Setting

Bcdedit /set {memdiag} path \efi\microsoft\boot\memtest.efi

Note: Intel Itanium computers do not include a Windows memory tester and do not require {memdiag}  settings.

BCD-template for Windows has the following settings.

For UEFI systems, the device  element for the Windows memory tester is set to the system partition drive letter.
The following example assumes that the system partition is drive S, as used in earlier examples.

The path  element specifies the location of Windows Test Manager on the volume that the device  element has
specified. For UEFI systems, path  indicates the EFI version of the application (\EFI\Microsoft\Boot\Memtest.efi).

You can confirm that BCD-template has the correct path  value by enumerating the values in the store. You can
also use the BCDEdit tool to explicitly set the path  value, as shown in the following example.



Validating Windows UEFI Firmware Update Platform
Functionality
5/11/2018 • 9 minutes to read • Edit Online

Prerequisites

How To

This document lists the basic validation scenarios that are required to pass before signing-off on the Windows
UEFI Firmware Update Platform functionality. Specification can be downloaded from here.

For each EFI System Resource Table (ESRT) entry, you need a capsule for the latest firmware version. The
scenarios will refer to the latest version as X. Each ESRT entry is identified using a unique GUID.
For each ESRT entry exposed, create a capsule package that its version is incremented above the package
created in step 1. These capsules will be referred to as X+1.
Capsules that aid in simulating failure conditions such as a capsule for which the payload is not signed or
signed with an invalid PK.
Make sure all capsules to be used are signed appropriately from the OS perspective, catalog signed, and
firmware signed, PK signed. Unless, you are specifically testing the negative PK signing cases. See “Signing the
Firmware driver Package” in the specification for details on how to sign a capsule or firmware driver package.

Install a new capsule or reinstall a previously installed capsule

1. Open up device manager.
2. Find the device node that represents your firmware, it is usually under the “Firmware” devices.
3. Right click on the firmware device you wish to update.
4. Select Update driver software. You will get a popup that states “Update Driver Software - <Firmware>”.
5. Select Browse my computer for driver software.
6. On the next window, select Let me pick from a list of device drivers on my computer.
7. If the driver has been installed before, select it from the Show compatible hardware box. If it does not exist,

select Have disk and continue on. Otherwise, select OK and reboot the system.
8. If you select Have Disk, you will get a popup labeled Install From Disk.
9. Use Browse to go to the directory that has the capsule of the firmware you wish to install.

10. Select the INF file in that directory and hit OK to install.
11. During installation, if you get a popup saying the driver is not signed, go ahead and accept this driver.
12. The system asks you to reboot.
13. After you installed the capsule for the firmware, you need to reboot. If you wish to install multiple capsule

packages, then wait to reboot until all capsules are installed and then reboot on the final capsule.

Query the version and status details:

Run the QueryVersionAndStatus.ps1 PowerShell (PS) script to query the current firmware version, last
attempt firmware version and last attempt status.

To run the script:

1. Run PowerShell as administrator.
2. Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force  (This only has to be done once.)

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/validating-windows-uefi-firmware-update-platform-functionality.md
http://go.microsoft.com/fwlink/p/?linkid=523808


Scenarios
S1: Each ESRT entry is successfully updatable through capsuleS1: Each ESRT entry is successfully updatable through capsule

S2: The latest firmware version X is also updatable to X+1S2: The latest firmware version X is also updatable to X+1

S3: On failure, firmware update returns the right status code as defined in the specificationS3: On failure, firmware update returns the right status code as defined in the specification

S3.1 Insufficient Battery and UEFI System Firmware updateS3.1 Insufficient Battery and UEFI System Firmware update

3. Display the version and status details for the given GUID. For example: 
.\QueryVersionAndStatus.ps1 6bd2efb9-23ab-4b4c-bc37-016517413e9a

4. Check if firmware update was successful: Refer to the section “Validating the status of the firmware
update” in the specification document. Make sure that the Last Attempt Status and the Current Version
matches the expected version.

5. Recommended: Check to make sure that the devices you are updating are also still functioning.
6. Set the rollback policy: Some of the scenarios might require rolling back firmware. Rollback is not a

production scenario. In order to be able to rollback, a registry policy key has to be created. Create a
REG_DWORD key with the name “Policy” under the node
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FirmwareResources\{<GUID>} and set
the value of the Policy key to 1. Note that the GUID should be replaced with the actual GUID from the
ESRT.

The following steps should be completed for each ESRT entry that is supported by the platform. Or in other
words, for System firmware and each device firmware that supports updating firmware through UpdateCapsule.

Steps

1. For each ESRT entry, install the capsule for firmware version X.
2. Make sure all the above capsules are installed, prior to rebooting.

Expected Result

Firmware update should be successful for each ESRT entry that was updated. For all ESRT entries, for which the
update was attempted, validate that:

Current Firmware Version = X
Last Attempt Version = X
Last Attempt Status = 0 (STATUS_SUCCESS)

The following steps should be completed for each ESRT entry that is supported by the platform. Or in other
words, for System firmware and each device firmware that supports updating firmware through UpdateCapsule.

Steps

1. Complete scenario S1 above.
2. For each ESRT entry, install the capsule for firmware version X+1.

Expected Result

Firmware update should be successful for each ESRT entry that was updated. For all ESRT entries, for which the
update was attempted, validate that:

Current Firmware Version = X+1
Last Attempt Version = X+1
Last Attempt Status = 0 (STATUS_SUCCESS)

The Status codes are defined in the section named “UEFI System Resource Table Definition”, in the table with the
title “ESRT Last Attempt Status Field Values”.



S3.2 Insufficient Battery and Device Firmware updateS3.2 Insufficient Battery and Device Firmware update

S3.3 Insufficient Battery, UEFI System and Device Firmware update at the same timeS3.3 Insufficient Battery, UEFI System and Device Firmware update at the same time

S3.4 Firmware update should fail when the capsule is not PK signedS3.4 Firmware update should fail when the capsule is not PK signed

Steps

1. Drain the battery charge to less than 25% and then plug-in the AC power.
2. Install the capsule for UEFI System Firmware version X+1. Let’s assume that the current version is X.
3. Before rebooting, make sure that the battery charge is less than 25%

Expected Result

Firmware update should fail. For ESRT entry corresponding to the System Firmware, validate that:

Current Firmware Version = X
Last Attempt Version = X+1
Last Attempt Status = 0xc00002de (STATUS_INSUFFICIENT_POWER)

Steps

1. Drain the battery charge to less than 25% and then plug-in the AC power.
2. Install the capsules for ALL supported devices in the system with firmware version X+1. Let’s assume that the

current firmware version for the given device is X.
3. Before rebooting, make sure that the battery charge is less than 25% .

Expected Result

Firmware update should fail. For all ESRT entries, for which the update was attempted, validate that:

Current Firmware Version = X
Last Attempt Version = X+1
Last Attempt Status = 0xc00002de (STATUS_INSUFFICIENT_POWER)

Steps

1. Drain the battery charge to less than 25% and then plug-in the AC power.
2. Install the capsules for UEFI System Firmware and all Device Firmware with version X+1.
3. Before rebooting, make sure that the battery charge is less than 25%.

Expected Result

Firmware update should fail for the System firmware and for all the device firmware for which the update was
attempted. For all ESRT entries, for which the update was attempted, validate that:

Current Firmware Version = X
Last Attempt Version = X+1
Last Attempt Status = 0xc00002de (STATUS_INSUFFICIENT_POWER)

The following steps should be completed for each ESRT entry that is supported by the platform. Or in other
words, for System firmware and each device firmware that supports updating firmware through UpdateCapsule.

Steps

1. For each ESRT entry, create a capsule X+2, the payload for which is not signed.
2. Install the capsules X+2. Let’s assume that the current version is X.

Expected Result

Firmware update should fail for all the ESRT entries for which the update was attempted. For all ESRT entries, for



S3.5 Firmware update should fail when the capsule is signed with the wrong PK certificateS3.5 Firmware update should fail when the capsule is signed with the wrong PK certificate

S3.6 Firmware update should fail when the capsule payload is tampered withS3.6 Firmware update should fail when the capsule payload is tampered with

S3.7: Firmware does not allow rollback beyond the LowestSupportedFirmwareVersionS3.7: Firmware does not allow rollback beyond the LowestSupportedFirmwareVersion

which the update was attempted, validate that:

Current Firmware Version = X
Last Attempt Version = X+2
Last Attempt Status = 0xC0000022 (STATUS_ACCESS_DENIED)

The following steps should be completed for each ESRT entry that is supported by the platform. Or in other
words, for System firmware and each device firmware that supports updating firmware through UpdateCapsule.

Steps

1. For each ESRT entry, create a capsule X+2, sign the payload with a wrong key or certificate (for example use a
debug signed capsule on a production device).

2. Install the capsules X+2. Let’s assume that the current version is X.

Expected Result

Firmware update should fail for all the ESRT entries for which the update was attempted. For all ESRT entries, for
which the update was attempted, validate that:

Current Firmware Version = X
Last Attempt Version = X+2
Last Attempt Status = 0xC0000022 (STATUS_ACCESS_DENIED)

The following steps should be completed for each ESRT entry that is supported by the platform. Or in other
words, for System firmware and each device firmware that supports updating firmware through UpdateCapsule.

Steps

1. For each ESRT entry, create a capsule X+2, sign the payload with the right key or certificate. Then open the
firmware bin file and flip 1 or more bits in the file and save the file back.

2. Regenerate the catalog for the bin file and the INF file.
3. Install the capsules X+2. Let’s assume that the current version is X.

Expected Result

Firmware update should fail for all the ESRT entries for which the update was attempted. For all ESRT entries, for
which the update was attempted, validate that:

Current Firmware Version = X
Last Attempt Version = X+2
Last Attempt Status = 0xC0000022 (STATUS_ACCESS_DENIED) or 0xC000007B
(STATUS_INVALID_IMAGE_FORMAT)

The following steps should also be carried out for other device firmware (lower priority).

Steps

1. For UEFI System Firmware, create a capsule X+1 such that the “LowestSupportedFirmwareVersion” in the
ESRT entry for the system firmware is set to X+1.

2. Install the capsule X+1 and make sure that the update succeeds.
3. Create a UEFI System firmware update capsules, such that the version in the INF is X+2 but the actual

firmware binary file is of version X.
4. Install the capsule X+2 and reboot the system.



S4: Seamless recovery and firmware update (if implemented)S4: Seamless recovery and firmware update (if implemented)

S5: Firmware Update adheres to the User Experience (UX) requirementS5: Firmware Update adheres to the User Experience (UX) requirement

Related topics

Expected Result

Firmware update should fail. For ESRT entry corresponding to the System Firmware, validate that:

Current Firmware Version = X+1
Last Attempt Version = X+2
Last Attempt Status = 0xC0000059 (STATUS_REVISION_MISMATCH)

This scenario varies from platform to platform depending on the implementation of the seamless recovery. Based
on the implementation, the validation might require creating bad capsules that forces the system into recovery or
disconnecting the power in the middle of an update or through any other means of exercising the recovery flows.

Expected Result

The system should boot into the OS and the firmware update should be marked as failed. The version reported by
the UEFI firmware resource device should not have changed.

Steps

This scenario can be validated while executing any of the above scenarios that lead to a successful firmware
update.

Expected Result

The user experience is in accordance to the specification, see section on “User Experience”.

The only text that is displayed on the screen is “Please wait while we install a system update”. The text is
displayed at the right co-ordinates on the screen as called out in the specification.
OEM Logo is displayed as described in the specification.

Windows UEFI Firmware Update Platform

UEFI Validation Option ROM Validation Guidance

http://go.microsoft.com/fwlink/p/?linkid=523808


Boot and install Windows
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Boot to WinPE How to create WinPE media, and boot a PC into WinPE

Boot to UEFI Mode or Legacy BIOS mode How to boot into UEFI or legacy BIOS mode

Windows Setup: Installing using the MBR or GPT partition
style

How to choose the partition style when installing Windows
with Windows Setup

Boot from a DVD How to boot a PC to a DVD

Install Windows from a USB Flash Drive How to install Windows from a USB flash drive

Deploy a Custom Image Learn how to deploy a custom image

Deploy Windows with a VHD (Native Boot) Learn how to deploy a virtual hard drive that a PC can boot to

Windows Setup Installation Process How Windows Setup works

This section covers how to Boot a PC and install Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/boot-and-install-windows.md


Boot to WinPE
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Download WinPE (Windows PE) How to get WinPE

Create bootable WinPE media How to create bootable WinPE media

WinPE: Install on a Hard Drive (Flat Boot or Non-RAM) How to install WinPE on a hard drive

This section covers how to create WinPE media and boot a PC into WinPE.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/boot-to-winpe.md


Download WinPE (Windows PE)
11/13/2017 • 2 minutes to read • Edit Online

Download and Install the Windows ADK

Next Steps - create a bootable USB, CD, or DVD:

Related topics

Before you can use WinPE, you'll have to create a bootable WinPE USB flash drive, CD, DVD, or virtual hard drive.

The files you need to create WinPE media are distributed as part of the Windows Assessment and Deployment Kit,
and are downloaded when you install the ADK with the Deployment tools and Windows Preinstallation
Environment options selected.

To start working with WinPE, download and install the Windows Assessment and Deployment Kit (ADK). During
installation, select the following features:

Deployment Tools: includes the Deployment and Imaging Tools Environment.

Windows Preinstallation Environment: includes the files used to install Windows PE.

After you've downloaded and installed the ADK, you can create bootable WinPE media.

To learn how to create a bootable WinPE USB drive, see WinPE: Create USB Bootable drive

To learn how to create a bootable WinPE CD, DVD, ISO, or VHD, see WinPE: Create a Boot CD, DVD, ISO,
or VHD

WinPE for Windows 10

WinPE: Mount and Customize

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/download-winpe--windows-pe.md
http://go.microsoft.com/fwlink/?LinkId=526803
https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install
http://go.microsoft.com/fwlink/?LinkId=526803
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-a-boot-cd-dvd-iso-or-vhd


 

Create bootable WinPE media
5/18/2018 • 2 minutes to read • Edit Online

Step 1: Create working files

Step 2: Create bootable media

Create a bootable WinPE USB driveCreate a bootable WinPE USB drive

The Windows Assessment and Deployment Kit (ADK) includes the CopyPE and MakeWinPEMedia
command line utilities. When run from the Deployment and Imaging Tools Environment, CopyPE  creates a
working set of WinPE files, that MakeWinPEMedia can use to create bootable WinPE media.
MakeWinPEMedia can create bootable WinPE USB drives, virtual hard disks, or ISOs that allow you to boot
a VHD or burn to a DVD or CD.

CopyPE  and MakeWinPEMedia are installed when you choose the Deployment tools and Windows
Preinstallation Environment options when installing the ADK.

No matter what type of media you're going to create, the first thing to do is create a working set of WinPE files
on your technician PC.

copype amd64 C:\WinPE_amd64

1. Start the Deployment and Imaging Tools Environment as an administrator.

2. Run copype to create a working copy of the Windows PE files. For more information about copype, see
Copype command line options.

Now that you now have a set of working files, you can use MakeWinPEMedia to build bootable WinPE
media.

MakeWinPEMedia /UFD C:\WinPE_amd64 P:

WARNINGWARNING

1. Attach a USB drive to your technician PC.

2. Start the Deployment and Imaging Tools Environment as an administrator.

3. Optional You can format your USB key prior to running MakeWinPEMedia. MakeWinPEMedia will
format your WinPE drive as FAT32. If you want to be able to store files larger than 4GB on your WinPE
USB drive, you can create a multipartition USB drive that has an additional partition formatted as
NTFS. See Create a multipartition USB drive for instructions.

4. Use MakeWinPEMedia with the /UFD  option to format and install Windows PE to the USB flash
drive, specifying the USB key's drive letter :

This command reformats the partition.

See MakeWinPEMedia command line options for all available options.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-create-usb-bootable-drive.md
https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install


Create a WinPE ISO, DVD, or CDCreate a WinPE ISO, DVD, or CD

Create a WinPE VHD to use with Hyper-VCreate a WinPE VHD to use with Hyper-V

TroubleshootingTroubleshooting

Related topics

The bootable WinPE USB drive is ready. You can use it to boot a PC into WinPE.

MakeWinPEMedia /ISO C:\WinPE_amd64 C:\WinPE_amd64\WinPE_amd64.iso

1. Use MakeWinPEMedia with the /ISO  option to create an ISO file containing the Windows PE files:

2. Optional Burn a DVD or CD: In Windows Explorer, right-click the ISO file, and select Burn disc image
> Burn, and follow the prompts.

Even though you can create a bootable When running Windows PE in Hyper-V, consider using an ISO file
format instead of a VHD, to enable quick setup of the virtual PC.

To install Windows PE to a VHD:

diskpart
create vdisk file="C:\WinPE.vhdx" maximum=1000
attach vdisk
create partition primary
assign letter=V
format fs=ntfs quick
exit

MakeWinPEMedia /UFD C:\WinPE_amd64 V:

diskpart
select vdisk file="C:\WinPE.vhdx"
detach vdisk
exit

1. Create a virtual hard drive (.vhdx):

2. Prepare the drive by using MakeWinPEMedia:

3. Detach the drive:

1. If Windows PE doesn't appear, try the following workarounds, rebooting the PC each time:

To boot a PC that supports UEFI mode: In the firmware boot menus, try manually selecting the
boot files: \EFI\BOOT\BOOTX64.EFI.

If your PC requires storage or video drivers to boot, try adding those same drivers to the
Windows PE image. For more information, see WinPE: Mount and Customize.

2. If the PC doesn't connect to network locations, see WinPE Network Drivers: Initializing and adding
drivers.

WinPE for Windows 10

WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)

WinPE: Mount and Customize



WinPE: Boot in UEFI or legacy BIOS mode

Windows Setup Supported Platforms and Cross-Platform Deployments

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode


WinPE: Install on a Hard Drive (Flat Boot or Non-
RAM)
5/11/2018 • 3 minutes to read • Edit Online

Install the Windows ADK

Create a Working Directory for Windows PE Files

Install Windows PE to the Media

Windows Preinstallation Environment (Windows PE) is a minimal operating system where you can prepare a PC
for installation, deployment, and servicing of Windows. Here's how to download and install it to an internal or
external hard drive.

These instructions show how to set up a basic Windows PE installation that runs from the drive. This can
sometimes give you better performance than booting from memory, and can help you run Windows PE on PCs
or virtual environments with low memory. This procedure is also known as a non-RAMDISK boot, or a flat boot.

Note
When Windows PE is running from the drive, you must turn off the PC before disconnecting the drive to avoid
losing your work.

Get the Windows Assessment and Deployment Kit (Windows ADK) Technical Reference, including the
Windows PE feature.

Create a Set of Either 32-bit or 64-bit Windows PE Files

copype amd64 C:\WinPE_amd64

copype x86 C:\WinPE_x86

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. In the Deployment and Imaging Tools Environment, copy the Windows PE files for the PCs you want
to boot.

The 64-bit version of Windows PE can boot 64-bit UEFI and 64-bit BIOS PCs:

The 32-bit version of Windows PE can boot 32-bit UEFI, 32-bit BIOS, and 64-bit BIOS PCs:

copype amd64 C:\WinPE_amd64

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. From the Deployment and Imaging Tools Environment, create a working directory for the Windows
PE files.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-install-on-a-hard-drive--flat-boot-or-non-ram.md
http://go.microsoft.com/fwlink/p/?LinkId=526803


Boot to Windows PE

Troubleshooting

diskpart
list disk
select <disk number>
clean
rem === Create the Windows PE partition. ===
create partition primary size=2000
format quick fs=fat32 label="Windows PE"
assign letter=P
active
rem === Create a partition for images ===
create partition primary
format fs=ntfs quick label="Images"
assign letter=I
list vol
exit

dism /Apply-Image /ImageFile:"C:\WinPE_amd64\media\sources\boot.wim" /Index:1 /ApplyDir:P:\

BCDboot P:\Windows /s P: /f ALL

1. Use DiskPart to prepare the partitions.

Note
The following commands prepare a USB hard drive that can boot on either a BIOS-based or UEFI-based
PC.

On UEFI-based PCs, Windows PE requires a boot partition formatted using the FAT32 file format, which
only supports file sizes up to 4 GB. We recommend creating a separate partition on the drive, formatted
using NTFS, so that you can store Windows images and other large files. To learn more, see WinPE:
Identify drive letters with a script.

where <disk number> is the listed number of the external USB hard drive.

2. Apply the Windows PE image to the hard drive.

3. Set up the boot files.

Note
Ignore any warning messages that say "Warning: Resume application not found."

1. Connect the device (internal or external USB hard drive) into the PC you want to work on.

2. Turn on the PC, and use the boot menus to select the Windows PE drive. Typically this requires pressing a
hardware button or a key, such as the Esc key.

Note
For UEFI-based PCs, you might need to find an option to manually select the UEFI boot files, for example,
USBDrive01\EFI\BOOT\BOOTX64.EFI.

Windows PE starts automatically. After the command window appears, the wpeinit command runs
automatically. This might take a few minutes.

1. If the PC does not boot, try the following steps in sequence, and try to boot the PC after each step:



Related topics

a. For external USB drives, try inserting the drive into a different USB port. Avoid using USB hubs or
cables, because they might not be detected during the boot sequence. Avoid USB 3.0 ports if the
firmware does not contain native support for USB 3.0.

b. If your PC requires drivers to boot, such as storage drivers or video drivers, or if your driver
requires changes to the registry, add the driver to the Windows PE image. For more info, see
WinPE: Mount and Customize.

c. Update the firmware of the PC to the latest version.

2. For tips on connecting to a network, see WinPE Network Drivers: Initializing and adding drivers.

Running Windows Setup from Windows PE

See Windows Setup Supported Platforms and Cross-Platform Deployments for tips on installing Windows on
UEFI PCs that support both UEFI and legacy BIOS firmware modes, and for using the 32-bit (x86) version of
Windows PE to install a 64-bit version of Windows.

WinPE for Windows 10

WinPE: Identify drive letters with a script

WinPE: Create USB Bootable drive

WinPE: Mount and Customize

WinPE: Boot in UEFI or legacy BIOS mode

Windows Setup Supported Platforms and Cross-Platform Deployments

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode


Boot to UEFI Mode or legacy BIOS mode
5/15/2018 • 3 minutes to read • Edit Online

To boot to UEFI or BIOS:

UEFI and BIOS modes in WinPE
Detect if WinPE is booted into BIOS or UEFI ModeDetect if WinPE is booted into BIOS or UEFI Mode

reg query HKLM\System\CurrentControlSet\Control /v PEFirmwareType

Choose UEFI or legacy BIOS modes when booting into Windows PE (WinPE) or Windows Setup. After Windows
is installed, if you need to switch firmware modes, you may be able to use the MBR2GPT tool.

In general, we recommend installing Windows using the newer UEFI mode, as it includes more security features
than the legacy BIOS mode. If you're booting from a network that only supports BIOS, you'll need to boot to
legacy BIOS mode.

After Windows is installed, the device boots automatically using the same mode it was installed with.

NOTENOTE

1. Open the firmware menus. You can use any of these methods:

Boot the PC, and press the manufacturer ’s key to open the menus. Common keys used: Esc,
Delete, F1, F2, F10, F11, or F12. On tablets, common buttons are Volume up or Volume down
(find more common keys and buttons). During startup, there’s often a screen that mentions the key.
If there’s not one, or if the screen goes by too fast to see it, check your manufacturer ’s site.

Or, if Windows is already installed, from either the Sign on screen or the Start menu, select Power (

) > hold Shift while selecting Restart. Select Troubleshoot > Advanced options > UEFI
Firmware settings.

2. From the firmware menus, boot to drive or network while in UEFI or BIOS mode:

On the boot device menu, select the command that identifies both the firmware mode and the device. For
example, select UEFI: USB Drive or BIOS: Network/LAN .

You might see separate commands for the same device. For example, you might see UEFI USB Drive and
BIOS USB Drive. Each command uses the same device and media, but boots the PC in a different
firmware mode.

Some devices only support one mode (either UEFI or BIOS). Other devices will only allow you to boot to
BIOS mode by manually disabling the UEFI security features. To disable the security features, go to
Security > Secure Boot and disable the feature.

Some older PCs (Windows 7-era or earlier) support UEFI, but require you to browse to the boot file. From the
firmware menus, look for the option: "Boot from file", then browse to \EFI\BOOT\BOOTX64.EFI on Windows PE or
Windows Setup media.

Query the registry to determine which mode the device is in. You can do this from the command line:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/boot-to-uefi-mode-or-legacy-bios-mode.md
https://docs.microsoft.com/en-us/windows/deployment/mbr-to-gpt
https://www.bing.com/search?q=bios+menu+key+brand


RETURN CODE FIRMWARE MODE

0x1 BIOS

0x2 UEFI

wpeutil UpdateBootInfo
for /f "tokens=2* delims=    " %%A in ('reg query HKLM\System\CurrentControlSet\Control /v PEFirmwareType') 
DO SET Firmware=%%B
:: Note: delims is a TAB followed by a space.
if %Firmware%==0x1 echo The PC is booted in BIOS mode.
if %Firmware%==0x2 echo The PC is booted in UEFI mode.

Make sure you boot into the right mode every time

Use preformatted hard drives, and use a method that doesn't automatically format the drive.Use preformatted hard drives, and use a method that doesn't automatically format the drive.

Remove the UEFI or BIOS boot filesRemove the UEFI or BIOS boot files

Boot only when in UEFI modeBoot only when in UEFI mode

Boot only when in BIOS modeBoot only when in BIOS mode

Related topics

Use it in a script:

Note that between delims=  and " %%A  is a tab, followed by a space.

Here are a couple of ways you can make sure you're booted into the right firmware mode every time you start
your PC.

If you want to ensure that your drive boots into a certain mode, use drives that you've preformatted with the GPT
file format for UEFI mode, or the MBR file format for BIOS mode. When the installation starts, if the PC is booted
to the wrong mode, Windows installation will fail. To fix this, restart the PC in the correct firmware mode.

If you want a PC to only boot into a certain mode, you can remove the files that Windows PE or Windows Setup
use to boot in UEFI or BIOS mode. Remove the following files, depending on the mode you want to boot to.

Remove the bootmgr file from the root of the Windows PE or Windows Setup media. This prevents the device
from starting in BIOS mode.

Remove the efi folder from the root of the Windows PE or Windows Setup media. This prevents the device from
starting in UEFI mode.

WinPE: Create USB Bootable drive



Windows Setup: Installing using the MBR or GPT
partition style
5/11/2018 • 3 minutes to read • Edit Online

Why should I convert my drive?

Reformatting the drive using a different partition style

When installing Windows on UEFI-based PCs using Windows Setup, your hard drive partition style must be set
up to support either UEFI mode or legacy BIOS-compatibility mode.

For example, if you receive the error message: “Windows cannot be installed to this disk. The selected disk is not of
the GPT partition style”, it’s because your PC is booted in UEFI mode, but your hard drive is not configured for
UEFI mode. You’ve got a few options:

1. Reboot the PC in legacy BIOS-compatibility mode. This option lets you keep the existing partition style. For
more info, see Boot to UEFI Mode or Legacy BIOS mode.

2. Configure your drive for UEFI by using the GPT partition style. This option lets you use the PC’s UEFI
firmware features.

You can preserve your data and convert the drive using the MBR2GPT tool. You can also choose to
reformat the drive using the instructions below. Reformatting will erase all the data on the drive.

Many PCs now include the ability to use the UEFI version of BIOS, which can speed up boot and shutdown times
and can provide additional security advantages. To boot your PC in UEFI mode, you'll need to use a drive
formatted using the GPT drive format.

Many PCs are ready to use UEFI, but include a compatibility support module (CSM) that is set up to use the
legacy version of BIOS. This version of BIOS was developed in the 1970s and provides compatibility to a variety
of older equipment and network configurations, and requires a drive that uses the MBR drive format.

However, the basic MBR drive format does not support drives over 4TB. It's also difficult to set up more than four
partitions. The GPT drive format lets you set up drives that are larger than 4 terabytes (TB), and lets you easily set
up as many partitions as you need.

To wipe and convert the drive by using Windows Setup

1. Turn off the PC, and put in the Windows installation DVD or USB key.

2. Boot the PC to the DVD or USB key in UEFI mode. For more info, see Boot to UEFI Mode or Legacy BIOS
mode.

3. When choosing an installation type, select Custom.

4. On the Where do you want to install Windows? screen, select each of the partitions on the drive, and
select Delete. The drive will show a single area of unallocated space.

5. Select the unallocated space and click Next. Windows detects that the PC was booted into UEFI mode, and
reformats the drive using the GPT drive format, and begins the installation.

To manually wipe a drive and convert it to GPT:

1. Turn off the PC, and put in the Windows installation DVD or USB key.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-installing-using-the-mbr-or-gpt-partition-style.md
https://docs.microsoft.com/en-us/windows/deployment/mbr-to-gpt


Make sure Windows Setup boots to the correct firmware mode

Related topics

diskpart

list disk

select disk <disk number>
clean
convert gpt
exit

2. Boot the PC to the DVD or USB key in UEFI mode. For more info, see Boot to UEFI Mode or Legacy BIOS
mode.

3. From inside Windows Setup, press Shift+F10 to open a command prompt window.

4. Open the diskpart tool:

5. Identify the drive to reformat:

6. Select the drive, and reformat it:

7. Close the command prompt window.

8. Continue the Windows Setup installation.

When choosing an installation type, select Custom. The drive will appear as a single area of unallocated
space.

Select the unallocated space and click Next. Windows begins the installation.

To automate this process, you'll need to run Windows Setup through Windows PE, and use a script to detect which
mode you’re in before installing Windows. For more info, see WinPE: Boot in UEFI or legacy BIOS mode.

Boot to UEFI Mode or Legacy BIOS mode

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode


Boot from a DVD
5/11/2018 • 3 minutes to read • Edit Online

Prerequisites

The simplest way to install Windows on new hardware is to start directly from the Windows product DVD by
using an answer file that is named Autounattend.xml. This method provides flexibility when network access is not
available or when you are building only a few computers. You can use this same method to build an initial image
in an image-based deployment scenario, typically known as a master installation.

By using the answer file, you can automate all or parts of Windows Setup. You can create an answer file by using
Windows System Image Manager (Windows SIM). For more information, see Create or Open an Answer File.

To complete this walkthrough, you need the following:

An answer file on removable media (CD or DVD-ROM) or a USB flash drive. The answer file must be
named Autounattend.xml. The answer file must be located at the root of the media.

A Windows product DVD.

To install Windows from the Windows product DVD

1. Turn on the new computer.

Note
This example assumes that the hard disk drive is blank.

2. Insert both the Windows product DVD and the removable media that contains your answer file into the
new computer.

Note
When you use a USB flash drive, insert the drive directly into the primary set of USB ports for the
computer. For a desktop computer, this is typically in the back of the computer.

3. Restart the computer by pressing the CTRL+ALT+DEL keys. Windows Setup (Setup.exe) starts
automatically.

By default, Windows Setup searches at the root of a drive and other locations, such as removable media,
for an answer file that is named Autounattend.xml. This occurs even if you do not explicitly specify an
answer file. For more information, see “Implicitly Searching for an Answer File” and “Implicit Answer File
Search Order” in Windows Setup Automation Overview.

4. After the Setup program is finished, validate that Windows applied all customizations, and then reseal the
computer by using the sysprep command together with the /generalize option.

The Sysprep tool removes all system-specific information and resets the computer. The next time that the
computer starts, your customers can accept the Microsoft Software License Terms and add user-specific
information.

Optional: To automatically run the Sysprep tool after the installation, set the Microsoft-Windows-
Deployment | Reseal component setting in your answer file (Autounattend.xml) as follows:

ForceShutdownNow = true, Mode =OOBE

Optional: To run the Sysprep tool manually from a running operating system, type the following at a

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/boot-from-a-dvd.md
https://msdn.microsoft.com/library/windows/hardware/dn915085


Next Steps

Related topics

command prompt:

c:\windows\system32\sysprep /oobe /shutdown

For more information, see Sysprep (System Preparation) Overview.

This walkthrough illustrates a basic unattended installation that requires no user input. You can manually add
more customizations to the newly installed operating system. If this is a master installation or an installation that
you will use for image deployment, shut down the computer. Then, capture an image of the installation by using
the Deployment Image Servicing and Management (DISM) tool or any third-party imaging software.

Important
You must run the sysprep /generalize command before you move a Windows image to a new computer by any
method. These methods include imaging, hard disk duplication, and other methods. Moving or copying a
Windows image to a different computer without running the sysprep /generalize command is not supported,
even if the new computer has the same hardware configuration. Generalizing the image removes unique
information from the Windows installation so that you can apply that image on different computers.

The next time that you boot the Windows image, the specialize configuration pass runs. During this configuration
pass, many components perform actions that must occur when you boot a Windows image on a new computer.
For more information, see How Configuration Passes Work.

Windows Setup Technical Reference

Use a Configuration Set with Windows Setup

Deploy a Custom Image

Boot Windows to Audit Mode or OOBE

Add Device Drivers to Windows During Windows Setup

Add a Custom Script to Windows Setup

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


Install Windows from a USB Flash Drive
3/1/2018 • 2 minutes to read • Edit Online

NOTENOTE

What you need

Step 1 - Format the drive and set the primary partition as activeStep 1 - Format the drive and set the primary partition as active

Step 2 - Copy Windows Setup to the USB flash driveStep 2 - Copy Windows Setup to the USB flash drive

Step 3 - Install Windows to the new PCStep 3 - Install Windows to the new PC

Troubleshooting: file copy failsTroubleshooting: file copy fails

You can install Windows on a device without a DVD drive by using a USB flash drive.

If you're looking for a tool that downloads Windows 10 and creates a bootable USB Windows installation drive, see
Download Windows 10.

This topic covers how to create a bootable Windows installation USB drive from a Windows 10 install .iso or DVD.

Windows 10 install .iso or DVD
USB flash drive with at least 5GB free space. This drive will be formatted, so make sure it doesn't have any
important files on it.
Technician PC - Windows PC that you'll use to format the USB flash drive
Destination PC - A PC that you'll install Windows on

NOTENOTE

1. Connect the USB flash drive to your technician PC.

2. Open Disk Management: Right-click on Start and choose Disk management.

3. Format the partition: Right-click the USB drive partition and choose Format. Select the FAT32 file system
to be able to boot either BIOS-based or UEFI-based PCs.

4. Set the partition as active: Right-click the USB drive partition and click Mark Partition as Active.

If Mark Partition as Active isn't available, you can instead use diskpart to select the partition and mark it active.

1. Use File Explorer to copy and paste the entire contents of the Windows product DVD or ISO to the USB
flash drive.

2. Optional: add an unattend file to automate the installation process. For more information, see Automate
Windows Setup.

1. Connect the USB flash drive to a new PC.

2. Turn on the PC and press the key that opens the boot-device selection menu for the computer, such as the
Esc/F10/F12 keys. Select the option that boots the PC from the USB flash drive.

Windows Setup starts. Follow the instructions to install Windows.

3. Remove the USB flash drive.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/install-windows-from-a-usb-flash-drive.md
https://www.microsoft.com/en-us/software-download/windows10
https://technet.microsoft.com/en-us/library/cc770877.aspx


Related topics

This can happen when the Windows image file is over the FAT32 file size limit of 4GB. When this happens:

robocopy D: E: /s /max:3800000000

Dism /Split-Image /ImageFile:D:\sources\install.wim /SWMFile:E:\sources\install.swm /FileSize:3800

1. Copy everything except the Windows image file (sources\install.wim) to the USB drive (either drag and
drop, or use this command, where D: is the mounted ISO and E: is the USB flash drive.)

2. Split the Windows image file into smaller files, and put the smaller files onto the USB drive:

Note, Windows Setup automatically installs from this file, so long as you name it install.swm.

Windows Setup Technical Reference



Deploy a Custom Image
5/11/2018 • 4 minutes to read • Edit Online

Prerequisites

In this topic you create a reference installation, capture an image of the installation, and rerun Windows® Setup
with an answer file that points to your custom image. Deploying a custom image using Windows Setup provides
several benefits over applying an image using an image capture tool.

Setup supports the following:

Applying another answer file for additional customizations during deployment.

Reconfiguring disk configuration.

Adding additional drivers.

Replacing a product key.

Selecting a different language to install.

Selecting from a list of images to install, if your image file contains more than one image.

Installing to a different drive location.

Upgrading an existing Windows installation.

Configuring the computer to dual-boot operating systems.

Ensuring that the hardware can support Windows 8.

There are some limitations to installing a custom image using Windows Setup. For more information, see
Windows Setup Scenarios and Best Practices.

In this topic:

Copy the Windows product DVD source files to a network share

Create a master installation

Capture an image of the installation

Create a custom answer file

Deploy the image by using Windows Setup

To complete this walkthrough, you need the following:

A technician computer. A technician computer is any computer that has the Windows Assessment and
Deployment Kit (Windows ADK) tools installed..

A Windows 8 product DVD.

A master computer on which you will install and capture your custom image.

Bootable Windows PE media. There are several types of Windows PE media that you can create. For more
information about these options, see WinPE for Windows 10.

Access to a network share to store your custom image and Windows Setup source files.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-a-custom-image.md


 

 

 

  

Step 1: Copy the Windows product DVD source files to a network
share

net use N: \\server\share\
xcopy D: N:\WindowsDVD\ /s

Step 2: Create a master installation

Step 3: Capture an image of the installation

Step 4: Create a custom answer file

On your technician computer, copy the entire content of the Windows product DVD to a network share. For
example:

where D: is the DVD-ROM drive on your local computer.

1. Create a master installation by using one of the following methods:

Boot from a DVD

Use a Configuration Set with Windows Setup

2. After the installation is complete, shut down the computer.

In this step, you will capture an image of the reference installation by using the Deployment Image Servicing and
Management (DISM) tool and then store the custom image on a network share.

Dism /Capture-Image /ImageFile:C:\myimage.wim /CaptureDir:c:\ /Compress:fast /CheckIntegrity 
/ImageName:"x86_Ultimate" /ImageDescription:"x86 Ultimate Compressed"

net use N: \\server\share\
copy C:\myimage.wim N:\WindowsDVD\sources\install.wim

1. Boot the reference computer by using your bootable Windows PE media.

2. At a command prompt, capture an image of the installation. You specify a name and description as part of
your image capture. All values are required by Windows Setup. If a .wim file does not include these values,
then the image will not install correctly. For example:

3. Replace the default Install.wim on the network share with your custom image. The image must be called
Install.wim. For example:

If necessary, provide network credentials for appropriate network access.

For more information, see DISM Image Management Command-Line Options.

In this step, you will create an answer file that points to your custom image. This step assumes that you have
already built an answer file and have a working catalog.

1. On your technician computer, open Windows System Image Manager.

2. On the File menu, click New Answer File.

3. In the Windows Image pane of Windows SIM, expand the Components node to display available
settings.

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


COMPONENT CONFIGURATION PASS

COMPONENT VALUE

WillShowUI = OnError

DiskID = 0
WillWipeDisk = true

Extend = false
Order = 1
Size = 300

Type = Primary

Extend = true
Order = 2

Type = Primary

4. Add the following components to your answer file by right-clicking the component and then selecting the
appropriate configuration pass.

Microsoft-Windows-
Setup\DiskConfiguration\Disk\CreatePartitions\
CreatePartition

windowsPE

Microsoft-Windows-
Setup\DiskConfiguration\Disk\ModifyPartitions\
ModifyPartition

windowsPE

Microsoft-Windows-
Setup\ImageInstall\OSImage\InstallTo

windowsPE

Note
Expand the component list until you see the lowest setting listed in the previous table, and then add that
setting to your answer file. This shortcut will add the setting and all parent settings to your answer file in
one step.

5. All of the settings that you added must appear in the Answer File pane. Select and configure each setting
as specified in the following table.

Microsoft-Windows-Setup\DiskConfiguration

Microsoft-Windows-
Setup\DiskConfiguration\Disk

Microsoft-Windows-
Setup\DiskConfiguration\Disk\CreatePartitions\C
reatePartition

Microsoft-Windows-
Setup\DiskConfiguration\Disk\CreatePartitions\C
reatePartition



 Step 5: Deploy the image by using Windows Setup

Next Steps

Active = true
Extend = false
Format = NTFS
Label = System
Letter = S
Order = 1
PartitionID = 1

Extend = false
Format = NTFS
Label = Windows
Letter = C
Order = 2
PartitionID = 2

WillShowUI = OnError

DiskID = 0
PartitionID = 2

COMPONENT VALUE

net use N: \\server\share\
md N:\AnswerFiles
copy C:\deploy_unattend.xml N:\AnswerFiles\

Microsoft-Windows-
Setup\DiskConfiguration\Disk\ModifyPartitions\
ModifyPartition

Microsoft-Windows-
Setup\DiskConfiguration\Disk\ModifyPartitions\
ModifyPartition

Microsoft-Windows-
Setup\ImageInstall\OSImage</strong>

Microsoft-Windows-
Setup\ImageInstall\OSImage\InstallTo

6. In a command prompt window copy the answer file to a network location. For example:

If necessary, provide network credentials for appropriate network access.

In this step, you will deploy your custom image from a network share onto a destination computer.

net use N: \\server\share
N:\WindowsDVD\setup /unattend:N:\AnswerFiles\deploy_unattend.xml

1. Boot the destination computer by using your bootable Windows PE media.

2. Connect to the network share that you specified in Step 4: Create a custom answer file, and then run Setup
with your answer file. For example:

If necessary, provide network credentials for appropriate network access.

You can further customize your answer file to include additional options. You can also build a DVD deployment
media that contains the same content that you put on the network share. A single deployment DVD provides a



Related topics

portable installation solution that requires no network or any additional resources. The process includes building a
configuration set and recapturing all source files into a single DVD.

Important
The DVD media that you create is for internal deployment use only. You cannot redistribute this media.

Windows Setup Technical Reference

Boot from a DVD

Use a Configuration Set with Windows Setup

Boot Windows to Audit Mode or OOBE

Add Device Drivers to Windows During Windows Setup

Add a Custom Script to Windows Setup

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


Deploy Windows with a VHDX (Native Boot)
1/30/2018 • 5 minutes to read • Edit Online

What Is VHDX with Native Boot?

Common Scenarios

Requirements

Native boot enables Windows 10 virtual hard disks (VHDXs) to run on a computer without a virtual machine or
hypervisor. A hypervisor is a layer of software under the operating system that runs virtual machines. Native boot
for Windows 10 requires the .vhdx format, not the .vhd format.

A virtual hard disk can be used as the running operating system on designated hardware without any other parent
operating system, virtual machine, or hypervisor. Windows disk-management tools, the DiskPart tool and the Disk
Management Microsoft Management Console (Diskmgmt.msc), can be used to create a VHDX file. A supported
Windows image (.wim) file can be applied to a VHD, and the VHDX can be copied to multiple systems. The
Windows boot manager can be configured to boot directly into the VHD.

The VHDX can also be connected to a virtual machine for use with the Hyper-V Role in Windows Server.

Native-boot VHDXs are not designed or intended to replace full image deployment on all client or server systems.
Enterprise environments already managing and using .vhdx files for virtual machine deployment will get the most
benefit from the native-boot VHDX capabilities. Using the .vhdx file as a common image container format for
virtual machines and designated hardware simplifies image management and deployment in an enterprise
environment.

For more information about virtualization in Windows, see this Microsoft Web site. For more information about
how to use VHDs with native boot, see this Microsoft Web site.

Using disk-management tools to create and attach a VHDX for offline image management. You can attach
a VHDX by using the Attach vdisk command which activates the VHDX so that it appears on the host as a
disk drive instead of as a .vhd file.

Mounting reference VHDX images on remote shares for image servicing.

Maintaining and deploying a common reference VHDX image to execute in either virtual or physical
computers.

Configuring VHDX files for native boot without requiring a full parent installation.

Configuring a computer to boot multiple local VHDX files that contain different application workloads,
without requiring separate disk partitions.

Using Windows Deployment Services (WDS) for network deployment of VHDX images to target
computers for native boot.

Managing desktop image deployment.

The local disk must have at least two partitions: a system partition that contains the Windows boot-
environment files and Boot Configuration Data (BCD) store, and a partition to store the VHDX file. The .vhd
file format is supported for native boot on a computer with a Windows 7 boot environment, but you will
have to update the system partition to a Windows 8 or Windows 10 environment to use the .vhdx file

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-windows-on-a-vhd--native-boot.md
http://go.microsoft.com/fwlink/?LinkId=142055
http://go.microsoft.com/fwlink/?LinkId=142054


Benefits

Limitations

Types of Virtual Hard Disks

format. For more information about how to add a Windows 8 or Windows 10 boot environment for native
VHDX boot, see Boot to VHDX (Native Boot): Add a Virtual Hard Disk to the Boot Menu.

The local disk partition that contains the VHDX file must have enough free disk space for expanding a
dynamic VHDX to its maximum size and for the page file created when booting the VHD. The page file is
created outside the VHDX file, unlike with a virtual machine where the page file is contained inside the
VHD.

Using the same image-management tools for creating, deploying, and maintaining system images to be
installed on designated hardware or on a virtual machine.

Deploying an image on a virtual machine or a designated computer, depending on capacity planning and
availability.

Deploying Windows for multiple boot scenarios without requiring separate disk partitions.

Deploying supported Windows images in a VHDX container file for faster deployment of reusable
development and testing environments.

Replacing VHDX images for server redeployment or recovery.

Native VHXD disk management support can attach approximately 512 VHDX files concurrently.

Native VHDX boot does not support hibernation of the system, although sleep mode is supported.

VHDX files cannot be nested in other VHDX files.

Native VHDX boot is not supported over Server Message Block (SMB) shares.

Windows BitLocker Drive Encryption cannot be used to encrypt the host volume that contains VHDX files
that are used for native VHDX boot, and BitLocker cannot be used on volumes that are contained inside a
VHD.

The parent partition of a VHDX file cannot be part of a volume snapshot.

An attached VHDX can't be a dynamic disk. A dynamic disk provides features that basic disks do not, such
as the ability to create volumes that span multiple disks (spanned and striped volumes), and the ability to
create fault-tolerant volumes (mirrored and RAID-5 volumes). All volumes on dynamic disks are known as
dynamic volumes.

The parent volume of the VHDX cannot be configured as a dynamic disk. Store the VHDX on a basic disk.

Three types of VHDX files can be created by using the disk-management tools:

Fixed size. A fixed size VHDX is a file that is allocated to the size of the virtual disk. For example, if you
create a virtual hard disk that is 2 gigabytes (GB) in size, the system will create a host file approximately 2
GB in size. Fixed hard-disk images are recommended for production servers and working with customer
data. Recommended for production servers, to increase performance and help protect user data

Dynamically expanding. A dynamically expanding VHDX is a file that is as large as the actual data
written to it at any given time. As more data is written, the file dynamically increases in size. For example,
the size of a file backing a virtual 2 GB hard disk is initially around 2 megabytes (MB) on the host file
system. As data is written to this image, it grows with a maximum size of 2 GB.



Related topics

Dynamically expanding VHDXs are recommended only for development and testing environments becaise
they can be more easily corrupted by a catastrophic system shutdown, such as a power outage.

Differencing. A differencing hard disk image describes a modification of a parent image. This type of
hard-disk image is not independent; it depends on another hard-disk image to be fully functional. The
parent hard disk image can be any of the mentioned hard-disk image types, including another differencing
hard-disk image.

Differencing hard disk images are recommended only for development and testing environments.

Deploy Windows with a VHD (Native Boot)



 

Boot to a virtual hard disk: Add a VHDX or VHD to
the boot menu
4/24/2018 • 4 minutes to read • Edit Online

Prerequisites

Step 1: Create a VHDX from diskpart

Native Boot allows you to create a virtual hard disk (VHDX), install Windows to it, and then boot it up, either on
your PC side-by-side with your existing installation, or on a new device.

A native-boot VHDX can be used as the running operating system on designated hardware without any other
parent operating system. This differs from a scenario where a VHDX is connected to a virtual machine on a
computer that has a parent operating system.

Native boot for Windows 10 requires the .vhdx format, not the .vhd format.

VHDXs can be applied to PCs or devices that have no other installations of Windows, without a virtual machine or
hypervisor. (A hypervisor is a layer of software under the operating system that runs virtual computers.) This
enables greater flexibility in workload distribution because a single set of tools can be used to manage images for
virtual machines and designated hardware.

You can also deploy the VHDX to a PC that already has Windows installed on it, and use a boot menu to select
between the existing version of Windows, or the version on the VHD.

To learn more about using VHDXs in an enterprise environment, see Understanding Virtual Hard Disks with
Native Boot.

A technician PC with the Windows Assessment and Deployment Kit (Windows ADK) tools installed on it.

A generalized Windows image (.WIM file). To learn more, see Sysprep (Generalize) a Windows installation.

A bootable Windows PE drive. To learn more, see WinPE: Create USB Bootable drive.

A destination PC or device on which to install the VHDX. This device requires 30 gigabytes (GB) or more of
free disk space. You can install the VHDX to a device already running other operating system installations,
or as the only operating system on a device.

On the technician PC:

diskpart

create vdisk file=C:\windows.vhdx maximum=25600 type=fixed

1. From the Command Prompt, open Diskpart.

2. Create and prepare a new VHDX. In this example, we create a 25 GB fixed-type VHDX.

3. Attach the VHDX. This adds the VHDX as a disk to the storage controller on the host.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/boot-to-vhd--native-boot--add-a-virtual-hard-disk-to-the-boot-menu.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/understanding-virtual-hard-disks-with-native-boot


 

Step 2: Apply a Windows image to the VHD

Dism /Apply-Image /ImageFile:install.wim /index:1 /ApplyDir:V:\

Step 3: Detach the VHD, copy it to a new device, and attach it
(optional)

attach vdisk

create partition primary
format quick label=vhdx
assign letter=v

exit

4. Create a partition for the Windows files, format it, and assign it a drive letter. This drive letter will appear in
File Explorer.

5. Exit Diskpart

On your technician PC, apply a generalized Windows image to the primary partition of the VHDX that you
created and attached in Step 1.

You can deploy the VHDX to a device that already has a copy of Windows installed on it, or you can clean and
prepare the destination PC's hard drive to use the VHD.

Detach the VHDX and save it to a network share or storage drive

diskpart
select vdisk file=C:\windows.vhdx
detach vdisk
exit

net use n: \\server\share\
md N:\VHDs
copy C:\windows.VHDX n:\VHDs\

1. Use diskpart to detach the virtual disk from your technician PC.

2. Copy the VHDX to a network share or removable storage drive. The following maps a drive letter to a
network share, creates a directory for the VHD, and then copies the VHD.

Clean and prepare a new device for native boot

On your destination PC:

1. Use your bootable WinPE key to boot the destination PC to WinPE.
2. Clean and prepare the destination PC's hard drive. Create a system partition (S), and a main partition (M)

where the VHDX will be stored.

BIOS:



Step 4: Add a boot entry

diskpart
select disk 0
clean
rem == 1. System partition ======================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S"
active
rem == 2. Main partition ========================
create partition primary
format quick fs=ntfs label="Main"
assign letter="M"
exit

diskpart
select disk 0
clean
convert gpt
rem == 1. System partition =========================
create partition efi size=100
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) partition =======
create partition msr size=128
rem == 3. Main partition ===========================
create partition primary 
format quick fs=ntfs label="Main"
assign letter="M"
exit

net use N: \\server\share

copy N:\VHDs\Windows.vhdx M:

UEFI:

3. Connect to the network drive or storage location where you copied the VHDX in step 3.2.

4. Copy the VHDX from the network drive or storage location to the destination PC's main partition.

Attach the VHDX

diskpart
select vdisk file=M:\windows.vhdx
attach vdisk

list volume
select volume 3
assign letter=v

1. While still booted into WinPE, attach your VHDX to the destination PC.

2. Identify the attached VHDX's volume letter. (Optional: Change it to another letter that makes more sense,
for example V, and leave the diskpart command line open for the next step).



Related topics

diskpart
list volume
exit

V:
cd v:\windows\system32
bcdboot v:\windows /s S: /f BIOS

V:\
cd v:\windows\system32
bcdboot v:\windows /s S: /f UEFI

1. From your destination PC, open Diskpart (if necessary) and identify the drive letters of the VHDX and the
system partition, for example, V and S.

2. Add a boot entry to the device. You can add multiple VHDX files using this method.

BIOS:

UEFI:

3. Remove the Windows PE USB key.

4. Restart the destination PC.

If there's only one boot entry, the device immediately boots to Windows. If there's more than one boot
entry, you'll see a boot menu where you can choose between the available versions of Windows on the
device.

Understanding Virtual Hard Disks with Native Boot

BCDboot Command-Line Options

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/understanding-virtual-hard-disks-with-native-boot


 

 

Windows Setup Installation Process
5/11/2018 • 2 minutes to read • Edit Online

Windows Setup Installation Types

Windows Setup Process

WINDOWS SETUP PHASE SETUP ACTIONS

Windows® Setup is the program that installs Windows or upgrades an existing Windows installation. It is also
the basis for the following installation and upgrade methods:

Interactive Setup

Automated installation

Windows Deployment Services

In this topic:

Windows Setup Installation Types

Windows Setup Process

Windows Setup can perform both clean and upgrade installations. However, it does not perform computer-to-
computer migrations. Instead, you must use Windows Easy Transfer, the User State Migration Tool (USMT), or
another migration tool to move data from a previous installation to the new operating system.

Custom installations. Windows Setup can perform a custom installation, also known as a clean
installation, which saves your previous Windows installation but does not migrate your settings. The
previous Windows installation will not boot after a clean installation.

Upgrade installations. Windows Setup can perform an installation that retains your settings and
preferences while upgrading your operating system.

The Windows Setup program starts and restarts the computer, gathers information, copies files, and creates or
adjusts configuration settings. The following table shows the overall process for Windows Setup:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-installation-process.md


WINDOWS SETUP PHASE SETUP ACTIONS

Related topics

Downlevel (for custom installations and upgrades)

- or -

Windows PE (for booting the Windows DVD or booting
a custom Windows PE image)

1. Specify Windows Setup configurations by using
either the Windows Setup dialog boxes
(interactive) or an answer file (unattended), or a
combination of the two. Windows Setup
configurations include adding a product key and
configuring a disk.

2. Apply answer file settings in the windowsPE
configuration pass to configure the installation
behavior and user experience.

3. Configure the disk.

4. Copy the Windows image to the disk.

5. Prepare boot information.

6. Process answer file settings in the offlineServicing
configuration pass. The settings are applied to the
Windows image before that Windows image
boots. When the computer first boots, any
optional components, drivers, updates, or
language packs are processed.

Online configuration Create specific configurations, making the Windows
installation unique.

Windows Welcome 1. Apply answer file settings in the oobeSystem
configuration pass.

2. Apply content file settings from the Oobe.xml file.

3. Start Windows Welcome.

Windows Setup Technical Reference

Automate Windows Setup

Settings for Automating OOBE

Windows Setup Scenarios and Best Practices

Windows Setup Automation Overview

Audit Mode Overview

Windows Setup Configuration Passes

Windows Setup Supported Platforms and Cross-Platform Deployments

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/settings-for-automating-oobe


Install Windows 10 using a previous version of
Windows PE
6/13/2018 • 2 minutes to read • Edit Online

Option 1: Run DISM from a separate location

Option 2: Add DISM to the WinPE RAMDisk.

To use some DISM features in WinPE, such as siloed provisioning packages, you may run the latest version of
DISM from a separate location.

Each time you boot WinPE and want to use these features, you'll need to install and configure the drivers needed
for DISM, including the wimmount.sys and wofadk.sys drivers.

The CopyDandI.cmd script copies the version of DISM from your local installation of the ADK to a folder which
you can use in WinPE.

You'll need the Windows 10, version 1607 version of the Deployment and Imaging Tools from the ADK.

Important Don't overwrite the existing DISM files on the WinPE image.

CopyDandI.cmd amd64 E:\ADKTools\amd64

1. Start the Deployment and Imaging Tools Environment as an administrator.

2. From the technician PC, copy the Deployment and Imaging Tools from the Windows ADK to the storage
USB key.

Note: this will add roughly 4MB to the size of your DISM image, which may affect performance.

md "C:\WinPE_amd64\mount"

Dism /Mount-Image /ImageFile:"C:\WinPE_amd64\media\sources\boot.wim" /index:1 
/MountDir:"C:\WinPE_amd64\mount"

md C:\WinPE_amd64\mount\DISM

robocopy "C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Deployment 
Tools\amd64\DISM" C:\WinPE_amd64\mount\DISM

1. On your technician PC, install the Windows ADK for Windows 10.

2. Mount WinPE. For WinPE 3.x, mount the file: \sources\winpe.wim. For WinPE 4.x and 5.x, mount the file:
\sources\boot.wim.

3. Copy the DISM folder from the Windows ADK into a new folder in the mounted WinPE image.

Important Don't overwrite the existing DISM files from the system32 folder in the WinPE image. Instead,
create a new folder on the host computer to copy the Windows ADK files into.

4. Unmount WinPE.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/copy-dism-to-another-computer.md


Use the new version of DISM

Related topics

Dism /Unmount-Image /MountDir:"C:\WinPE_amd64\mount" /commit

MakeWinPEMedia /UFD C:\WinPE_amd64 F:

5. Create WinPE bootable media, or replace the WinPE image file on your existing removable media.

W:\ADKTools\amd64\wimmountadksetupAmd64.exe /Install /q

W:\ADKTools\amd64\DISM.exe /?

Deployment Image Servicing and Management tool
Version: 10.0.14939.0

W:\ADKTools\amd64\DISM.exe /Apply-Image /ImageFile:install.wim /Index:1 /ApplyDir:W: /Compact
W:\ADKTools\amd64\DISM.exe /Apply-SiloedPackage /ImagePath:W:\ /PackagePath:"e:\SPPs\fabrikam-id.spp" 
/PackagePath:"D:\SPPs\office16_base.spp" /PackagePath:"D:\SPPs\office16_fr-fr.spp" 
/PackagePath:"D:\SPPs\office16_de-de.spp"

1. Boot the reference PC to WinPE.

2. Find the drive letter of the storage drive ( diskpart, list volume, exit ).

3. Install and configure DISM's required drivers by using either wimmountadksetupamd64.exe /Install or
wimmountadksetupx86.exe /Install.

For the default (RAMDisk) version of WinPE, you'll need to run this command each time you boot WinPE.
To learn how to run this command automatically when WinPE boots, see Wpeinit and Startnet.cmd: Using
WinPE Startup Scripts.

4. Verify the new version of DISM:

The output shows the build number, for example:

5. Use the new version of DISM. Example:

DISM Supported Platforms

WinPE: Mount and Customize

Lab 10: Add desktop applications and settings with siloed provisioning packages (SPPs)



Windows Setup Automation Overview
5/11/2018 • 11 minutes to read • Edit Online

Use Setupconfig.ini to install Windows
What is a setupconfig file?What is a setupconfig file?

[SetupConfig]
NoReboot
ShowOobe=None
Telemetry=Enable
ReflectDrivers = <path of folder containing INF and SYS files for the encryption drivers>

Setup /NoReboot /ShowOobe None /Telemetry Enable

How does Windows Setup use Setupconfig.ini?How does Windows Setup use Setupconfig.ini?
Using media/ISO fileUsing media/ISO file

Setup.exe /ConfigFile <path to Setupconfig.ini>

Using Windows UpdateUsing Windows Update

Use an answer file while installing Windows

Setupconfig is a configuration file that is used to pass a set of flags or parameters to Windows setup.exe. Use this
file as an alternative to passing parameters to Windows setup on a command line. This functionality is available
in Windows 10, version 1511 and later.

IT pros can use the setupconfig file to add parameters to Windows Setup from Windows Update and Windows
Server Update Services.

The different parameters that can be used with Windows 10 Setup.exe are described in this topic.

Setupconfig.ini files can contain single parameters, or parameters and value pairs. Do not include “/” characters,
and with parameter and value pairs, include “=” between the two.

For example, you create a Setupconfig.ini with the following. Note that the header [SetupConfig]  is required.

This is equivalent to the following command line:

If you are running Windows setup from media or an ISO file, you must include the location to the setupconfig
file on the command line (“/ConfigFile <path> ”) when running setup.exe. For example:

If you include a parameter on the command line and the same parameter in the setupconfig file, the setupconfig
file parameter and value has precedence.

If the update is delivered through Windows Update, Windows Setup searches in a default location for a
setupconfig file. You can include the setupconfig file here:

"%systemdrive%\Users\Default\AppData\Local\Microsoft\Windows\WSUS\SetupConfig.ini"

You can automate Windows installation by using an answer file:

Use a USB flash drive

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-automation-overview.md


Modify an existing installation

Implicit Answer File Search Order

1. Use a sample answer file or create your own with Windows System Image Manager (Windows SIM).

2. Save the file as Autounattend.xml on the root of a USB flash drive.

3. On a new PC, put in the Windows product DVD and the USB flash drive, and then boot the PC. When no
other answer file is selected, Windows Setup searches for this file.

Select an answer file

You can select a specific answer file during installation by booting to the Windows Preinstallation
Environment, and using the setup.exe command with the /unattend:filename option. For more information,
see WinPE: Create USB Bootable drive.

For sample answer files and a list of settings used to automate installation, see Automate Windows Setup.

Because reboots are required during Setup, a copy of the answer file is cached to the %WINDIR%\Panther
directory of the Windows installation. You can modify this file to do any of the following:

Update system and control panel settings without booting the image.

Update an image by preparing the PC to boot to audit mode (see Microsoft-Windows-
Deployment\Reseal\Mode).

Update the order in which drivers or packages are installed. (Packages with dependencies may require
installation in a certain order.)

Replace the answer file in an offline image

Dism /Mount-Image /ImageFile:"C:\images\CustomImage.wim" /Index:1 /MountDir:C:\mount

Copy CustomAnswerFile.xml C:\mount\Windows\Panther\unattend.xml

Dism /Unmount-Image /MountDir:C:\mount /Commit

1. Create a custom answer file in Windows System Image Manager (Windows SIM).

2. Open an elevated command prompt.

3. Mount the Windows image.

4. Modify or replace the file: \Windows\Panther\unattend.xml in the mounted image.

Note
The answer file in the image may contain settings that have not yet been processed. If you want these
settings to get processed, edit the existing file rather than replacing it.

5. Unmount the image.

6. Test the image by deploying it to a new PC, without specifying an answer file. When Windows Setup runs,
it finds and uses this answer file.

Windows Setup searches for answer files at the beginning of each configuration pass, including the initial
installation and after applying and booting an image. If an answer file is found, and it contains settings for the

http://go.microsoft.com/fwlink/?LinkId=275830


SEARCH ORDER LOCATION DESCRIPTION

Note

Important

given configuration pass, it processes those settings.

Windows Setup identifies and logs all available answer files, depending on the search order. The answer file that
has the highest precedence is used. The answer file is validated and then cached to the computer. Valid answer
files are cached to the $Windows.~BT\Sources\Panther directory during the windowsPE and offlineServicing
configuration passes. After the Windows installation is extracted to the hard disk, the answer file is cached to
%WINDIR%\panther.

The following table shows the implicit answer file search order.

1 Registry

HKEY_LOCAL_MACHINE\System\S
etup\UnattendFile

Specifies a pointer in the registry
to an answer file. The answer file is
not required to be named
Unattend.xml.

2 %WINDIR%\Panther\Unattend The name of the answer file must
be Unattend.xml or
Autounattend.xml.

Windows Setup searches this
directory only on downlevel
installations. If Windows Setup
starts from Windows PE, the
%WINDIR%\Panther\Unattend
directory is not searched.

3 %WINDIR%\Panther Windows Setup caches answer files
to this location for use in
subsequent stages of installation.
For example, when a computer
reboots, Setup can continue to
apply the settings in an answer file.
If you explicitly specify an answer
file by using Windows Setup or
Sysprep, the answer file cached to
this directory is overwritten with
the explicitly specified answer file.

Do not use, modify, or overwrite
the answer file in this directory.
The answer file in this directory
is annotated by Windows Setup
during installation. This answer
file cannot be reused in
Windows SIM or any other
Windows installations.



SEARCH ORDER LOCATION DESCRIPTION

Sensitive Data in Answer Files

4 Removable read/write media in
order of drive letter, at the root of
the drive.

Removable read/write media in
order of drive letter, at the root of
the drive.

The name of the answer file must
be Unattend.xml or
Autounattend.xml, and the answer
file must be located at the root of
the drive.

5 Removable read-only media in
order of drive letter, at the root of
the drive.

Removable read-only media in
order of drive letter, at the root of
the drive.

The name of the answer file must
be Unattend.xml or
Autounattend.xml, and must be
located at the root of the drive.

6 windowsPE and offlineServicing
configuration passes:

\Sources directory in a
Windows distribution

All other passes:

%WINDIR%\System32\Sysp
rep

In the windowsPE and
offlineServicing configuration
passes, the name of the answer file
must be Autounattend.xml.

For all other configuration passes,
the file name must be
Unattend.xml.

7 %SYSTEMDRIVE% The answer file name must be
Unattend.xml or Autounattend.xml

8 Drive from where Windows Setup
(setup.exe) is running, at the root
of the drive.

The name of the answer file must
be Unattend.xml or
Autounattend.xml, and must be
located at the root of the Windows
Setup folder path.

Setup removes sensitive data in the cached answer file at the end of each configuration pass.

Important
Because answer files are cached to the computer during Windows Setup, your answer files will persist on the
computer between reboots. Before you deliver the computer to a customer, you must delete the cached answer
file in the %WINDIR%\panther directory. There might be potential security issues if you include domain
passwords, product keys, or other sensitive data in your answer file. However, if you have unprocessed settings in
the oobeSystem configuration pass that you intend to run when an end user starts the computer, consider
deleting the sections of the answer file that have already been processed. One option when you run the sysprep
/oobe command might be to use a separate answer file that only contains settings in the oobeSystem
configuration pass.

However, if an answer file is embedded in a higher precedence location than the cached answer file, then the



Windows Setup Annotates Configuration Passes in an Answer File

Implicit Answer File Search Examples

Answer Files Named Autounattend.xml are Automatically Discovered by Windows SetupAnswer Files Named Autounattend.xml are Automatically Discovered by Windows Setup

cached answer may be overwritten at the beginning of each subsequent configuration pass, if the embedded
answer file matches the implicit search criteria. For example, if an answer file is embedded at
%WINDIR%\Panther\Unattend\Unattend.xml, the embedded answer file will replace the cached answer file at
the beginning of each configuration pass. For example, if the embedded answer file specifies both the specialize
and oobeSystem configuration passes, then the embedded answer file is discovered for the specialize
configuration pass, cached, processed, and sensitive data is cleared. The embedded answer file is discovered
again during the oobeSystem configuration pass and cached again. As a result, the sensitive data for the
specialize configuration pass is no longer cleared. Sensitive data for previously processed configuration passes
will not be cleared again. Unless the cached answer file must be overridden, we recommend that answer files be
embedded at a location that has a lower precedence.

Important
Because answer files are cached to the computer during Windows Setup, your answer files will persist on the
computer between reboots. Before you deliver the computer to a customer, you must delete the cached answer
file in the %WINDIR%\panther directory. There might be potential security issues if you include domain
passwords, product keys, or other sensitive data in your answer file. However, if you have unprocessed settings in
the oobeSystem configuration pass that you intend to run when an end user starts the computer, consider
deleting the sections of the answer file that have already been processed. One option when you run the sysprep
/oobe command might be to use a separate answer file that only contains settings in the oobeSystem
configuration pass.

You can add a command to the Setupcomplete.cmd command script that deletes any cached or embedded
answer files on the computer. For more information, see Add a Custom Script to Windows Setup.

After a configuration pass is processed, Windows Setup annotates the cached answer file to indicate that the pass
has been processed. If the configuration pass is run again and the cached answer file has not been replaced or
updated in the interim, the answer file settings are not processed again. Instead, Windows Setup will search for
implicit Unattend.xml files that are at a lower precedence location than the cached Unattend.xml file.

For example, you can install Windows with an answer file that contains Microsoft-Windows-
Deployment/RunSynchronous commands in the specialize configuration pass. During installation, the specialize
configuration pass runs and the RunSynchronous commands execute. After installation, run the sysprep
command with the /generalize option. If there is no answer file in a higher precedence than the cached answer
file or an answer file was not explicitly passed to the Sysprep tool, Setup runs the specialize configuration pass
the next time that the computer boots. Because the cached answer file contains an annotation that the settings for
that configuration pass were already applied, the RunSynchronous commands do not execute.

The following examples help describe the behavior of implicit answer file searches.

1. Create an answer file that is named Autounattend.xml that includes settings in the windowsPE
configuration pass.

2. Copy Autounattend.xml to a removable media device.

3. Configure the BIOS of your computer to boot from CD or DVD.

4. Boot the Windows product DVD.

5. Insert the removable media device when Windows is booting. This example assumes that the removable
media is assigned the drive letter D:\.



Answer Files are Discovered in Order of Precedence in Predefined Search PathsAnswer Files are Discovered in Order of Precedence in Predefined Search Paths

To use the new answer file, you can copy it to a directory of a higher precedence than the cached answer 
file, or you can specify the answer file by using the **/unattend** option. For example:

```
sysprep /generalize /unattend:C:\MyAnswerFile.xml
```

Answer Files Must Include a Valid Configuration PassAnswer Files Must Include a Valid Configuration Pass

Additional Resources

Windows Setup starts and automatically identifies Autounattend.xml as a valid answer file. Because the
answer file uses a valid file name (Autounattend.xml), is located in one of the valid search paths (the root
of D), and includes valid settings for the current configuration pass (windowsPE), this answer file is used.

The answer file is cached to the computer. If there are no additional answer files discovered in later passes,
the cached answer file is used throughout Windows Setup.

1. Install Windows with an answer file by using the steps in the previous scenario. The answer file that is
used to install Windows is cached to the system in the %WINDIR%\Panther directory.

2. Copy an Unattend.xml file to the %WINDIR%\System32\Sysprep directory.

This answer file has settings in the generalize configuration pass.

3. Run the sysprep command with the /generalize option to create a reference image.

Because the %WINDIR%\System32\Sysprep directory is in the implicit search paths, the answer file
copied to this directory is found. However, an answer file that was used to install Windows is still cached
on the computer and contains settings for the generalize configuration pass. This cached answer file has a
higher precedence than the one copied to the Sysprep directory. The cached answer file is used.

Note
The Sysprep tool can be run as a command-line tool or as a GUI tool. If you run the Sysprep tool as a GUI
tool, you can select the Generalize check box.

1. Copy an Unattend.xml file to a removable media device.

The Unattend.xml file has settings only for the auditSystem and auditUser configuration passes.

2. On an installed Windows operating system, run the sysprep /generalize /oobe command.

Even though the answer file is available in one of the implicit search paths, the Unattend.xml file is ignored
because it does not contain a valid pass for the generalize configuration pass.

See the following topics for more information about answer files and configuration passes:

Best Practices for Authoring Answer Files

Create or Open an Answer File

Configure Components and Settings in an Answer File

Validate an Answer File

Hide Sensitive Data in an Answer File

How Configuration Passes Work

https://msdn.microsoft.com/library/windows/hardware/dn915073
https://msdn.microsoft.com/library/windows/hardware/dn915085
https://msdn.microsoft.com/library/windows/hardware/dn915078
https://msdn.microsoft.com/library/windows/hardware/dn915106
https://msdn.microsoft.com/library/windows/hardware/dn915098


Related topics
Windows Setup Scenarios and Best Practices

Windows Setup Installation Process

Automate Windows Setup

Audit Mode Overview

Windows Setup Configuration Passes

Windows Setup Supported Platforms and Cross-Platform Deployments



Automate Windows Setup
5/11/2018 • 4 minutes to read • Edit Online

Use an answer file while installing Windows

List of settings

Automating Windows Setup

Language, Region, and Input Method Selection PageLanguage, Region, and Input Method Selection Page

SETTING DESCRIPTION

You can prevent some or all of the user interface (UI) pages from Windows Setup from being displayed during
installation. The default behavior of Windows Setup is to display the Setup UI if any of the required settings are
incorrect or empty.

You can automate Windows installation by using an answer file:

Use a USB flash drive

1. Use an existing answer file or create your own with Windows System Image Manager (Windows SIM).

2. Save the file as Autounattend.xml on the root of a USB flash drive.

3. On a new PC, insert a Windows installation USB flash drive, as well as the flash drive that contains
Autounattend.xml and then boot the PC. When no other answer file is selected, Windows Setup searches
for this file.

Select an answer file

You can select a specific answer file during installation by booting to the Windows Preinstallation Environment,
and using the setup.exe command with the /unattend:filename option.

The following is a list of the settings used in these answer files:

Windows Setup language settings: Microsoft-Windows-International-Core-WinPE\UILanguage and
Microsoft-Windows-International-Core-WinPE\SetupUILanguage\UILanguage.

Product key: Microsoft-Windows-Setup\UserData\ProductKey\Key.

To automate Windows Setup, add settings for each of the following Windows Setup pages to your unattended
Setup answer file. When a setting for a Windows Setup page is configured, Windows Setup skips that page.

Microsoft-Windows-International-Core-WinPE |
UILanguage

Specifies the default language to use on the installed
Windows operating system.

Microsoft-Windows-International-Core-WinPE |
SetupUILanguage | UILanguage

Specifies the default language to use during Windows
Setup. During installation, Windows Setup displays
installation progress in the selected language.

Note
When you use an Autounattend.xml file with Windows Setup and rely on an implicit answer-file search, the

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/automate-windows-setup.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/wsim/windows-system-image-manager-technical-reference
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-setup-command-line-options#28
http://go.microsoft.com/fwlink/?LinkId=224328
http://go.microsoft.com/fwlink/?LinkId=224329
http://go.microsoft.com/fwlink/?LinkId=224330
http://go.microsoft.com/fwlink/?LinkId=224328
http://go.microsoft.com/fwlink/?LinkId=224329


Type your Product Key for Activation PageType your Product Key for Activation Page

SETTING DESCRIPTION

Accept Microsoft Software License Terms PageAccept Microsoft Software License Terms Page

SETTING DESCRIPTION

Select Upgrade or Custom Installation PageSelect Upgrade or Custom Installation Page

SETTING DESCRIPTION

Specify Where to Install Windows PageSpecify Where to Install Windows Page

SETTING DESCRIPTION

language selection page in Setup is not displayed, even if you explicitly do not configure language settings in your
answer file. For more information about implicit answer files, see Windows Setup Automation Overview.

The product key must match the Windows edition you intend to install. For more information, see Work with
Product Keys and Activation.

Microsoft-Windows-Setup | UserData | ProductKey | Key Specifies the product key used to install Windows.

Microsoft-Windows-Setup | ImageInstall | OSImage |
InstallFrom | MetaData | (Key and Value).

Use Key and Value together to select a specific Windows
image to install. Required for some Windows Server®
2012 editions.

You can get the image information by using the DISM
/Get-ImageInfo command. For more information, see
Image Management Command-Line Options.

Microsoft-Windows-Setup | UserData | AcceptEula Specifies whether to accept Microsoft License Software
Terms during Windows Setup.

By default, when an answer file is used, this page does not appear and Windows is configured as a new
installation. To configure Windows as an upgrade, add the following setting:

Microsoft-Windows-Setup | UpgradeData | Upgrade Specifies that the present installation is an upgrade from
a previous version of Windows.

You can either specify the exact disk ID and partition ID, or you can install Windows to the first available partition.
To preconfigure your partitions, you may also need to configure your drive partitions. For full XML examples and
recommended partition configurations, see How to Configure UEFI/GPT-Based Hard Disk Partitions or How to
Configure BIOS/MBR-Based Hard Disk Partitions.

Microsoft-Windows-Setup | ImageInstall | OSImage |
InstallTo | DiskID

Specifies the disk where Windows will be installed.

Microsoft-Windows-Setup | ImageInstall | OSImage |
InstallTo | PartitionID

Specifies the partition where Windows will be installed.

-or-

http://go.microsoft.com/fwlink/?LinkId=224330
http://go.microsoft.com/fwlink/?LinkId=252771
http://go.microsoft.com/fwlink/?LinkId=252772
http://go.microsoft.com/fwlink/?LinkId=208186
http://go.microsoft.com/fwlink/?LinkId=224331
http://go.microsoft.com/fwlink/?LinkId=224332
http://go.microsoft.com/fwlink/?LinkId=214261
http://go.microsoft.com/fwlink/?LinkId=214260
http://go.microsoft.com/fwlink/?LinkId=224334
http://go.microsoft.com/fwlink/?LinkId=224335


SETTING DESCRIPTION

Settings to Use with Unattended Windows Deployment Services

Select a Language and Locale PageSelect a Language and Locale Page

SETTING DESCRIPTION

Provide Windows Deployment Services Credentials PageProvide Windows Deployment Services Credentials Page

SETTING DESCRIPTION

Select an Image to Install PageSelect an Image to Install Page

SETTING DESCRIPTION

Specify Where to Install Windows PageSpecify Where to Install Windows Page

SETTING DESCRIPTION

Related topics

Microsoft-Windows-Setup | ImageInstall | OSImage |
InstallToAvailablePartition

Specifies to install Windows on the first available partition.

When deploying Windows using Windows Deployment Services, add each of the settings in the following
sections to your unattended-Setup answer file. These are the only settings required for an unattended installation.

Microsoft-Windows-International-Core-WinPE |
SetupUILanguage | UILanguage

Specifies the default language to use during Windows
Setup.

Microsoft-Windows-Setup | WindowsDeploymentServices
| Login

Specifies the credentials used for Windows Deployment
Services logon, and specifies in what circumstances the UI
is displayed for logon.

Microsoft-Windows-Setup | WindowsDeploymentServices
| ImageSelection

Specifies the image to be installed and the location where
it is installed, as well as whether the UI is displayed.

These settings assume that you are installing to a partitioned disk drive.

Microsoft-Windows-Setup | WindowsDeploymentServices
| ImageSelection | InstallTo | DiskID

Specifies the disk ID of the disk to which the image is to
be installed.

Microsoft-Windows-Setup | WindowsDeploymentServices
| ImageSelection | InstallTo | PartitionID

Specifies the partition ID of the partition to which the
image is to be installed.

Settings for Automating OOBE

Windows Setup Technical Reference

http://go.microsoft.com/fwlink/?LinkId=224335
http://go.microsoft.com/fwlink/?LinkId=224337
http://go.microsoft.com/fwlink/?LinkId=224338
http://go.microsoft.com/fwlink/?LinkId=224339
http://go.microsoft.com/fwlink/?LinkId=224340
http://go.microsoft.com/fwlink/?LinkId=224342
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/settings-for-automating-oobe


Run custom actions during feature update
4/30/2018 • 2 minutes to read • Edit Online

Overview

Running custom actions
About custom actionsAbout custom actions

Custom actions folder structureCustom actions folder structure

FOLDER DESCRIPTION

%windir%\System32\update\run Windows Setup will migrate scripts in these folders so they are
run in future upgrades.

%windir%\System32\update\runonce Scripts in this folder will only run in one upgrade and won't be
migrated for future upgrades.

%windir%\System32\update\run\<GUID> Create a unique GUID to clearly identify each script you run.
Use this GUID to name a folder within the run  and 
runonce  folders.

%windir%\System32\update\run\<GUID>\reflectdrivers Boot-critical drivers in this folder will be reflected. Make sure
the reflectdrivers folder only contains a necessary set of
encryption drivers. Having more drivers than necessary can
negatively impact upgrade scenarios. See Device drivers to
learn more about reflected drivers.

Custom action script locations and examples
Script locationsScript locations

Starting with Windows 10, version 1803, enterprise IT admins can run their own custom actions by running scripts
during an upgrade or feature update.

Custom actions are .cmd scripts that run during the feature update process. These can be run during two phases of
an upgrade:

1. Pre-install phase: This phase is when Setup starts, but prior compatibility checks. Actions during this phase are
specified in preinstall.cmd .

2. Pre-commit phase: This phase is prior to the upgrade being applied and the system rebooting. Actions during
this phase are specified in precommit.cmd .

Custom action scripts run from subfolders in %windir%\System32\update\ , depending on whether you want scripts
to run for a single upgrade or on all future upgrades. Windows Setup automatically looks for these scripts in the
following locations, and will run them if they are present:

%windir%\System32\update\runonce\<GUID>

%windir%\System32\update\runonce\
<GUID>\reflectdrivers

If an update fails or has to be rolled back, a failure.cmd script can be used to perform custom operations or undo
actions of previous custom scripts. If the scripts fail, the update will fail.

The following table shows the folder path structure of files for running custom actions:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-enable-custom-actions.md


RUN (SCRIPTS WILL BE MIGRATED) RUN ONCE (SCRIPTS WON'T BE MIGRATED)

%windir%\System32\update\run\<GUID>\preinstall.cmd %windir%\System32\update\runonce\<GUID>\preinstall.cmd

%windir%\System32\update\run\<GUID>\precommit.cmd %windir%\System32\update\runonce\
<GUID>\precommit.cmd

%windir%\System32\update\run\<GUID>\failure.cmd %windir%\System32\update\runonce\<GUID>\failure.cmd

%windir%\System32\update\run\
<GUID>\reflectdrivers\example1.inf

%windir%\System32\update\runonce\
<GUID>\reflectdrivers\example2.inf

%windir%\System32\update\run\
<GUID>\reflectdrivers\example1.sys

%windir%\System32\update\run\
<GUID>\reflectdrivers\example2.sys

Example file paths and namesExample file paths and names

SCENARIOS FILE LOCATION EXAMPLES

Script deployment data %windir%\system32\update\

Migration directories

Scripts that will be migrated %windir%\system32\update\run\

Scripts that won't be migrated %windir%\system32\update\runonce\

Folder path with a GUID %windir%\system32\update\run\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\

Script names with GUID

%windir%\system32\update\run\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\preinstall.cmd

%windir%\system32\update\run\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\precommit.cmd

%windir%\system32\update\run\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\failure.cmd

%windir%\system32\update\runonce\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\preinstall.cmd

%windir%\system32\update\runonce\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\precommit.cmd

%windir%\system32\update\runonce\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\failure.cmd

Reflected drivers folder %windir%\system32\update\run\6971CB27-6F59-43CD-
A764-969EE9BBCC1C\reflectdrivers\



Add a Custom Script to Windows Setup
5/11/2018 • 4 minutes to read • Edit Online

Run a script after setup is complete (SetupComplete.cmd)

Windows Setup scripts: Setupcomplete.cmd and ErrorHandler.cmd are custom scripts that run during or
after the Windows Setup process. They can be used to install applications or run other tasks by using
cscript/wscript scripts.

%WINDIR%\Setup\Scripts\SetupComplete.cmd: This script runs immediately after the user sees the
desktop. This setting is disabled when using OEM product keys. It runs with local system permission.
%WINDIR%\Setup\Scripts\ErrorHandler.cmd: This script runs automatically when Setup encounters a
fatal error. It runs with local system permission.

Windows Unattend scripts: Create an Unattend.xml file with one of these settings to run during the Windows
Setup process. This can be used with OEM product keys.

To run services or commands that can start at the same time, use RunAsynchronousCommands. To run
commands that need to finish before other commands can start, use RunSynchronousCommands.

Note As of Windows 10, Microsoft-Window-Shell-Setup\LogonCommands\AsynchronousCommand now
works like LogonCommands\AsynchronousCommand: all commands using these unattend settings are now
started at the same time, and no longer wait for the previous command to finish.

Some of these settings run in the user context, others run in the system context depending on the configuration
pass.

Add Microsoft-Windows-Setup\RunAsynchronousCommand or RunSynchronousCommand to run a script as
Windows Setup starts. This can be helpful for setting hard disk partitions.
Add Microsoft-Windows-Deployment\RunAsynchronousCommand or RunSynchronousCommand to the
auditUser configuration pass to run a script that runs when the PC enters audit mode. This can be helpful for
tasks like automated app installation or testing.
Add Microsoft-Windows-Shell-Setup\LogonCommands\AsynchronousCommand or
FirstLogonCommands\SynchronousCommand to run after the Out of Box Experience (OOBE) but before
the user sees the desktop. This can be especially useful to set up language-specific apps or content after
the user has already selected their language.

Use these scripts sparingly because long scripts can prevent the user from reaching the Start screen
quickly. For retail versions of Windows, additional restrictions apply to these scripts. For info, see the
Licensing and Policy guidance on the OEM Partner Center.

Note When you add a script using FirstLogonCommands, it will be triggered on the next boot, even if you
boot into audit mode using Ctrl+Shift+F3. To boot to audit mode without triggering these scripts, add the
setting: Microsoft-Windows-Deployment\Reseal\Mode = Audit.

Order of operations

1. After Windows is installed but before the logon screen appears, Windows Setup searches for the
SetupComplete.cmd file in the %WINDIR%\Setup\Scripts\ directory.

2. If a SetupComplete.cmd file is found, Windows Setup runs the script. Windows Setup logs the action in
the C:\Windows\Panther\UnattendGC\Setupact.log file.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-a-custom-script-to-windows-setup.md
https://msdn.microsoft.com/library/windows/hardware/dn915476
https://msdn.microsoft.com/library/windows/hardware/dn915798
https://msdn.microsoft.com/library/windows/hardware/dn915802
https://msdn.microsoft.com/library/windows/hardware/dn915797
https://msdn.microsoft.com/library/windows/hardware/dn915801
https://msdn.microsoft.com/library/windows/hardware/dn915476
https://msdn.microsoft.com/library/windows/hardware/dn922797
http://go.microsoft.com/fwlink/?LinkId=131358
https://msdn.microsoft.com/library/windows/hardware/dn923110


Run a script if Windows Setup encounters a fatal error
(ErrorHandler.cmd)

Related topics

Setup does not verify any exit codes or error levels in the script after it executes SetupComplete.cmd.

Warning You cannot reboot the system and resume running SetupComplete.cmd. You should not
reboot the system by adding a command such as shutdown -r. This will put the system in a bad state.

3. If the computer joins a domain during installation, the Group Policy that is defined in the domain is not
applied to the computer until Setupcomplete.cmd is finished. This is to make sure that the Group Policy
configuration activity does not interfere with the script.

This script is useful when you're installing many systems at the same time. This helps you detect when an error
occurs during Windows Setup. When it does, Setup automatically runs a script that can contain custom
commands or actions to address the cause of the error.

If Windows Setup encounters a fatal error and is prevented from completing the installation, Windows Setup
searches for a command script in the following directory: %WINDIR%\Setup\Scripts\ErrorHandler.cmd. One
of two actions will occur, depending on whether the script is found.

If the script is not found, a dialog box is displayed with the error text. A user must dismiss the dialog box
before Windows Setup exits.
If the script is found, the script executes synchronously. No dialog box or error text is displayed. After the
ErrorHandler.cmd script has finished running, Windows Setup exits.

Depending on the phase of Windows Setup, the computer will return to the environment from which Windows
Setup was executed, such as an earlier version of the operating system or Windows Preinstallation Environment
(Windows PE), for example.

There may be instances when Windows Setup encounters more than one error and runs the ErrorHandler.cmd
script more than once. When developing the code for ErrorHandler.cmd, make sure that you can run this script
multiple times.

To use ErrorHandler.cmd, you can do either of the following:

Setup /m:C:\Temp

Mount the image, and add it to the image, in %WINDIR%\Setup\Scripts\ErrorHandler.cmd. Unmount
the image.

-or-

Add ErrorHandler.cmd to a temporary file location (for example, C:\Temp\ErrorHandler.cmd), and then
run Windows Setup using the /m option.

To learn more, see Windows Setup Command-Line Options.

Windows Setup Technical Reference

Boot from a DVD

Use a Configuration Set with Windows Setup

Deploy a Custom Image

Boot Windows to Audit Mode or OOBE

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


Add Device Drivers to Windows During Windows Setup



Customize
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Understanding Servicing Strategies Learn about strategies when servicing (modifying) a Windows
image

Audit Mode Learn how to make changes to a running PC prior to shipping
a device

Apps Learn how to preload Microsoft Store apps on a Windows
image

Drivers Learn how to work with drivers

Configuration and settings Various configuration options when deploying Windows

Features Learn how to add and remove Features on Demand and
legacy Windows features

OOBE Configure OOBE to show a custom experience the first time a
user boots their PC

This section covers how to customize a Windows installation.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/customize-windows.md


Understanding Servicing Strategies
8/24/2017 • 4 minutes to read • Edit Online

You can service, or make changes to, a Windows image at various phases of deployment in the following ways:
offline, during an automated installation, or online. The phase of deployment that you select depends on your
deployment strategy.

Offline Servicing: Allows you to add and remove updates, drivers, language packs, and configure other settings
without booting Windows. Offline servicing is an efficient way to manage existing images that are stored on a
server because it eliminates the need for re-creating updated images. You can perform offline servicing on an
image that is mounted or applied to a drive or directory.

Servicing an Image by Using Windows Setup: Enables you to provide an answer file (Unattend.xml) that
Windows Setup uses to make changes to your image at the time of deployment. The answer file contains specific
servicing operations such as adding drivers, updates, language packs, and other packages. Servicing an image
during an automated installation can be easily implemented and is ideal for Setup-based deployment.

Servicing a Running Operating System: Also known as online servicing, this method involves booting to audit
mode to add drivers, applications, and other packages. Online servicing is ideal for drivers when the driver
packages have co-installers or application dependencies. It is also efficient when most of your servicing packages
have installers, or the updates are in .msi or KB.exe file formats, or the applications rely on Windows installed
services and technologies (such as the .NET Framework or full Plug and Play support).

The following illustration shows the servicing opportunities available during the various phases of deployment.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/understanding-servicing-strategies.md


 Offline Servicing
Offline servicing was introduced with Windows Vista. Offline servicing occurs when you modify or service a
Windows image entirely offline without booting it first. For Windows Vista, the Package Manager command-line
tool was provided for updating Windows images. In Windows 7 and Windows 8, Deployment Image Servicing
and Management (DISM) replaces Package Manager. For Windows 8 and later, most operating system servicing
operations can be performed on an offline Windows image by using the DISM command-line tool. DISM is
installed with Windows starting with Windows 8, and is also distributed in the Windows Assessment and
Deployment Kit (Windows ADK). For more information about DISM, see DISM - Deployment Image Servicing
and M\anagement Technical Reference for Windows.

DISM can be used on an offline image to:

Mount, remount, and unmount an image in a .wim file for servicing.

Query information about a Windows image.

Add, remove, and enumerate drivers provided as .inf files.

Add, remove, and enumerate packages, including language packs, provided as .cab files.

Add .msu files.



 

 

Servicing an Image by Using Windows Setup

Servicing a Running Operating System

Configure international settings.

Enable, disable, and enumerate Windows operating system features.

Upgrade to a higher edition of Windows.

Check the applicability of a Windows Installer application patch (.msp file).

Enumerate applications and application patches installed in a Windows image.

Add siloed provisioning packages to an applied image.

Apply the offline servicing section of an unattended answer file.

Update a Windows Preinstallation Environment (Windows PE) image.

For more information about how to service a mounted image, see Service a Mounted Windows Image.

For more information about how to service an applied image, see Service an Applied Windows Image.

Use an unattended answer file with Windows Setup to service an image during the various configuration passes
of Windows Setup. The answer file contains all the settings that are used to configure and update the Windows
image. Setup calls the answer file multiple times during the deployment process. After the operating system is
installed, you can boot to audit mode or Windows Welcome. For more information about Windows Setup, see
Windows Setup Technical Reference. For more information about configuration passes, see Windows Setup
Configuration Passes.

An unattended answer file can be used during setup to:

Add or remove a language pack.

Configure international settings.

Add and remove drivers.

Add and remove packages.

Enable and disable Windows operating system features.

There are several tools that can be used to service a running operating system (also known as servicing an online
image). You should boot to audit mode to add updates to your Windows image. Audit mode does not require
settings in Windows Welcome to be applied, allowing quicker access to the desktop. After you have booted to
audit mode, you can add Plug and Play device drivers, install applications and system components, and test the
validity of the installation. For more information about how to use audit mode, see Boot Windows to Audit Mode
or OOBE.

The following tools are typically used to update a running Windows operating system:

Use DISM to enumerate drivers, international settings, packages, and features, and to apply unattended
answer file settings. For more information, see DISM - Deployment Image Servicing and Management
Technical Reference for Windows.

Use DPInst to add drivers for detected hardware. For information about DPInst and other tools available
in the Windows Driver Kit (WDK), see Download kits and tools for Windows.

Use PNPUtil to add, remove, and enumerate drivers. For more information, see Use PnPUtil at a
command line to install a Plug and Play device.

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-a-mounted-windows-image
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-an-applied-windows-image
http://go.microsoft.com/fwlink/?LinkId=89603
http://go.microsoft.com/fwlink/?LinkId=139151


Related topics

Use Windows Update Stand-Alone Installer to add service packs or other .msu files. For more information,
see Description of the Windows Update Stand-alone Installer (Wusa.exe) and of .msu Files in Windows

Use LPKSetup to add or remove language packs.

Deployment Image Servicing and Management (DISM) Best Practices

DISM - Deployment Image Servicing and Management Technical Reference for Windows

http://go.microsoft.com/fwlink/?LinkId=90850


Audit Mode Overview
5/11/2018 • 3 minutes to read • Edit Online

Benefits of using Audit Mode

When Windows boots, it starts in either Out-Of-Box Experience (OOBE) mode or in audit mode. OOBE is the
default out-of-box experience that allows end users to enter their account information, select language, accept
the Microsoft Terms of Service, and set up networking.

You can configure Windows to boot to audit mode instead. In audit mode, you can make additional changes to
the Windows installation before you send the computer to a customer or capture the image for reuse in your
organization. For example, you can install drivers included in a driver package, install applications, or make
other updates that require the Windows installation to be running. When you use an answer file, Windows
processes settings in the auditSystem and auditUser configuration passes.

When you boot to audit mode, you log into the system using the built-in administrator account. After you log on
to the system, the built-in administrator account is immediately disabled during the auditUser configuration
pass. The next time that the computer reboots, the built-in administrator account remains disabled. For more
information, see Enable and Disable the Built-in Administrator Account.

Important

If you are in audit mode and a password-protected screen saver starts, you cannot log back on to the
system. The built-in administrator account that was used to log on to audit mode is immediately disabled
after logon.

To disable the screen saver, either change the power plan through Control Panel or configure and deploy
a custom plan. For more information, see Create a Custom Power Plan.

Settings in an unattended answer file from the oobeSystem configuration pass do not appear in audit
mode.

If you're running scripts, installers, and diagnostic tools on Windows 10 S in Audit Mode, you may have
to enable manufacturing mode for Windows 10 S. See Manufacturing mode for details.

In audit mode, you can do the following:

Bypass OOBE. You can access the desktop as quickly as possible. You do not have to configure default
settings such as a user account, location, and time zone.

Install applications, add device drivers, and run scripts. You can connect to a network and access
additional installation files and scripts. You can also install additional language packs and device drivers.
For more information, see Add a Driver Online in Audit Mode.

Test the validity of a Windows installation. Before you deploy the system to end users, you can
perform tests on the system without creating a user account. Then you can prepare the system to start in
OOBE on the next boot.

Add more customizations to a reference image. This reduces the number of images that you have to
manage. For example, you can create a single reference image that contains the basic customizations that
you want to apply to all Windows images. You can then boot the reference image to audit mode and
make additional changes that are specific to the computer. These changes can be customer-requested
applications or specific device drivers.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/audit-mode-overview.md


Boot to Audit Mode

Automatically Display the Windows 8 Desktop

<settings pass="auditUser">
<component name="Microsoft-Windows-Deployment" processorArchitecture="x86" publicKeyToken="31bf3856ad364e35" 
language="neutral" versionScope="nonSxS" xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <RunAsynchronous>
       <RunAsynchronousCommand wcm:action="add">
          <Description>Show Desktop</Description>
          <Order>1</Order>
          <Path>cmd.exe /c %WINDIR%\System32\oobe\AuditShD.exe</Path>
       </RunAsynchronousCommand>
    </RunAsynchronous>
  </component>
</settings> 

Related topics

You can boot to audit mode on a new or existing Windows installation. For more information, see Boot
Windows to Audit Mode or OOBE.

In some Windows 8 manufacturing or testing scenarios you might need to automatically display the Windows 8
desktop instead of the Windows 8 start screen after the PC reboots. This might be required if you use
manufacturing tools that display status to a Window on the desktop and you want your factory technicians to
easily identify issues without having to manually switch from the Windows 8 start screen to the desktop.

You can automatically display the Windows 8 desktop by using %WINDIR%\System32\oobe\AuditShD.exe.
AuditShD.exe must be run by an account with administrator permissions.

We recommend adding this command-line to your answer file as a RunAsynchronousCommand in the
auditUser configuration pass. Use Windows System Image Manager to add Microsoft-Windows-
Deployment | RunAsynchronous | RunAsynchronousCommand with the value
%WINDIR%\System32\oobe\AuditShD.exe.

The answer file you create will look similar to the following:

Before a Windows PC is shipped to a customer, it must be configured to boot to the OOBE screens and display
the Start screen on first boot. Verify that AuditShD.exe is only configured to run in audit mode and is not used
during OOBE.

Understanding Servicing Strategies

Windows Setup Configuration Passes

How Configuration Passes Work

Windows Setup Scenarios and Best Practices

Windows Setup Installation Process

Windows Setup Automation Overview

Windows Setup Supported Platforms and Cross-Platform Deployments

Windows 10 S manufacturing mode



Run Audit Mode in the Factory
5/11/2018 • 2 minutes to read • Edit Online

NOTENOTE

In build-to-order scenarios OEMs can boot the destination PCs to audit mode to install customer-specific apps,
languages, drivers, and make additional configurations.

After final assembly of the PC you complete integrity testing to ensure the PC is configured correctly.

When ready, boot the PC with Windows PE, or another operating system that allows you to install your custom
Windows image to the PC. You can boot the PC by using a USB key, or you can boot the PC from the network
using PXE boot and Windows Deployment Services.

We recommend you use Windows PE and DISM to boot the PC and apply your custom Windows image.

Apply Images Using DISM

WinPE for Windows 10

Windows Deployment Services Overview

After the image is applied, you boot the PC to audit mode.

Audit Mode Overview

While in audit mode, you can install customer requested software, drivers specific to the PC, and additional items.
While in audit mode you can also install the latest Windows updates. The following topics go into more detail
about how to install drivers, language packs, and Windows updates:

Device Drivers and Deployment Overview

Language Packs

Service a Windows Image Using DISM

Keep in mind that the more items that you install on the factory floor increases the time it takes to assemble, install,
and box the PC.

Running scripts, installers, and diagnostic tools in Audit Mode on Windows 10 S may require enabling manufacturing mode
for Windows 10 S. See Manufacturing mode for details on how to enable manufacturing mode.

After you complete your audit mode installations, you must run sysprep /oobe to ensure that the end-user goes
through the out-of-box experience and accepts the license terms. You should capture the Windows installation to
the recovery partition to help users rest the PC to factory default. By doing this in the factory, you can ensure that
the build-to-order customizations that customers make are in the recovery image.

You will need to boot the PC to Windows PE again to capture and apply the Windows installation to the recovery
partition.

The following topic describes how to create the recovery image:

Deploy Push-Button Reset Features

After the recovery image is captured, you can shut down the PC, box it, and ship it.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/run-audit-mode-in-the-factory.md
http://technet.microsoft.com/library/hh831764.aspx


Depending on the volume of units you are shipping, you might want to consider pulling one or more PCs off the
line to ensure the systems you build meet your quality expectations.



 

Boot Windows to Audit Mode or OOBE
6/21/2018 • 5 minutes to read • Edit Online

Boot to audit mode automatically on a new installation

Boot to audit mode manually (on a new or existing installation)

Boot to OOBE automatically on a new installation

Modify an existing image that is configured to boot to OOBE

You can use audit mode to customize your computer, add applications and device drivers, and test your
computer in a Windows environment. Booting to audit mode starts the computer in the built-in administrator
account. Windows® removes this account automatically during the generalize configuration pass. After you
configure a computer to boot to audit mode, the computer will continue to boot to audit mode by default until
you configure the computer to boot to Out-Of-Box Experience (OOBE) when the computer ships to the user.

If a password-protected screen saver starts when you are in audit mode, you cannot log back on to the system.
The built-in administrator account that is used to log on to audit mode is immediately disabled after logon. To
disable the screen saver, either change the power plan through Windows Control Panel or configure and
deploy a custom plan. For more information, see Create a Custom Power Plan.

To configure Windows to boot to audit mode, add the Microsoft-Windows-Deployment | Reseal |
Mode = audit answer file setting.

When Windows completes the installation process, the computer boots into audit mode automatically,
and the System Preparation (Sysprep) Tool appears. For more information about using the Sysprep tool
in audit mode, see Sysprep (Generalize) a Windows installation.

Note
Settings in an answer file from the oobeSystem configuration pass do not appear in audit mode. For
more information about which answer file settings are processed when you boot to audit mode or
OOBE, see How Configuration Passes Work.

At the OOBE screen, press CTRL+SHIFT+F3.

Windows reboots the computer into audit mode, and the System Preparation (Sysprep) Tool appears.

Note
The CTRL+SHIFT+F3 keyboard shortcut does not bypass all parts of the OOBE process, such as
running scripts and applying answer file settings in the oobeSystem configuration pass.

To configure Windows to boot to OOBE, add the Microsoft-Windows-Deployment | Reseal | Mode
= oobe answer file setting.

If you have configured your Windows image to boot to OOBE, but then you need to make further
configurations to your image in audit mode, see Modify an existing image that is configured to boot to
OOBE.

If you have configured your Windows image to boot to OOBE, but then need to make further
configurations to your image in audit mode, you can do one of the following:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/boot-windows-to-audit-mode-or-oobe.md


 

Boot to audit mode automatically from an existing image

Deployment examples

1. Use the CTRL+SHIFT+F3 keyboard shortcut. The computer will reboot into audit mode.

This option may trigger any scripts that you have configured to launch in OOBE.

-or-

2. Mount the image, add an answer file with the audit setting, and save it as
C:\test\offline\Windows\Panther\Unattend\Unattend.xml. This may require overwriting
an existing answer file at this location.

On the next boot, Windows will boot directly into audit mode.

Dism /Mount-Image /ImageFile:C:\test\images\MyImage.wim /index:<image_index> 
/MountDir:C:\test\offline

Dism /Unmount-Image /MountDir:C:\test\offline /commit

1. Create a new answer file, and then add the Microsoft-Windows-Deployment | Reseal | Mode =
audit setting. Save the answer file as Unattend.xml.

2. At an elevated command prompt, mount the Windows image. For example:

where <image_index> is the number of the selected image on the .wim file.

3. Copy the new answer file to the C:\test\offline\Windows\Panther\Unattend folder.

4. Commit the changes, and then unmount the image. For example:

When the image is applied to the destination computer and Windows is booted, the computer boots into
audit mode automatically, and the Sysprep tool appears. For sample procedures, see Step 1: Transfer an
image to a different computer and Step 2: Prepare the computer for a customer in Deployment
examples.

Options for applying an image also include using answer file settings, such as specifying the image to install
and the disk configurations to make on the destination computer. For more information, see the Unattended
Windows Setup Reference Guide.

To transfer an image to a different computer, you must first remove the computer-specific information from the
configured computer by generalizing the image with the Sysprep tool. To prepare a computer for the customer,
you must generalize the computer, and then set it to boot to OOBE when a customer starts the computer for
the first time. In the following examples we create and transfer a reference image to a different computer, and
then create a model-specific image that ships to a customer.

Step 1: Transfer an image to a different computer

1. Install Windows on a reference computer.

2. After the installation is complete, boot the computer and install any additional device drivers or
applications.

3. After you update the Windows installation, run Sysprep:

At the command line, run the Sysprep /generalize /shutdown command.

http://go.microsoft.com/fwlink/?linkid=206281


Related topics

-or-

In the System Preparation Tool window, select the Generalize check box under the System
Cleanup Action box on the Shutdown Options box, select Shutdown, and then click OK.

Sysprep removes system-specific data from the Windows installation. System-specific information
includes event logs, unique security IDs (S IDs), and other unique information. After Sysprep removes
the unique system information, the computer shuts down.

4. After the computer shuts down, insert the Windows PE USB flash drive or other bootable media, and
reboot into Windows PE.

5. In the Windows PE session, capture the reference image by using the Dism /capture-image command.

6. Proceed to the next step to create a model-specific reference image.

Step 2: Prepare the computer for a customer

1. Install the reference image you created in Step 1 that is destined for your customer.

2. After you update the Windows installation, at the command line run the Sysprep /audit /generalize
/shutdown command to configure Windows to boot the computer to audit mode. You can then capture
the Windows image by booting to another partition or by using Windows PE.

3. Use the new model-specific reference image to install Windows on a new computer. The Windows
image is applied to the computer, and Windows boots to audit mode.

4. (Optional) You can install additional applications and other updates based on a customer's order. You can
also test the computer to verify that all components are working correctly.

5. After you update the Windows installation, run the Sysprep /oobe /shutdown command.

Note
If you install Windows images by using the Sysprep /generalize /oobe command, the user experience
will not be ideal. On the next reboot after you run the Sysprep /generalize /oobe command, Windows
runs the specialize configuration pass, Plug and Play, and other Setup tasks before Windows starts
OOBE. This process can take additional time and can delay a customer's first logon.

6. Package and deliver the computer to your customer.

When the customer starts the computer, OOBE runs.

Windows Setup Technical Reference

DISM Image Management Command-Line Options

Audit Mode Overview

Add a Driver Online in Audit Mode

Enable and Disable the Built-in Administrator Account

Boot from a DVD

Use a Configuration Set with Windows Setup

Deploy a Custom Image

Add Device Drivers to Windows During Windows Setup

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


Add a Custom Script to Windows Setup



  

Enable and Disable the Built-in Administrator
Account
5/11/2018 • 3 minutes to read • Edit Online

Enabling the Built-in Administrator Account

Use an answer fileUse an answer file

When manufacturing PCs, you can use the built-in Administrator account to run programs and apps before a user
account is created.

Note
This topic is about manufacturing PCs. For help with the admin account on your own PC, try one of these pages:

Log on as an administrator

Delete an account called "Administrator"

User Account Control

This account is used when you log into the system by using audit mode, or when you add scripts to the auditUser
configuration pass.

You can use any of the following methods to enable the built-in Administrator account:

1. Use an answer file

2. Log on by using audit mode

3. Use the Local Users and Groups MMC (Server versions only)

You can enable the built-in Administrator account during unattended installations by setting the AutoLogon  setting
to Administrator in the Microsoft-Windows-Shell-Setup component. This will enable the built-in Administrator
account, even if a password is not specified in the AdministratorPassword  setting.

You can create an answer file by using Windows® System Image Manager (Windows SIM).

The following sample answer file shows how to enable the Administrator account, specify an Administrator
password, and automatically log on to the system.

Note
Both the Microsoft-Windows-Shell-Setup\ Autologon  section and the Microsoft-Windows-Shell-Setup\
UserAccounts \ AdministratorPassword  section are needed for automatic logon in audit mode to work. The

auditSystem configuration pass must include both these settings.

The following XML output shows how to set the appropriate values:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/enable-and-disable-the-built-in-administrator-account.md
http://go.microsoft.com/fwlink/?LinkId=506857
http://go.microsoft.com/fwlink/?LinkId=506858
http://go.microsoft.com/fwlink/?LinkId=277139


  

  

   <component name="Microsoft-Windows-Shell-Setup" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
      <AutoLogon>
         <Password>
            <Value>SecurePasswd123</Value> 
            <PlainText>true</PlainText> 
         </Password>
         <Username>Administrator</Username> 
         <Enabled>true</Enabled> 
         <LogonCount>5</LogonCount> 
      </AutoLogon>
      <UserAccounts>
         <AdministratorPassword>
            <Value>SecurePasswd123</Value> 
            <PlainText>true</PlainText> 
         </AdministratorPassword>
      </UserAccounts>
   </component>

            <UserAccounts>
                <AdministratorPassword>
                    <Value>SecurePasswd123</Value>
                    <PlainText>true</PlainText>
                </AdministratorPassword>
            </UserAccounts>

Log on by using audit modeLog on by using audit mode

Use the Local Users and Groups MMC (server versions only)Use the Local Users and Groups MMC (server versions only)

Disabling the Built-in Administrator Account

To prevent having to enter a password for the built-in Administrator account after you complete the out-of-box
experience, set Microsoft-Windows-Shell-Setup\ UserAccounts \ AdministratorPassword  in the oobeSystem
configuration pass.

The following XML output shows how to set the appropriate values:

For Windows Server® 2012, the built-in Administrator password must be changed at first logon. This prevents
the built-in Administrator account from having a blank password by default.

If the computer has not yet gone through Out-Of-Box Experience (OOBE), you can enter the built-in Administrator
account by re-entering audit mode. For more information, see Boot Windows to Audit Mode or OOBE.

Change the properties of the Administrator account by using the Local Users and Groups Microsoft Management
Console (MMC).

1. Open MMC, and then select Local Users and Groups.

2. Right-click the Administrator account, and then select Properties.

The Administrator Properties window appears.

3. On the General tab, clear the Account is Disabled check box.

4. Close MMC.

Administrator access is now enabled.

For new installations, after the end user creates a user account in OOBE, the built-in Administrator account is



Configuring the Built-in Administrator Password

Related topics

disabled.

For upgrade installations, the built-in Administrator account remains enabled when there is no other active local
administrator on the computer, and when the computer is not joined to a domain.

Use either of the following methods to disable the built-in administrator account:

net user administrator /active:no

1. Run the sysprep /generalize command

When you run the sysprep /generalize command, the next time that the computer starts, the built-in
Administrator account will be disabled.

2. Use the net user command

Run the following command to disable the Administrator account:

You can run this command after you configure the computer and before you deliver the computer to a
customer.

Original equipment manufacturers (OEMs) and system builders are required to disable the built-in administrator
account before delivering the computers to customers. To do this, you can use either of the following methods.

Instructions

When you run the sysprep /generalize command on Windows Server 2012 and Windows Server 2008
R2, the Sysprep tool resets the built-in Administrator account password. The Sysprep tool only clears the
built-in Administrator account’s password for server editions, not for client editions. The next time that the
computer starts, Setup displays a prompt for a password.

Note
In Windows Server 2012, Windows Server 2008 R2, and Windows Server 2008, the default password
policy requires a strong password for all user accounts. To configure a weak password, you can use an
answer file that includes the Microsoft-Windows-Shell-Setup\ UserAccounts \ AdministratorPassword  setting.
You cannot configure a weak password, either manually or by using a script such as the net user command.

Windows Deployment Options

Audit Mode Overview

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-deployment-options


Sysprep (System Preparation) Overview
5/11/2018 • 5 minutes to read • Edit Online

Feature description

Practical applications

New and changed functionality

Sysprep (System Preparation) prepares a Windows installation (Windows client and Windows Server) for
imaging, allowing you to capture a customized installation. Sysprep removes PC-specific information from a
Windows installation, "generalizing" the installation so it can be installed on different PCs. With Sysprep you can
configure the PC to boot to audit mode, where you can make additional changes or updates to your image. Or,
you can configure Windows to boot to the Out-of-Box Experience (OOBE).

Sysprep is part of the Windows image, and is used during audit mode.

Sysprep provides the following features:

Removes PC-specific information from the Windows image, including the PC’s security identifier (S ID).
This allows you to capture the image and apply it to other PCs. This is known as generalizing the PC.

Uninstalls PC-specific drivers from the Windows image.

Prepares the PC for delivery to a customer by setting the PC to boot to OOBE.

Allows you to add answer file (unattend) settings to an existing installation.

Sysprep helps you solve business goals such as:

Helps you manage multiple PCs by creating a generic image that can be used across multiple hardware
designs.

Deploy PCs by capturing and deploying images with unique security identifiers.

Fine-tune setup of individual PCs by adding apps, languages, or drivers in audit mode. For more
information, see Audit Mode Overview.

Provide more reliable PCs by testing in audit mode before delivering them to customers.

Beginning with Windows 10, version 1607, Sysprep can be used to prepare an image that has been upgraded.
For example:

You can start with a computer that runs Windows 10, version 1511 or Windows 10, version 1507.
Upgrade the computer to run Windows 10, version 1607.
Run Sysprep generalize on the upgraded image, re-capture the updated image, and deploy the image to new
devices.

This process allows enterprises to efficiently and continuously roll out up-to-date Windows 10 deployment
images.

Beginning with Windows 8.1, the Sysprep user interface is deprecated. The Sysprep UI will continue to be
supported in this release however it may be removed in a future release. We recommend that you update your
deployment workflow to use Sysprep from the command line. For more information, see Sysprep Command-

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/sysprep--system-preparation--overview.md


Dependencies

Limitations

Unsupported Scenarios

Line Options.

You must run Windows Setup before you use Sysprep.

You need a tool to capture an image of the installation, such as DISM - Deployment Image Servicing and
Management Technical Reference for Windows or other disk-imaging software.

Note
When you copy Windows images between PCs, the reference and destination PCs may not have to have
compatible hardware abstraction layers (HALs). The /detecthal option in the Boot Configuration Data (BCD)
enables a system that has already run Sysprep to install the correct HAL.

Sysprep has the following limitations:

The security identifier (S ID) is only replaced on the operating system volume when you execute Sysprep. If
a single PC has multiple operating systems, you must run Sysprep on each image individually.

In some cases, customized applications that you install before you recapture the Windows image may
require a consistent drive letter. Some applications store paths that include the system's drive letter.
Uninstallation, servicing, and repair scenarios may not function correctly if the system's drive letter does
not match the drive letter that the application specifies.

The Plug and Play devices on the reference and destination PCs do not have to be from the same
manufacturer. These devices include modems, sound cards, network adapters, and video cards. However,
the installation must include the drivers for these devices.

Not all server roles support Sysprep. If you generalize a Windows Server installation that has specific
server roles configured, those server roles may not continue to function after the imaging and deployment
process. For more information, see Sysprep Support for Server Roles.

If you run Sysprep on an NTFS file system partition that contains encrypted files or folders, the data in
those folders becomes completely unreadable and unrecoverable.

The Sysprep tool runs only if the PC is a member of a workgroup, not a domain. If the PC is joined to a
domain, Sysprep removes the PC from the domain.

If a PC is joined to a domain, and the Group Policy of that domain assigns a strong account password
policy to the PC, all user accounts will require strong passwords. Running Sysprep or OOBE does not
remove the strong password policy.

Warning
If you do not assign a strong password to a user account before you run Sysprep or OOBE, you may not
be able to log on to the PC. We recommend that you always use strong passwords for your user accounts.

The following scenarios are not supported:

Moving or copying a Windows image to a different PC without generalizing the PC is not supported.

Using a different version of the Sysprep tool to configure an image is not supported. You must use only
the version of the Sysprep tool that is installed with the Windows image that you intend to configure.
Sysprep is installed with every version of Windows. You must always run Sysprep from the
%WINDIR%\system32\sysprep directory.



See also

CONTENT TYPE REFERENCES

If you are using a version of Windows earlier than Windows 10, Version 1607, using the Sysprep tool on
upgrade installation types, or to reconfigure an existing installation of Windows that has already been
deployed is not supported. In this case, Sysprep must be used only to configure new installations of
Windows. You can run Sysprep an unlimited number of times to build and configure your installation of
Windows.

Automating Sysprep by using a Microsoft-Windows-Deployment\RunSynchronous command is not
supported. However, you can use the Microsoft-Windows-Deployment\Generalize setting to prepare the
PC for imaging after installation.

Running VM mode outside a virtual machine (VM) is unsupported. You cannot use VM mode to prepare a
VHD for deployment to any PC.

Sysprep cannot be run under the context of a System account. Running Sysprep under the context of
System account by using Task Scheduler or PSExec, for example, is not supported.

The following table contains links to resources related to this scenario.

Product evaluation Sysprep Process Overview

Operations Sysprep (Generalize) a Windows installation | Customize
the Default User Profile by Using CopyProfile | Use
Answer Files with Sysprep

Tools and settings Sysprep Command-Line Options | Sysprep Support for
Server Roles

Related technologies Windows Setup | Audit Mode Overview | Boot Windows
to Audit Mode or OOBE

http://go.microsoft.com/fwlink/?LinkId=286336
http://go.microsoft.com/fwlink/?LinkId=286337
http://microsoft.com


Sysprep Process Overview
5/11/2018 • 6 minutes to read • Edit Online

Sysprep Executable

Sysprep Process Overview

The System Preparation (Sysprep) tool is used to change Windows® images from a generalized state to a
specialized state, and then back to a generalized state. A generalized image can be deployed on any computer. A
specialized image is targeted to a specific computer. You must reseal, or generalize, a Windows image before you
capture and deploy the image. For example, when you use the Sysprep tool to generalize an image, Sysprep
removes all system-specific information and resets the computer. The next time that the computer restarts, your
customers can add user-specific information through Out-Of-Box Experience (OOBE) and accept the Microsoft
Software License Terms.

Sysprep.exe is located in the %WINDIR%\system32\sysprep directory on all Windows installations.

If you transfer a Windows image to a different computer, you must run the Sysprep command together with the
/generalize option, even if the other computer has the same hardware configuration. The Sysprep /generalize
command removes unique information from your Windows installation so that you can reuse that image on a
different computer. For more information, see Sysprep (Generalize) a Windows installation.

Sysprep.exe is the main program that calls other executable files that prepare the Windows installation.
Sysprep.exe is located in the %WINDIR%\system32\sysprep directory on all Windows installations. If you use
the command line instead of the System Preparation Tool GUI, you must first close the GUI and then run
Sysprep from the %WINDIR%\system32\sysprep directory. You must also run Sysprep on the same version of
Windows that you used to install Sysprep.

Important
Beginning with Windows 8.1, the Sysprep user interface is deprecated. The Sysprep UI will continue to be
supported in this release however it may be removed in a future release. We recommend that you update your
Windows deployment workflow to use the Sysprep command line. For more information about the Sysprep
Command line tool, see Sysprep Command-Line Options.

When Sysprep runs, it goes through the following process:

1. Sysprep verification. Verifies that Sysprep can run. Only an administrator can run Sysprep. Only one
instance of Sysprep can run at a time. Also, Sysprep must run on the version of Windows that you used to
install Sysprep.

2. Logging initialization. Initializes logging. For more information, see Sysprep Log Files.

3. Parsing command-line arguments. Parses command-line arguments. If a user does not provide
command-line arguments, a System Preparation Tool window appears and enables users to specify
Sysprep actions.

4. Processing Sysprep actions. Processes Sysprep actions, calls appropriate .dll files and executable files,
and adds actions to the log file.

5. Verifying Sysprep processing actions. Verifies that all .dll files have processed all their tasks, and then
either shuts down or restarts the system.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/sysprep-process-overview.md


Persisting the Hardware Configuration

Adding Device Drivers

Booting to Audit Mode or OOBE

If you create an image of this installation for deployment to a different computer, you must run the Sysprep
command together with the /generalize option, even if the other computer has the identical hardware
configuration. The Sysprep /generalize command removes unique information from a Windows installation so
that you can reuse that image on different computers. The next time that you boot the Windows image, the
specialize configuration pass runs.

If you want to install a Windows image to computers that have the same hardware configuration, you can
preserve the device-drivers installation in a Windows image. To do this, in your answer file, specify the
PersistAllDeviceInstalls setting in the Microsoft-Windows-PnPSysprep component. The default value is
false. If you set the setting to true, the Plug and Play devices remain on the computer during the generalize
configuration pass. You do not have to reinstall these devices during the specialize configuration pass. For more
information, see Use Answer Files with Sysprep and Unattended Windows Setup Reference Guide.

Plug and Play devices include modems, sound cards, network adapters, and video cards. The Plug and Play
devices on the reference and destination computers do not have to come from the same manufacturer. However,
you must include the drivers for these devices in the installation. For more information, see Add and Remove
Drivers to an Offline Windows Image and Add Device Drivers to Windows During Windows Setup.

When Windows boots, the computer can start in one of two modes:

OOBE

OOBE, also named the out-of-box experience (OOBE), is the first user experience. The OOBE enables end
users to customize their Windows installation. End users can create user accounts, read and accept the
Microsoft® Software License Terms, and select their language and time zones. By default, all Windows
installations boot to OOBE first. The oobeSystem configuration pass runs immediately before OOBE starts.

If you do not automatically activate Windows by using a product key, OOBE prompts the user for a product
key. If the user skips this step during OOBE, Windows reminds the user to enter a valid product key later. To
automatically activate Windows by using a product key, specify a valid product key in the Microsoft-
Windows-Shell-Setup\ProductKey unattend setting during the specialize configuration pass. For more
information, see Work with Product Keys and Activation.

Audit Mode

Audit mode enables you to add customizations to Windows images. Audit mode does not require that you
apply settings in OOBE. By bypassing OOBE, you can access the desktop more quickly and perform your
customizations. You can add more device drivers, install applications, and test the validity of the installation.

You can configure Windows to boot directly to audit mode by using the Microsoft-Windows-
Deployment | Reseal | Mode setting in an answer file. In audit mode, the computer processes settings in
an unattended answer file in the auditSystem and auditUser configuration passes.

If you are running a computer in audit mode to configure the installation to boot to OOBE, either use the
Sysprep GUI or run the Sysprep /oobe command. To prepare a computer for an end user, you must
configure the computer to boot to OOBE when an end user starts the computer for the first time. In a
default Windows installation, OOBE starts after installation is completed, but you can skip OOBE and boot
directly to audit mode to customize images.

For more information, see:



 

Detecting the State of a Windows Image

Sysprep Log Files

ITEM LOG PATH

Creating and Using Sysprep Providers

Audit Mode Overview

Boot Windows to Audit Mode or OOBE

How Configuration Passes Work

Enable and Disable the Built-in Administrator Account

Add a Driver Online in Audit Mode

You can use Sysprep to identify the state of a Windows image. That is, you can determine whether the image will
boot to audit mode or OOBE, or if the image is still in the process of installation. For more information, see
Windows Setup Installation Process.

The Sysprep tool logs Windows Setup actions in different directories, depending on the configuration pass.
Because the generalize configuration pass deletes certain Windows Setup log files, the Sysprep tool logs
generalize actions outside the standard Windows Setup log files. The following table shows the different log file
locations that Sysprep uses.

Generalize %WINDIR%\System32\Sysprep\Panther

Specialize %WINDIR%\Panther</strong>

Unattended Windows Setup actions %WINDIR%\Panther\Unattendgc

For more information, see Deployment Troubleshooting and Log Files.

Independent software vendors (ISVs) and independent hardware vendors (IHVs) can create Sysprep providers
that enable their applications to support imaging and deployment scenarios. If an application does not currently
support generalize operations by using the Sysprep tool, you can create a provider that removes all software-
specific and hardware-specific information from the application.

To create a Sysprep provider, you must do the following:

1. Determine which configuration pass (cleanup, generalize, or specialize) your Sysprep provider
addresses.

2. Create the appropriate entry point for your Sysprep provider, based on your choice of configuration pass.

3. Register the Sysprep provider for use by the Sysprep tool.

4. Test your Sysprep provider to validate that the provider functions correctly. Make sure that you review the
log files for warnings and errors.

For more information about Sysprep providers, see the System Preparation (Sysprep) Tool Provider Developer’s
Guide.

http://go.microsoft.com/fwlink/?LinkId=205568


Related topics
Sysprep (System Preparation) Overview

Sysprep Command-Line Options

Sysprep (Generalize) a Windows installation

Sysprep Support for Server Roles

Use Answer Files with Sysprep



Sysprep (Generalize) a Windows installation
5/11/2018 • 4 minutes to read • Edit Online

Generalize a Windows installation

Prevent Sysprep from removing installed devicesPrevent Sysprep from removing installed devices

Limits on how many times you can run SysprepLimits on how many times you can run Sysprep

Microsoft Store appsMicrosoft Store apps

To deploy a Windows image to different PCs, you have to first generalize the image to remove computer-
specific information such as installed drivers and the computer security identifier (S ID). You can either use
Sysprep by itself or Sysprep with an unattend answer file to generalize your image and make it ready for
deployment.

When you generalize a Windows image, Windows Setup processes settings in the generalize configuration
pass. Even if you're capturing an image that's going to be deployed to a PC with similar hardware, you still have
to generalize the Windows installation to remove unique PC-specific information from a Windows installation,
which allows you to safely reuse your image.

When you generalize an image, Windows replaces the computer S ID only on the operating system volume
where you ran Sysprep. If a single computer has multiple operating systems, you must run Sysprep on each
image individually.

If you're generalizing a Windows Server installation that has Remote Authentication Dial-In User Service
(RADIUS) clients or remote RADIUS server groups defined in the Network Policy Server (NPS) configuration,
you should remove this information before you deploy it to a different computer. For more information, see
Prepare a Network Policy Server (NPS) for Imaging.

When you set up a Windows PC, Windows Setup configures all detected devices. Generalizing a Windows
installation uninstalls configured devices, but does not remove device drivers from the PC.

If you're deploying an image to computers that have identical hardware and devices as the original PC, you can
keep devices installed on the computer during system generalization by using an unattend file with Microsoft-
Windows-PnPSysprep | PersistAllDeviceInstalls  set to true. For more information about Sysprep-related
Windows unattend components, see the Unattended Windows Setup Reference for Microsoft-Windows-
PnpSysprep.

You can run the Sysprep command up to 8 times on a single Windows image. After running Sysprep 8 times,
you must recreate your Windows image. In previous versions of Windows, you could use the SkipRearm  answer
file setting to reset the Windows Product Activation clock when running Sysprep. If you are using a volume
licensing key or a retail product key, you don't have to use SkipRearm  because Windows is automatically
activated.

Installing new Microsoft Store apps or updating your existing Microsoft Store apps before generalizing a
Windows image will cause Sysprep to fail. Sysprep /generalize  requires that all apps are provisioned for all
users; however, when you update an app from the Microsoft Store, that app becomes tied to the logged in user
account. The following error appears in the Sysprep log files (located at
%WINDIR%\System32\Sysprep\Panther):

<package name> was installed for a user, but not provisioned for all users. This package will not function
properly in the sysprep image.

Instead of using the Microsoft Store to update your apps, you should sideload updates to your line-of-business

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/sysprep--generalize--a-windows-installation.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/prepare-a-network-policy-server--nps--for-imaging
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-pnpsysprep


Generalize an image
Generalize from Audit ModeGeneralize from Audit Mode

Generalize using unattendGeneralize using unattend

apps, provision offline-licensed Microsoft Store for Business apps for all users, or have end-users update their
apps by using the Microsoft Store on their destination PCs. If Microsoft Store access in a managed environment
is disabled by an IT administrator, end-users will not be able to update the Microsoft Store apps.

For more information about sideloading line-of-business Microsoft Store apps, see Sideload Apps with DISM
and Customize the Start Screen.

To generalize an image, you have to first boot into Audit Mode. You can boot into Audit Mode using an unattend
file or from the Out-Of-Box Experience (OOBE) screen. You can read about the different ways of booting into
Audit Mode at Boot Windows to Audit Mode or OOBE.

1. Boot a PC into Audit Mode. When Windows boots into Audit Mode, System Preparation Tool will
appear on the desktop. You can choose to either close the System Preparation Tool window or allow it
to remain open.

2. Customize Windows by adding drivers, changing settings, and installing programs. Do not install any
Microsoft Store apps using the Microsoft Store.

3. Run Sysprep.

%WINDIR%\system32\sysprep\sysprep.exe /generalize /shutdown /oobe

NOTENOTE

If the System Preparation Tool window is still open, click Generalize, click Shutdown, and then
click OK to generalize the image and shut down the PC.

-or-

Use Sysprep from Command Prompt. Run %WINDIR%\system32\sysprep\sysprep.exe  to open the
System Preparation Window. You can also use the Sysprep  command together with the
/generalize, /shutdown, and /oobe options. See Sysprep command-line options to see available
options.

If you are generalizing a VHD that will be deployed as a VHD on the same virtual machine or hypervisor,
use the /mode:vm  option with the Sysprep command-line.

The computer generalizes the image and shuts down.

4. After the computer shuts down, capture your image with DISM.

5. Deploy this image to a reference computer. When the reference computer boots, it displays the OOBE
screen.

If you use multiple unattend files during your computer deployment, you can add the following settings to your
each of your unattend files so Windows Setup will generalize the PC after processing the unattend file.

To automatically generalize the image and shut down, use the Microsoft-Windows-Deployment | Generalize

setting. Set Mode  to OOBE  or Audit, and set ForceShutdownNow  to true.

-or-

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/customize-the-start-screen


Related topics

To generalize the system, and have it boot into Audit Mode, use the Microsoft-Windows-Deployment | 
Reseal  setting to the oobeSystem configuration pass. Set Mode  to Audit.

Sysprep Process Overview

Sysprep Command-Line Options

Sysprep Support for Server Roles

Work with Product Keys and Activation



 

Use Answer Files with Sysprep
5/11/2018 • 4 minutes to read • Edit Online

Running Sysprep an Unlimited Number of Times

Applying Settings in the generalize, auditSystem, and auditUser
Configuration Passes

Caching Answer Files to the Computer

Persisting Plug and Play Device Drivers During the generalize
Configuration Pass

You can use an answer file together with the System Preparation (Sysprep) tool to configure unattended
Windows Setup settings. This topic describes some considerations and processes for using answer files together
with Sysprep. For more information about Windows components and settings that you can add to an answer file,
see the Unattended Windows Setup Reference.

If you specify a product key, Windows is automatically activated, and you can run the Sysprep command an
unlimited number of times. To automatically activate Windows by supplying a product key, specify a valid product
key in the Microsoft-Windows-Shell-Setup\ ProductKey  unattend setting during the specialize configuration pass.
If you don't automatically activate Windows by providing a product key, Windows prompts the end user for a
product key.

Not all configuration passes run during Windows Setup. The generalize, auditSystem, and auditUser
configuration passes are available only when you run Sysprep.

If you add settings to your answer file in these configuration passes, you must run Sysprep to apply these settings
as follows:

To apply the settings in the auditSystem and auditUser configuration passes, you must boot in audit mode
by using the Sysprep/audit command.

To apply the settings in the generalize configuration pass, you must use the Sysprep/generalize
command. The generalize configuration pass removes the system-specific settings so that you can deploy
the same image on multiple computers.

For more information, see How Configuration Passes Work.

If you install Windows by using an answer file, that answer file is cached to the system. When later configuration
passes run, the computer applies settings in that answer file to the system. Because this answer file is cached,
when you run the Sysprep command, the system applies settings in the cached answer file. If you use the settings
in a different answer file, you can specify a separate Unattend.xml file by using the Sysprep
/unattend:<file_name> option. For more information, see Sysprep Command-Line Options. For more
information about how to use an implicit answer-file search, seeWindows Setup Automation Overview.

You can persist device drivers when you run the Sysprep command together with the /generalize option. To do
this, specify the PersistAllDeviceInstalls  setting in the Microsoft-Windows-PnPSysprep component. During the
specialize configuration pass, Plug and Play scans the computer for devices, and then installs device drivers for the
detected devices. By default, the computer removes these device drivers from the system when you generalize the

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/use-answer-files-with-sysprep.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/components-b-unattend


Displaying RunSynchronous Actions in an Answer File

system. If you set the Microsoft-Windows-PnPSysprep\ PersistAllDeviceInstalls  setting to true in an answer file,
Sysprep doesn't remove the detected device drivers.

In audit mode, you can view the status for Microsoft-Windows-Deployment\ RunSynchronous  commands that run
during the auditUser configuration pass. The AuditUI window displays the status for commands and provides
these:

Visual progress to indicate that an installation is continuing and not suspended.

Visual indication of when and where failures occur. This provides a quick diagnosis if the command doesn't
create log files.

If the answer file contains Microsoft-Windows-Deployment\ RunSynchronous  commands in the auditUser
configuration pass, a list of the commands appears in the AuditUI window. The commands appear in the order
that the Microsoft-Windows-Deployment\ RunSynchronous \ RunSynchronousCommand \ Order  setting specifies. Each
list item in the user interface is the string from one of these:

Microsoft-Windows-Deployment\ RunSynchronous \ RunSynchronousCommand \ Description  (if present)

Microsoft-Windows-Deployment\ RunSynchronous \ RunSynchronousCommand \ Path

Sysprep processes all RunSynchronous  commands in order. If the command succeeds, its related list item receives
a green check-mark annotation. If the command fails, its related list item receives a red X annotation. If the
command requests a reboot, the AuditUI window appears after the boot, but only unprocessed list items appear.
Previously processed items no longer appear in the AuditUI window. If the list of items in the AuditUI window
exceeds the height of the display, the list is truncated to the display and doesn't scroll. As a result, you may not be
able to see some items.

Windows Setup interprets the return codes as status values in the AuditUI window. A zero value indicates a
success. A nonzero value indicates a failure. The return value of the command might affect the behavior of
Windows Setup, depending on the value of the Microsoft-Windows-Deployment\ RunSynchronous \
RunSynchronousCommand \WillReboot setting.

If the WillReboot  command is set to Always:

If the command returns 0, its related list item receives a green check-mark annotation. A reboot
immediately occurs.

If the command returns a nonzero number, its related list item receives a red X annotation. A reboot
immediately occurs. A nonzero return value isn't treated as a fatal error when WillReboot  is set to either
Always or Never.

If the WillReboot  command is set to Never:

If the command returns 0, its related list item receives a green check-mark annotation.

If the command returns a nonzero number, its related list item receives a red X annotation. A nonzero
return value isn't treated as a fatal error when WillReboot  is set to either Always or Never.

If the WillReboot  command is set to OnRequest:

If the command returns 0, its related list item receives a green check-mark annotation.

If the command returns 1, its related list item receives a green check-mark annotation. A reboot
immediately occurs.

If the command returns 2, its related list item temporarily receives a green check-mark annotation. A reboot



Related topics

immediately occurs. After the reboot, the related list item appears again in the AuditUI window without
annotation because the command is still in process.

If the command returns other values, a fatal error occurs and a blocking dialog box appears. If the
Errorhandler.cmd file is present, no dialog box appears. For more information about the Errorhandler.cmd
file, see Add a Custom Script to Windows Setup.

Sysprep (System Preparation) Overview

Sysprep Command-Line Options

Sysprep Support for Server Roles

Sysprep Process Overview

Deployment Troubleshooting and Log Files



Sysprep Command-Line Options
5/11/2018 • 3 minutes to read • Edit Online

Sysprep Command-Line Options

OPTION DESCRIPTION

Sysprep /audit

Run Sysprep to prepare a Windows installation to be captured. This topic describes the command-line syntax
for the System Preparation (Sysprep) tool.

If you intend to create an image of an installation for deployment to a different computer, you must run the
Sysprep command together with the /generalize option, even if the other computer has the same hardware
configuration. The Sysprep /generalize command removes unique information from your Windows
installation so that you can safely reuse that image on a different computer. The next time that you boot the
Windows image, the specialize configuration pass runs.

The following command-line options are available for Sysprep:

Sysprep.exe [/oobe | /audit]

[/generalize]

[/mode:vm]

[/reboot | /shutdown | /quit]

[/quiet]

[/unattend:<answerfile>]

The following table lists Sysprep command-line options:

/audit Restarts the computer into audit mode. Audit mode
enables you to add additional drivers or applications to
Windows. You can also test an installation of Windows
before you send the installation to an end user. For
example:

If you specify an answer file, the audit mode of Windows
Setup runs the auditSystem and auditUser configuration
passes.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/sysprep-command-line-options.md


Sysprep /generalize /shutdown

Sysprep /generalize /shutdown /oobe

Sysprep /generalize /oobe /mode:vm

Important

OPTION DESCRIPTION

/generalize Prepares the Windows installation to be imaged. Sysprep
removes all unique system information from the
Windows installation. Sysprep resets the security ID
(SID), clears any system restore points, and deletes event
logs. For example:

The next time that the computer starts, the specialize
configuration pass runs. The configuration pass creates a
new security ID (SID).

/oobe Restarts the computer into OOBE mode. For example:

OOBE enables end users to customize their Windows
operating system, create user accounts, name the
computer, and perform other tasks. Sysprep processes
any settings in the oobeSystem configuration pass in an
answer file before OOBE starts.

/mode:vm Generalizes a Virtual Hard Disk (VHD) so that you can
deploy the VHD as a VHD on the same Virtual Machine
(VM) or hypervisor. After the VM restarts, the VM can
boot to OOBE. For example:

The only additional switches that apply to VM mode are
/reboot, /shutdown, and /quit.You must deploy the
VHD on a Virtual Machine (VM) or hypervisor with the
same hardware profile. For example, if you created VHD
in Microsoft Hyper-V, you can only deploy your VHD to
Microsoft Hyper-V VMs with a matching hardware
profile. Deploying the VHD to a different VM with a
different hardware profile might cause unexpected issues.

You can only run VM mode from inside a VM.

/reboot Restarts the computer. You can use this option to audit
the computer and to verify that the first-run experience
operates correctly.

/shutdown Shuts down the computer after the Sysprep command
finishes running.



Sysprep /audit /reboot 
/unattend:F:\Unattend.xml

OPTION DESCRIPTION

Related topics

/quiet Runs the Sysprep tool without displaying on-screen
confirmation messages. You can use this option if you
automate the Sysprep tool.

/quit Closes the Sysprep tool without rebooting or shutting
down the computer after Sysprep runs the specified
commands.

/unattend:<answerfile> Applies settings in an answer file to Windows during an
unattended installation, where <answerfile> specifies
the path and file name of the answer file to use. For
example:

where F is the drive letter of the portable storage device
on which the answer file (Unattend.xml) is located.

Important
You must use the Sysprep /generalize command to generalize a complete Windows installation before you can
use the installation for deployment to a new computer, whether you use imaging, hard disk duplication, or
another method. Moving or copying a Windows image to a different computer without running the Sysprep
/generalize command is not supported.

Sysprep (System Preparation) Overview

Sysprep Process Overview

Sysprep (Generalize) a Windows installation

Sysprep Support for Server Roles

Use Answer Files with Sysprep



Sysprep Support for Server Roles
5/11/2018 • 2 minutes to read • Edit Online

SERVER ROLE
SYSPREP SUPPORT IN
WINDOWS SERVER 2008

SYSPREP SUPPORT IN
WINDOWS SERVER 2008 R2

SYSPREP SUPPORT IN
WINDOWS SERVER® 2012

Many common server roles support the System Preparation tool (Sysprep). However, if you run the Sysprep
command together with the /generalize option against an installation of a server, and you are using an
unsupported server role, those roles may not function after the imaging and deployment process is completed.
Therefore, you must enable and configure any server roles that do not support Sysprep after you have performed
the imaging and deployment process.

The following table lists server roles and specifies whether the roles support Sysprep.

Active Directory
Certificate Services (AD
CS)

No No No

Active Directory Domain
Services (AD DS)

No No No

Active Directory
Federation Services (AD
FS)

No No No

Active Directory
Lightweight Directory
Services (AD LDS)

No No No

Active Directory Rights
Management Services
(AD RMS)

No No No

Application Server Yes Yes Yes

Dynamic Host
Configuration Protocol
(DHCP) Server

Yes No No

Domain Name System
(DNS) Server

Not applicable Not applicable Not applicable

Fax Server No No No

File and Storage Services No Yes Yes

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/sysprep-support-for-server-roles.md


SERVER ROLE
SYSPREP SUPPORT IN
WINDOWS SERVER 2008

SYSPREP SUPPORT IN
WINDOWS SERVER 2008 R2

SYSPREP SUPPORT IN
WINDOWS SERVER® 2012

Hyper-V™ Not applicable Yes

Not supported for a
virtual network on
Hyper-V™. You must
delete any virtual
networks before you
run the Sysprep tool.

Yes

Not supported for a
virtual network on
Hyper-V™. You must
delete any virtual
networks before you
run the Sysprep tool.

Network Policy and
Access Services (NPAS) ¹

No No No

Network Policy Routing
and Remote Access
Services

Yes Not applicable Not applicable

Printing and Document
Services (Print Services)
²

No Yes Yes

Remote Desktop
Services ³

Yes Yes Yes

Streaming Media
Services (available as a
download)

Not applicable Not applicable Not applicable

UDDI Services ⁴ No Not applicable Not applicable

Volume Activation
Services ⁵

Not applicable Not applicable Not applicable

Web Server (Internet
Information Services)

Yes

Not supported with
encrypted credentials in
the
Applicationhost.config
file.

Yes

Not supported with
encrypted credentials in
the
Applicationhost.config
file.

Yes

Not supported with
encrypted credentials in
the
Applicationhost.config
file.

Windows Deployment
Services

No No Yes

Not supported if
Windows Deployment
Services is initialized.⁶

Windows Server Update
Services (WSUS)

No No No



Related topics

⁽¹⁾ NPAS includes Health Registration Authority (HRA), Network Policy Server (NPS), and Host Credential
Authorization Protocol (HCAP).

⁽²⁾ In Windows Server 2008 R2, Print Services was renamed Printing and Document Services.

⁽³⁾ In Windows Server 2008 R2, Terminal Services was renamed Remote Desktop Services, which is also known
as Remote Desktop Session Host.

⁽⁴⁾ UDDI Services was not included in Windows Server 2008 R2.

⁽⁵⁾ Volume Activation Services is new for Windows Server 2012.

⁽⁶⁾ You must uninitialize the server that has the Windows Deployment Services role installed before you run
Sysprep. You can uninitialize a server by using the wdsutil /uninitialize-server command.

Sysprep (System Preparation) Overview

Sysprep Process Overview

Sysprep Command-Line Options

Sysprep (Generalize) a Windows installation



Apps
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Siloed provisioning packages (SPPs) Learn how to capture apps and/or settings in a siloed
provisioning package that you can deploy after applying an
image

Create a provisioning package with Windows desktop
applications

Create a provisioning package that can be added to a
Windows image

Sideload Apps with DISM How to sideload apps into a Windows image

Preinstall Apps Using DISM Learn how to preinstall apps in a Windows image

Export or Import Default Application Associations Learn how to migrate default app associations

Microsoft .NET Framework 3.5 Deployment Considerations How to deploy .Net 3.5 to support applications

This section covers how to preinstall apps in a Windows image

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-customize-apps.md


Siloed provisioning packages
7/12/2017 • 21 minutes to read • Edit Online

Performance comparison

PHASE/TASK
FACTORY PROCESS USING OFFICE
INSTALLER

FACTORY PROCESS USING SILOED
PROVISIONING PACKAGES

Apply image to the device 4 min. 4 min.

Install language packs – fr-fr & de-de 20 min. 20 min.

Run BCDBoot.exe negligible negligible

Run DISM to apply siloed Office en-us
base, Office fr-fr, and Office de-de
packages

N/A 3 min.

Run Sysprep & boot to Audit mode 10 min. 19 min.

Install Office 2016 en-us, fr-fr, & de-de 12 min. N/A

Run ScanState to capture Office into
provisioning package (for PBR)

10 min. N/A

(Optional – for low disk space) Single-
instancing Office files captured in the
provisioning package

7 min. N/A

Total 56-63 min. 46 min.

Overall application install time 45-65% faster

Siloed provisioning packages are a new type of provisioning package that is available for Windows 10, version
1607. Where traditional provisioning packages can capture all classic Windows applications and settings that are
installed with a Windows image, a siloed provisioning package can capture classic Windows applications
individually, drivers plus applications, settings, or capture add-ons for provisioning packages that were captured
previously. This provides more flexibility for the manufacturing process and helps reduce the time required to
build Windows-based computers in the factory.

The following table shows a comparison between using the Office installer vs using siloed provisioning packages
in a typical factory floor process. When using the siloed provisioning packages to install Office, the base Office
en-us package, along with the add-on Office fr-fr and Office de-de packages are captured using the User State
Migration Tool (USMT) ScanState.exe utility as a one-time process in the imaging lab. The data in the following
table was derived from a sample run on a VM with Windows 10, version 1607 desktop image. The actual time
savings at the factory floor will vary based on the number and size of applications being installed and the
hardware spec of physical devices. The time savings can be calculated by:

(time to Sysprep & boot to Audit mode + time to install applications + time to capture applications in a PPKG +
<optional> time to single-instance the PPKG) – (time to apply SPPs + time to Sysprep & boot to Audit mode)

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/siloed-provisioning-packages.md


Overall E2E deployment time 18-30% faster

PHASE/TASK
FACTORY PROCESS USING OFFICE
INSTALLER

FACTORY PROCESS USING SILOED
PROVISIONING PACKAGES

Work with siloed provisioning packages

<%Windows ADK install root%>\Deployment Tools\CopyDandI.cmd amd64 D:\ADKTools

xcopy D:\ADKTools\ W:\ADKTools\ /s

W:\ADKTools\amd64\WimMountAdkSetupAmd64.exe /Install /q

W:\ADKTools\amd64\DISM.exe /Apply-SiloedPackage /ImagePath:C:\ /PackagePath:e:\repository\SPP_base.spp 
/PackagePath:e:\repository\SPP_AddOn1.spp /PackagePath:e:\repository\SPP_AddOn2.spp

Create siloed provisioning packages

Configuration filesConfiguration files

To create and deploy siloed provisioning packages, you'll need to copy binaries from various folders in the ADK
install location that enable DISM and ScanState to work with SPPs. To facilitate the copy process, a script
(CopyDandI.cmd) is included in the Windows ADK when 'Deployment Tools' option is selected at install. Run the
script to copy all necessary files to an output folder, for example D:\ADKTools:

Before you use DISM, you'll need to copy the ADK tools again to a non-removable drive on the destination
device. Copying the file to a non-removable location avoids an error associated with installing DISM from
removable drives.

You'll then have to install the tools:

And then run DISM from that location:

You'll use ScanState to capture siloed provisioning packages from a booted Windows installation, and DISM to
apply SPPs to an applied Windows image from WinPE.

For the full walkthrough, see Lab 10: Add desktop applications and settings with siloed provisioning packages.

This section covers how to use ScanState.exe from the Windows desktop to create siloed provisioning packages
that contain applications, system settings, and drivers.

Recommendations:

Use a clean Windows installation. This prevents any potentially unwanted settings from being included in
the package.

Use virtual machines with checkpoints to quickly capture SPPs and then revert to a clean Windows
installation.

ScanState for Windows 10, version 1607 can now capture individual Windows desktop applications, and by
default only captures components from the Windows namespace. You can choose what gets captured by using
/apps by using configuration files. The configuration files that are installed with the Windows Assessment and
Deployment Toolkit, along with the User State Migration Tool (USMT), is here:



    

CONFIGURATION FILE USAGE

Config_AppsOnly.xml Captures Windows desktop applications and application
settings, without other non-relevant settings.

Config_SettingsOnly.xml Captures only system settings.

Config_AppsAndSettingsOnly.xml Captures both desktop applications and system settings.

Capture Windows desktop applicationsCapture Windows desktop applications

ScanState.exe /apps:-sysdrive /o /v:13 /config:Config_AppsOnly.xml /ppkg e:\repository\SPP_base.spp 
/l:C:\Scanstate.log

PARAMETER DESCRIPTION

/apps Tells ScanState to capture desktop applications.

-sysdrive (or +sysdrive) Tells ScanState to ignore all the folders outside the Windows
namespace. For example, if there is a folder c:\Folder, that
folder will be captured when running with /apps (or
/apps:+sysdrive) but it will not be captured when running
with /apps:-sysdrive.

The Windows namespace is the set of folders created by a
Windows installation, typically:

<%Windows ADK install root%>\User State Migration Tool\<arch>\

Customize these files to capture more or fewer components in the siloed provisioning package:

This is typically used to create an inventory of
applications that can be deployed in the final factory floor
process.

This is typically used to create an inventory of
applications that can be deployed in the final factory floor
process.

This can be used either while creating an inventory of
applications or as the last step in the factory floor
process.

The following example uses a configuration file to create a siloed provisioning package that contains Windows
desktop applications installed on a reference device:

Here are what the parameters for the above command mean:

Typically you use +sysdrive if you want to capture the
entire state of the machine into a single siloed
provisioning package; use –sysdrive if you want to
capture a single application (or a small group of
applications).

%systemdrive%\Users
%systemdrive%\ProgramData
%systemdrive%\Program Files
%systemdrive%\Program Files (x86)
%systemdrive%\Windows
%systemdrive%\Inetpub



/o Overwrites any existing data in the store. If not specified,
ScanState will fail if the store already contains data.

/v:13 Produces a MigLog.xml file that indicates what gets captured.

/diff Used with the /apps command option to capture application
add-on components relative to parent applications already
captured in siloed provisioning packages.

/l:ScanState.log Tells ScanState where to save log files. When used in
combination with /v:13 , ScanState will save MigLog.xml to
the same folder as ScanState.log

PARAMETER DESCRIPTION

Capture add-on componentsCapture add-on components

ScanState.exe /apps:-sysdrive /o /v:13 /config:Config_AppsOnly.xml /diff:e:\repository\SPP_base.spp /ppkg 
e:\repository\SPP_AddOn1.spp

Capture system settingsCapture system settings

ScanState.exe /apps:-appfiles /o /v:13 /config:Config_SettingsOnly.xml /ppkg 
%systemdrive%\Recovery\Customizations\systemsettings.spp

Capture system settings and Windows desktop applications in the same packageCapture system settings and Windows desktop applications in the same package

Capture driversCapture drivers

Types of driversTypes of drivers

You can use /diff to create a siloed provisioning package that captures components relative to parent applications
already captured in a siloed provisioning package. To use /diff, you must specify a SPP to compare the capture
against:

In a scenario where all deployment tasks for a device are complete and no Windows desktop applications have
been installed, you can use ScanState to capture system settings that have not been captured in any other SPP by
using Config_SettingsOnly.xml. The SPP can be placed directly into the recovery folder during capture for use
during Push-Button Reset.

The following example creates a siloed provisioning package of only system settings on a device, and places it
into the recovery folder :

Config_AppsAndSettingsOnly.xml is intended to capture Windows desktop applications and system settings that
are installed last-minute, so they can be placed in the recovery folder for use during PBR. For example, after a
device is booted into Audit mode on the factory floor, additional Win32 apps are installed and need to be
captured. In this case, you have two options:

Capture the additional apps and their relevant settings in one .spp using the /diff switch and
Config_AppsOnly.xml. Then capture the system settings in a separate .spp using the Config_SettingsOnly.xml.
Capture the additional apps and the system settings into one SPP using the /diff switch and
Config_AppsAndSettings.xml.

Config_AppsAndSettingsOnly.xml can also be used when you want to capture all apps and settings into one .spp
file, for use in an imaging lab or on the factory floor.

This section covers how to capture different types of drivers with ScanState.

ScanState for Windows 10, version 1607 captures 3rd-party drivers when you use the /drivers switch. By default,



Capture drivers by using patternsCapture drivers by using patterns

PATTERN DESCRIPTION

+n Selects drivers to be included based on inf name

-n Selects drivers to be excluded based on inf name

+p Selects drivers to be included based on publisher name

-p Selects drivers to be excluded based on publisher name

+c Selects drivers to be included based on class name or class
GUID

-c Selects drivers to be excluded based on class name or class
GUID

ScanState.exe /drivers:-n:* /drivers:+c:{4d36e96f-e325-11ce-bfc1-08002be10318} /ppkg 
e:\repository\drivers.spp

ScanState.exe captures all 3rd party drivers, but can also capture a subset of drivers based on .inf name,
manufacturer, or class. Some driver types, like filter drivers, may not be captured when using /drivers. In this case,
run Scanstate.exe with using /apps. The /drivers switch can also be used in combination with /apps in situations
where you want to capture drivers and their associated management software, such as for printers or video cards.

Hardware drivers

To capture drivers that are installed using an .inf file, use the /drivers switch. It’s not necessary to use the /apps
switch.

To capture drivers that are installed using another method (for example, a setup.exe file), use both /drivers and
/apps. This ensures that both the driver package and all Windows desktop applications and settings created by
setup for that driver are captured at the same time. To filter out other driver packages, use the arguments that are
in combination with /drivers.

Other drivers

Drivers such as filter drivers are not captured using the /drivers switch. To capture these types of drivers, use only
the /apps switch.

Because ScanState.exe captures all 3rd-party drivers by default when using ScanState.exe /drivers , if you want
to capture only certain drivers, you have to use patterns to narrow the number of captured drivers. ScanState
processes commands left to right, so the last pattern specified in a command will take precedence over previous
patterns in the same command. For example, if you want to only capture a specific set of drivers, you would first
exclude all drivers from capture, and then include specific drivers. Since the arguments are processed in order, the
drivers specified after the exclusion of all drivers will be captured.

Here are the patterns you can use to select which drivers will be captured:

The following example uses a pattern to create a siloed provisioning package that contains drivers of a specific
class.

Here are what the parameters for the above command mean:



PARAMETER DESCRIPTION

/drivers Tells ScanState to capture 3rd party drivers.

-n:* Removes all drivers from capture.

+c:{4d36e96f-e325-11ce-bfc1-08002be10318} Adds drivers of a particular class back into the capture.

/ppkg Specifies that the output will be a ppkg. This is required for
use with /drivers.

Capture Applications and Drivers in the same SPPCapture Applications and Drivers in the same SPP

ScanState.exe /drivers:-n:* /drivers:+c:{4d36e96f-e325-11ce-bfc1-08002be10318} /apps:-sysdrive /o /v:13 
/config:Config_AppsOnly.xml /ppkg e:\repository\apps_and_drivers.spp

Apply siloed provisioning packages

LimitationsLimitations

You can use the /apps and /drivers switches in the same command to create SPPs that contain both applications
and drivers.

The following is an example of capturing a siloed provisioning package that contains Windows desktop
applications and drivers with only with a specific class GUID.

This section covers how to use DISM from WinPE to apply siloed provisioning packages.

DISM supports applying siloed provisioning packages to a Windows image through a new DISM provider, which
is only available through the Windows ADK. You can get this version of DISM by using CopyDandI.cmd.

The functionality for applying siloed provisioning packages using DISM is limited to support the following
scenarios:

The DISM SiloedPackageProvider is not included in the Windows image, nor is it included in Windows PE,
version 1607. The Windows ADK version of DISM must be installed on the servicing host, and then launch
DISM.exe from the Windows ADK installed location. On a host that is not supported by Windows ADK
installer, such as Windows PE, the required binaries can be copied to the host using the CopyDandI.cmd script
in <%Windows ADK install root%>\Deployment Tools.
DISM only supports applying siloed provisioning packages to a Windows image that has been applied at the
root of a disk volume on a device, e.g. “C:\”. It does not support applying siloed provisioning packages to a
Windows image that is mounted for offline servicing. The typical scenario is booting the device to Windows
PE, and running the Windows ADK version of DISM in Windows PE to apply siloed provisioning packages
after the Windows image has been applied to the device.
The DISM command to apply siloed provisioning packages to a Windows image (DISM Apply-SiloedPackage)
can be run only once. All of the siloed provisioning packages to be applied to the Windows image must be
specified in the right order in a single command operation. The order of the installation will be preserved, so
the packages can be restored in the same order during PBR.
If additional siloed provisioning packages need to be applied to a Windows desktop image that has already
gone through the entire deployment process with using DISM to apply a set of siloed provisioning packages,
the image can be Sysprep generalized and captured as a new model image. DISM can then be run again to
apply more siloed provisioning packages when this new model image is deployed onto other devices.
Siloed provisioning packages must be applied to the same operating system architecture that they were
captured on. For example, capturing an app on an x86 operating system in an .spp and applying it to an x64



Use DISM to apply siloed provisioning packagesUse DISM to apply siloed provisioning packages

DISM.exe /Apply-SiloedPackage /ImagePath:C:\ /PackagePath:e:\repository\BaseSPP.spp 
/PackagePath:e:\repository\SPP_AddOn1.spp /PackagePath:e:\repository\SPP_AddOn2.spp

Saving drive space: single-instancing is automatic on compact OSSaving drive space: single-instancing is automatic on compact OS

DISM.exe /ImagePath:C:\ /Apply-CustomDataImage /CustomDataImage:C:\Recovery\Customizations\myApp.spp 
/SingleInstance 

Push-button resetPush-button reset

operating system is not supported.
Siloed provisioning packages can be applied to other editions of Windows. For example, an application
captured on Windows 10 Enterprise can be applied to Windows 10 Pro.
Windows 10, Version 1607, does not support applying siloed provisioning packages on a generalized image
that is set to boot into Audit mode. If booting into Audit mode is required, use Unattend.xml to reseal to Audit
mode.

The following example uses DISM that is created by CopyDandI.cmd to apply a base SPP, as well as two add-on
SPPs:

For syntax, see DISM Image Management Command-Line Options, or run DISM.exe /Apply-SiloedPackage /?

from the target location of CopyDandI.cmd.

All of the siloed provisioning packages applied by DISM will be placed in
%systemdrive%\Recovery\Customizations folder.

When DISM applies siloed provisioning packages to the OS image that has been applied as Compact OS on a
device, by default the packages will be applied with application files single-instanced (using WIMBoot v1 style) on
the device.

To single-instance your siloed provisioning packages on devices without Compact OS image, use DISM /Apply-
CustomDataImage while the device is booted into Windows PE.

The /Apply-SiloedPackage command works with both traditional provisioning packages and siloed provisioning
packages (.spp). -If you create provisioning packages in audit mode, you can choose to single-instance contents
by using the DISM /Apply-CustomDataImage /SingleInstance command. To learn more see Lab 1g: Make
changes from Windows (audit mode).

When using ScanState to capture traditional provisioning packages, only one package with all the applications
and system settings can be placed in %systemdrive%\Recovery\Customizations folder. During push-button reset
(PBR), the single provisioning package is processed to restore the applications and system settings.

Beginning with Windows 10, version 1607, applications can be captured in multiple siloed provisioning packages
and system settings can also be captured in a separate siloed provisioning package. As a result, PBR is enhanced
to allow multiple siloed provisioning packages to be applied, in the preserved order in which they were applied
using Dism /Apply-Siloed Package. The packages can then be queued and processed in the right order during
PBR to restore the applications and system settings captured in these packages. If the packages were applied
using single-instancing, it will be honored when PBR restores them to the device.

Single-instancing can occur automatically if Compact OS is used, or manually.

If you use WinPE, then applying an image as Compact OS, then apply SPPs to it, Windows automatically
single-instances the contents of the package. To learn more, see Lab 10: Add desktop applications and settings
with siloed provisioning packages (SPPs)
If you create provisioning packages in audit mode, you can choose to single-instance the contents by using the



Scenarios for using siloed provisioning packages

Capturing and applying independent applicationsCapturing and applying independent applications

DISM /Apply-CustomDataImage /SingleInstance command. To learn more, see Lab 9: Make changes from
Windows (audit mode).

This section covers scenarios using siloed provisioning packages.

A Microsoft partner can capture siloed provisioning packages of individual classic Windows applications while in
the imaging lab, and then install any combination of siloed provisioning packages in a customized order at factory
floor. For example, a partner could capture siloed provisioning packages for a PDF reader application and an
antivirus program, and then install those program packages on a specific device model at factory floor.

1. Clean install Windows 10, version 1607 on a reference device.
2. At the desktop, install antivirus software.
3. Run ScanState.exe to capture an antivirus software siloed provisioning package.
4. Wipe and clean install the reference device
5. Repeat steps 2-4 for the PDF reader application.

Alternatively, the siloed provisioning packages can be captured using a VM instead of a physical device:

1. Create a VM and boot it online using a Windows 10, version 1607 VHD/VHDX image.
2. Create a checkpoint of the clean OS installation on the VM.
3. At the desktop, install the antivirus software.
4. Run ScanState.exe to capture an antivirus software siloed provisioning package.
5. Revert the VM to the checkpoint.
6. At the desktop, install the PDF reader application.
7. Run ScanState.exe to capture the PDF reader application siloed provisioning package.



Capturing and applying applications with dependenciesCapturing and applying applications with dependencies

1. On the target device, boot to Windows PE, and apply the Windows 10, version 1607, desktop image.
2. While in Windows PE, run DISM /Apply-SiloedPackage command with the PDF reader and antivirus program

packages to apply the application files in the packages onto the applied desktop image.
3. Complete the rest of the offline customization tasks.
4. Go through first boot and run through specialize to get to Audit mode.
5. Complete the online customization/configuration tasks.
6. (Optional) While in Audit mode, run ScanState to capture only the system settings into siloed provisioning

package and place it in the recovery folder.
7. Complete the rest of the factory floor tasks and shutdown/seal the product.

A Microsoft partner can use diff capture support to generate supplemental (or add-on) siloed provisioning
packages that are relevant to a previously captured parent siloed provisioning package. The siloed provisioning
packages can then be installed on devices at factory floor, with parent package first followed by combinations of
supplemental packages in the customized order.

For example. you could capture the antivirus program base siloed provisioning package, and then diff capture an
antivirus program patch (MSP) siloed provisioning packages using the base package as the parent. At the factory
floor, the antivirus program base package and a selection of patch packages, specified in the desired order, can
then be installed on a specific model device.



1. Clean install Windows 10, version 1607 on a reference device.
2. At the desktop, install the antivirus application.
3. Sysprep generalize and capture the OS image from the reference device.
4. Run ScanState.exe to capture your antivirus base siloed provisioning package.
5. Install antivirus software program patches.
6. Run ScanState.exe to diff capture the antivirus software program patches in a siloed provisioning package

using the antivirus base package.
7. Either continue using the diff switch with the already captured base and program patches packages to capture

another antivirus program patch siloed provisioning package:

8. Or wipe and start clean again on the reference device to diff capture another antivirus softare siloed
provisioning package:

a. Install additional antivirus software program patches.
b. Run ScanState.exe to diff capture the additional program patches siloed provisioning package using

antivirus base package and the first program patches SPPs.

a. Wipe and clean install the reference device using the OS image captured in step 3.
b. At the desktop, install antivirus software.
c. Run ScanState.exe to diff capture antivirus software program patches siloed provisioning package using

the antivirus base package captured in step 4.



Capturing an Application with associated device driversCapturing an Application with associated device drivers

9. Repeat either step 7 or 8 to capture any additional antivirus program patch siloed provisioning packages.

Alternatively, the siloed provisioning packages can be captured using VM instead of a physical device. When
using a VM:

1. Create a VM and boot it online using a Windows 10, version 1607 VHD/VHDX image.
2. At the desktop, install the antivirus application.
3. Create a checkpoint of the OS installation with the antivirus software on the VM.
4. Run ScanState.exe to capture your antivirus base siloed provisioning package.
5. Install antivirus software program patches.
6. Run ScanState.exe to diff capture the antivirus software program patches in a siloed provisioning package

using the antivirus base package.
7. Either continue using diff switch with the already captured base and language packages to capture another

Office 2016 language siloed provisioning package:

8. Or restart the VM to diff capture another antivirus software program patch siloed provisioning package:

9. Repeat either step 7 or 8 to capture any additional antivirus program patch siloed provisioning packages.

a. Install additional antivirus software program patches.
b. Run ScanState.exe to diff capture the additional program patches siloed provisioning package using

antivirus base package and the first program patches SPPs.

a. Revert the VM to the checkpoint generated in step 3.
b. At the desktop, install antivirus softare.
c. Run ScanState.exe to diff capture antivirus software program patches siloed provisioning package using

the antivirus base package captured in step 4.

Siloed provisioning packages can also capture applications with dependencies. For example, to capture multiple
apps that depend on .NET Framework:

1. Create a VM and boot it online using a Window 10, version 1607 VHD/VHDX image.
2. Install .NET Framework.
3. Create a checkpoint of the of the OS installation with .NET Framework.
4. Capture a base .spp, for example, DotNet.spp.
5. Install App1, capture it as App1.spp, using /diff:DotNet.spp.
6. Revert the VM to the checkpoint created in Step 3.
7. Install App2, capture it as App2.spp, using /diff:DotNet.spp.

To preserve the dependency, apply the packages in this order :

DotNet.spp, App1.spp, App2.spp

-or-

DotNet.spp, App2.spp, App1.spp

The important point is DotNet.spp must be applied first.

A Microsoft partner can capture a siloed provisioning package of individual classic Windows applications that
have hardware drivers associated with them while in the imaging lab, and then install any combination of siloed
provisioning packages in a customized order at factory floor. For example, a partner could capture a siloed
provisioning package for Microsoft Mouse and Keyboard Center that contains both application and driver files.

1. Clean install Windows 10, version 1607 on a reference device.
2. At the desktop, install Microsoft Mouse and Keyboard Center.
3. Run ScanState.exe to capture Mouse and Keyboard Center siloed provisioning package, using both the /apps



Capturing and applying applications for BTO modelCapturing and applying applications for BTO model

and /drivers switches.
4. Wipe and clean install the reference device
5. On the target device, boot to Windows PE, and apply the Windows 10, version 1607, desktop image.
6. While in Windows PE, run DISM /Apply-SiloedPackage command with the Microsoft Mouse and Keyboard

Center package to apply the application and driver files in the packages onto the applied desktop image.
7. Complete the rest of the offline customization tasks.
8. Go through first boot and run through specialize to get to Audit mode.
9. Complete the online customization/configuration tasks.

10. (Optional) While in Audit mode, run ScanState to capture only the system settings into siloed provisioning
package and place it in the recovery folder.

11. Complete the rest of the factory floor tasks and shutdown/reseal the product.

In the BTO model, last minute customizations on the factory floor could include installing additional classic
Windows applications on to a customized image. If any classic Windows applications were not captured in siloed
provisioning packages in the imaging lab, the factory floor process will then include the tasks shown in the
following diagram:

1. On the target device, boot to Windows PE, and apply Windows 10, version 1607 desktop image.
2. While in Windows PE, run DISM /Apply-SiloedPackage command specifying all the siloed provisioning

packages to apply the application files in the packages onto the applied desktop image.
3. Complete the rest of the offline customization tasks.
4. Go through first boot and run through specialize to get to Audit mode.
5. Online install of classic Windows applications in Audit mode.
6. Complete the online customization/configuration tasks.
7. Run ScanState.exe to diff capture the applications installed in step 5 into a single siloed provisioning package,

using the siloed provisioning packages for the applications already installed in the base model image as a
reference.

8. (Optional) Run ScanState to capture only the system settings into siloed provisioning package and place it in
the recovery folder.

9. (Optional) Boot the device to Windows PE, and run the DISM command to single-instance the application files
in the siloed provisioning package captured in step 7.

10. Complete the rest of the factory floor tasks and shutdown/seal the product.

Preferred process guidelines for BTO model: As described in the preceding steps, the diff capture support
provides flexibility to allow installing a classic Windows applications at the factory floor as last minute
customizations. However, the diff capture operation may take some time to complete, depending on the number
and the size of the siloed provisioning packages it needs to diff against. There is also overhead cost for the other
steps in the process. Therefore, the preferred guideline for installing a classic Windows application in the BTO
model is to incur the onetime cost of capturing the siloed provisioning packages for these applications in the
imaging lab. They can then be applied on the factory floor as needed for last-minute customizations.



Related topics
WinPE: Create USB bootable drive

Lab 9: Make changes from Windows (audit mode)

Lab 10: Add desktop applications and settings with siloed provisioning packages (SPPs)



Create a provisioning package with Windows desktop
applications
5/11/2018 • 2 minutes to read • Edit Online

Step 1: Prepare a copy of ScanState

Step 2: Install a Windows desktop application in audit mode

Step 3: Save your updates to a provisioning package

Here's how to add Windows desktop applications and other data by using audit mode. You'll recapture these
Windows desktop applications and data into a provisioning package by using the ScanState tool. As new builds of
Windows are released, and as you prepare for different markets, you can mix and match the Windows images and
provisioning packages, rather than rebuilding and customizing the images each time.

Once you’ve captured the provisioning package, you can add it to your image by using Windows ICD.

The recovery tools also use this provisioning package. When your users refresh the device (often used in case of
device failure) or reset the device (often used to clean a device for a new user), the device keeps their installed
Windows updates, plus the updates in this provisioning package.

1. On your technician PC, plug in another USB key or drive.
2. In File Explorer, create a new folder on the USB key, for example: D:\ScanState x64.
3. Copy the files from "C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\User

State Migration Tool\amd64" into D:\ScanState x64. You don't need to copy the subfolders.
4. Copy the files from "C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment

Kit\Windows Setup\amd64\Sources" into D:\ScanState x64. There will be duplicate files, it's OK to skip
copying these files. You don't need to copy the subfolders.

Use this method to install Windows desktop applications and any drivers that require installation (as opposed to
.inf-style drivers.)

1. On the reference device, install the image that was created in Lab 1a. If the image is already installed, start the
reference device. Either the Languages or the Hi there screen appears.

2. Press Ctrl+Shift+F3 to enter Audit mode. The device reboots to the desktop, and the System Preparation Tool
(Sysprep) appears. You can close Sysprep.

3. Ensure that your customizations from Lab 1a are available. To do this, in Settings under System > About,
you should see the technical support info that you entered earlier appear (company name, support phone
number, and support website).

4. Install a Windows desktop application application. For example, to install Office 2013, put in a USB key with
the Office installation program, open File Explorer and navigate to oemsetup.en-us.com . To learn more,
download the Office OPK Update image from the Office OPK Connect site.

Capture your updates into a provisioning package

First, plug the USB key with ScanState into the reference device.

If you'd like to keep a copy of this provisioning package and deploy it to other devices, save the file
to a USB drive.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/combine-provisioning-packages-into-a-new-image.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/install-windows-automatically-from-a-usb-drive-sxs


Step 4: Prepare the device for an end user

D:\ScanState_x64\scanstate.exe /apps /ppkg D:\Provisioning\ClassicApps.ppkg /o /c /v:13 
/l:D:\ScanState.log

D:\ScanState_x64\scanstate.exe /apps /ppkg C:\Recovery\Customizations\usmt.ppkg /o /c /v:13 
/l:D:\ScanState.log

Capture the changes into the provisioning package, and save it on the USB key.

where D is the letter of the drive with ScanState.

For build-to-order devices, you can wrap up these changes and prepare the device for immediate
delivery. Capture the changes to provisioning package, and save it as
C:\Recovery\Customizations\usmt.ppkg:

C:\Windows\System32\Sysprep\sysprep /oobe /shutdown

For build-to-order devices, prepare the device for the end user : Right-click Start, select Command
Prompt (Admin), and run the following command:

The Sysprep tool reseals the device. This process can take several minutes. After the process completes, the
device shuts down automatically. You can now send the device to the customer.



 

Sideload Apps with DISM
5/11/2018 • 15 minutes to read • Edit Online

HOW TO? DESCRIPTION

You can sideload line-of-business (LOB) Windows apps to a Windows 10 by using PowerShell or Deployment
Image Servicing and Management (DISM). Windows apps include:

Universal Windows apps devices: Windows apps built upon the Universal Windows app platform, targeting
the universal device family.
Universal Windows 8 apps: Windows apps that target Windows 8.x.

Typically, Windows apps are available only through the Microsoft Store. You can submit LOB Windows apps to
the Microsoft Store and make them available outside of your enterprise. However, you can also develop Windows
apps for use only within your enterprise and add them to Windows devices you manage through a process we
call sideloading. Sideloaded apps do not have to be certified by or installed through the Microsoft Store.

Here’s what you’ll need to know in order to sideload apps:

Understand Sideloading Concepts Introduces some basic concepts you’ll need to know
about sideloading apps.

Configure PCs for Sideloading Requirements Shows the requirements to be met in order to sideload
apps on devices running different Windows Editions.
Includes how to use Group Policy to configure your
enterprise PCs for sideloading apps.

Configure PCs for Developing Microsoft Store Apps Shows you how to configure your PC to have a developer
license that does not expire. The PC can be used to
develop Microsoft Store apps or enterprise apps that will
be added to your enterprise devices.

Add Apps Shows you how to sideload apps that you develop.

Add Multiple Languages for Apps Shows you how to prepare a multi-lingual image, sign-in
to the image, install any desired app resource packs
(including language) and then use Copy Profile to capture
the image.

Inventory Apps Shows you how to list the LOB apps installed on the
devices in your enterprise or in an offline Windows image.

Remove Apps Shows you how to remove individual instances of an app
or remove the provisioning setting of an app.

Understand Sideloading Concepts

Windows apps differ from Windows desktop applications in their design and in the way users can interact with

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/sideload-apps-with-dism-s14.md


   Configure PCs for Sideloading Requirements

them. To learn more about Windows apps , see what is a Microsoft Store App?.

You cannot sideload an app that has been downloaded from the Microsoft Store. To install Windows apps that are
not part of your business line, you must use the Microsoft Store. To learn more, see Managing Client Access to
the Microsoft Store.

LOB Windows apps that are not signed by the Microsoft Store can be sideloaded or added to a PC in the
enterprise through scripts at runtime on a per-user basis. They can also be provisioned in an image by the
enterprise so that the app is registered to each new user profile that's created on the PC. The requirements to
sideload the app per-user or in the image are the same, but the Windows PowerShell cmdlets you use to add, get,
and remove the apps are different. This topic provides steps for both methods.

Before you can sideload LOB Windows apps that are not signed by the Microsoft Store, you will need to configure
the PC, see Configure PCs for Sideloading Requirements.

When You’re Developing LOB Windows apps for Your Enterprise

LOB Windows apps that are not signed by the Microsoft Store must be cryptographically signed. The apps can
only be installed on a computer that trusts the signing certificate.

For more information about how to sign an app and using certificates, see App Packaging Tools.

However, you can use a developer license to add apps that are in development to your PC. For more information
about testing apps that are in development, see Get a Developer License.

You can use Group Policy to configure your domain-joined PCs to have a developer license that does not expire to
support app development. Once the PCs are configured, you won’t need to connect to the Internet to obtain or
renew a license. See Configure PCs for Developing Microsoft Store Apps for more information.

Until the device meets all of the sideloading requirements, app tiles on the Start menu will show an "X" in the
bottom-right corner to indicate that a problem is preventing the app from running.

In some cases, part of those requirements includes using a sideloading product key. This key provides use rights
needed to deploy Windows 8, or Windows 8.1 apps directly to devices without having to install them through the
public Microsoft Store.

Before you can add and run sideloaded LOB Windows apps that are not signed by the Microsoft Store you must
configure your device based on the following conditions:

1. For those devices that are joined to a workgroup, you must:

Activate the sideloading product key on the device.

And enable the Allow all trusted applications to install Group Policy setting. See Use Group
Policy to configure your enterprise PCs for sideloading apps.

This applies to:

Windows 10 Enterprise
Windows 8.1 Enterprise
Windows 8 Enterprise
Windows Embedded 8.1 Industry Enterprise
Windows 8.1 Pro Update

2. For those devices that will be joined to an Active Directory domain, you must:

Join the device to an Active Directory domain.

http://go.microsoft.com/fwlink/?LinkId=264710
http://go.microsoft.com/fwlink/?LinkId=264712
http://go.microsoft.com/fwlink/?LinkId=242873
http://go.microsoft.com/fwlink/?LinkId=241313


And enable the Allow all trusted applications to install Group Policy setting. See Use Group
Policy to configure your enterprise PCs for sideloading apps.

This applies to:

Windows 10 Enterprise
Windows 8.1 Enterprise
Windows 8 Enterprise
Windows Embedded 8.1 Industry Enterprise
Windows 8.1 Pro Update
Windows Server 2016 Technical Preview
Windows Server 2012 R2 Update
Windows Server 2012

3. For those devices that will require a sideloading product key, whether the device is domain-joined or a
member of a workgroup, you must:

Activate the sideloading product key on the device.

And enable the Allow all trusted applications to install Group Policy setting. See Use Group
Policy to configure your enterprise PCs for sideloading apps.

This applies to:

Windows 10 Pro
Windows RT 8.1
Windows 8.1 Pro
Windows RT
Windows 8 Pro
Windows Embedded 8.1 Industry Pro

4. For certain Windows Embedded 8 Industry devices, you no longer need a sideloading product key whether
the device is domain-joined or a member of a workgroup. In this case, you must:

Enable the Allow all trusted applications to install Group Policy setting on the device.
For more information about sideloading on Windows Embedded 8 Industry, see Enterprise guide to
installing Universal Windows 8 apps on Windows Embedded 8 Industry.

This applies to:

Windows Embedded 8.1 Industry Pro Update
Windows Embedded 8.1 Industry Enterprise Update

   Use Group Policy to configure your enterprise PCs for sideloading apps

1. Open the Group Policy Management Editor for a domain—based Group Policy Object (GPO) to which you
will be applying the group policy setting, as specified below, to your selected PCs.

Note
The steps provided in this procedure assume you understand the basics of Group Policy design and
operations. To administer domain—based Group Policy on a Windows 8.1 PC, you will need to install the
Group Policy Management Console which is installed with the Remote Server Administration Tools for
Windows 8.1. For more information about Group Policy, see Group Policy for Beginners and the Group
Policy Techcenter.

2. Click to expand Computer Configuration, Administrative Templates, Windows Components, and
then App Package Deployment.

http://go.microsoft.com/fwlink/?LinkId=391812
http://go.microsoft.com/fwlink/?LinkId=299896
http://go.microsoft.com/fwlink/?LinkId=330723
http://go.microsoft.com/fwlink/?LinkId=330564


  Configure PCs for Developing Windows apps

3. Double-click the Allow all trusted apps to install setting.

4. In the Allow all trusted apps to install window, click Enabled and then click OK.

Setting the Group Policy to allow trusted applications updates the following registry setting:
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Appx\AllowAllTrustedApps = 1

To activate a sideloading product key

Slmgr /ipk <sideloading product key>

slmgr /ato ec67814b-30e6-4a50-bf7b-d55daf729d1e

1. Open a command prompt with administrator privileges and type the following to add the sideloading
product key:

Where <sideloading product key> is the 25 digit key to enable sideloading on the computer.

2. Activate the sideloading key by typing:

Note
The activation GUID is not the same as the sideloading product key. The activation GUID will always be
ec67814b-30e6-4a50-bf7b-d55daf729d1e.

For more information about sideloading product keys, see the Windows 8 Licensing Guide.

You can configure your PCs to have a developer license that does not expire. Once the PCs are configured, you
won’t need to connect to the Internet to obtain or renew a license. Your computer must be a member of a domain
and be running either of the following operating systems:

Windows 10 Enterprise
Windows 8.1 Enterprise
Windows 8 Pro

Note
To enable sideloading on Windows 8 Pro device, you must use a sideloading product activation key. For more
information see, Configure PCs for Sideloading Requirements

To configure your enterprise PCs with a developer license

1. Open the Group Policy Management Editor for a domain—based Group Policy Object (GPO) to which you
will be applying the group policy settings, as specified below, to your selected PCs.

Note
The steps provided in this procedure assume you understand the basics of Group Policy design and
operations. To administer domain—based Group Policy on a Windows 8.1 PC, you will need to install the
Group Policy Management Console which is installed with the Remote Server Administration Tools for
Windows 8.1. For more information about Group Policy, see Group Policy for Beginners and the Group
Policy Techcenter.

2. Click to expand Computer Configuration, Administrative Templates, Windows Components, and
then App Package Deployment.

3. Double-click the Allow development of Windows apps without installing a developer license
setting.

http://go.microsoft.com/fwlink/?LinkId=267899
http://go.microsoft.com/fwlink/?LinkId=299896
http://go.microsoft.com/fwlink/?LinkId=330723
http://go.microsoft.com/fwlink/?LinkId=330564


 Add Apps

4. In the Allow development of Windows apps without installing a developer license window, click
Enabled and then click OK.

5. Double-click the Allow all trusted apps to install setting.

6. In the Allow all trusted apps to install window, click Enabled and then click OK.

Setting the Group Policy to allow development of Windows apps without installing a developer license updates
the following registry setting:
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Appx\AllowDevelopmentWithoutDe
vLicense = 1

Setting the Group Policy to allow trusted applications updates the following registry setting:
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Appx\AllowAllTrustedApps = 1

There are two ways to add apps. A user can add an app package, which will make the app available to just that
user. Or the app can be installed in the Windows image, which will make the app available to every user of the
Windows image at first logon or at the next logon, if the user account is already created. This second case is
referred to as provisioning an app package.

Add an App Package

You can install an app package (.appx or .appxbundle) on a per-user basis by using the add-appxpackage
PowerShell cmdlet. There is no limit to the number of LOB apps you can add for each user.

Add a LOB app to a user account

add-appxpackage C:\app1.appx -DependencyPath C:\winjs.appx

At the Windows PowerShell prompt on a Windows 8 or Windows Server 2012 computer, add an .appx (or
.appxbundle) file package. Include any required dependency app packages when you add the app. For
example, type:

For more information, see App Installation Cmdlets in Windows PowerShell.

Add a provisioned LOB app to a Windows image

Apps that are installed in the Windows image are called provisioned apps. Provisioned apps are staged in the
image and are scheduled to be installed for every user of the Windows image at first logon or at the next logon, if
the user account is already created.

You can add these apps to a Windows image when you boot into audit mode before you deploy the image by
using the DISM app provisioning commands. For more information about audit mode, see Audit Mode
Overview.

Provisioned apps are specific to the PC and will not roam with the user. You can only install 24 provisioned apps
in an image.

On a Windows image that has already been deployed, you should instead use the Add-AppxPackage cmdlet in
PowerShell. If you do use the DISM app provisioning commands on a deployed Windows image with active
users, you should log all users off of the image, so that you are the only user logged on, before you run the
command.

Note
On Windows 8, to update a provisioned app, you must first remove the provisioned app and then deploy the new

http://go.microsoft.com/fwlink/?LinkId=393919


 Add Multiple Languages for Apps

version of the app. The update will then be applied the next time each user logs in.

On Windows 8.1 and newer, you no longer need to remove the provisioned app prior to deploying the new
version of the provisioned app.

Add a provisioned LOB app to a Windows image

DISM /Online /Add-ProvisionedAppxPackage /PackagePath:C:\App1.appx /SkipLicense

Add-AppxProvisionedPackage -Online -FolderPath C:\Appx -SkipLicense

Use the Deployment Image Servicing and Management (DISM) command-line tool or PowerShell cmdlets
to add the LOB app without a Microsoft Store license. For example, at an elevated command prompt, type:

Or, at a Windows PowerShell prompt, type:

For more information, see DISM App Package (.appx or .appxbundle) Servicing Command-Line Options or
DISM Cmdlets. For information about DISM supported platforms, see DISM Supported Platforms.

Note
The computer does not have to be joined to a domain or have an activated sideloading product key before you
install provisioned LOB apps. However, the apps will not run until the computer meets this sideloading
requirement. For more information, see Customize the Start Screen.

Update a provisioned LOB app once it is has been added to a Windows image

On Windows 8, to update a provisioned app, you must first remove the provisioned app and then deploy the new
version of the app. The update will then be applied the next time each user logs in.

On Windows 8.1 and newer, to update a provisioned app, you will need to update the app for each user that has
signed on to the Windows image provisioned with the app:

Update a provisioned LOB app to a Windows image

Add-AppxPackage -Path App1_1.0.0.2 -DependencyPath C:\appx\WinJS.appx

Get-AppxPackage | Out-GridView

1. Use the PowerShell to update the LOB app without a Microsoft Store license. This must be done for each
user that has signed in to the PC running the Windows image. For example, if you have installed the
original version of the app, 1.0.0.0, that now needs to be updated to version 1.0.0.1, then at a PowerShell
session, type:

Where c:\appx\WinJS.appx  is the path to the dependency package.

2. Once you have updated your app, you can verify the version of the updated app. From a PowerShell
session, type:

To prepare a multi-lingual image, sign-in to the image, install any desired app resource packs (including language)
and then use Copy Profile to capture the image.

Preparing a multi-lingual image for an app

http://go.microsoft.com/fwlink/?LinkId=393917
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/customize-the-start-screen


<?xml version="1.0" encoding="utf-8"?>
<unattend xmlns="urn:schemas-microsoft-com:unattend">
    <settings pass="specialize">
        <component name="Microsoft-Windows-Shell-Setup" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
            <CopyProfile>true</CopyProfile>
            <RegisteredOrganization />
            <RegisteredOwner />
        </component>
    </settings>
    <cpi:offlineImage cpi:source="catalog:d:/desktop/x86 clgs/install_windows vista ultimate.clg" 
xmlns:cpi="urn:schemas-microsoft-com:cpi" />
</unattend>

Sysprep.exe /generalize /oobe /reboot /unattend:C:\unattend.xml

1. Create an unattend.xml with the following contents to c:\unattend.xml:

Note
See Change the language used in apps for information about setting the language and installing updates
from the Microsoft Store.

2. Sign-in to a local administrator user account from OOBE on clean image.

Important
When adding a specific language to a Windows app, you would also want to Add Language Packs to
Windows for the same languages as you did for the Windows app.

3. Add the desired languages to the current user ’s language preference list.

4. Install app updates using a Microsoft Store account (MSA account)

a. Sign-in to the Microsoft Store with an MSA account.

Note
Microsoft Store only. Don’t convert the local account to MSA.

If you do not have an MSA account, you can update apps without a Microsoft Store account.

b. Check for updates and install new language resource packs.

c. Sign out of the Microsoft Store and remove the MSA account.

5. Open an elevated command prompt and type:

Then press enter.

6. You should see the PC boot to OOBE. Any languages that you have added prior to Copy Profile should be
present at this point.

Install app updates without using a Microsoft Store account (MSA account)

1. After the PC has finished installing, open an elevated command prompt.

2. Type Start ms-windows-store:Updates

3. You will see the Microsoft Store Updates page. You should see the pending updates displayed.

4. Tap Install to install the updates.

http://go.microsoft.com/fwlink/?LinkId=389195


 

 

Inventory Apps

Remove Apps

You can list the LOB apps installed in on offline or online Windows image and get additional information about
the packages.

List LOB Apps per user account

Get-AppxPackage -AllUsers

Get-AppxPackage -Name Package1 -User domain\username

Get-AppxPackageManifest -Package Package1

(Get-AppxPackage -Name "*WinJS*" | Get-AppxPackageManifest).package.applications.application.id

1. You can get a list of the Windows apps installed for a specific user account on the computer. You must open
PowerShell with administrator privileges to list the packages for a user other than the current user. For
example, at the PowerShell prompt, type:

2. You can get a list of packages installed for a specific user. You must open PowerShell with administrator
privileges to list the packages for a user other than the current user. For example, at the PowerShell
prompt, type:

3. You can also get the manifest of an app package (.appx) which includes information such as the package ID.
For example, at the PowerShell prompt, type:

4. You can use the pipeline to get the manifest for an app package (.appx) if you don’t know the full name of
the package. For example, at the PowerShell prompt, type:

List LOB apps that are provisioned in a Windows image

Get-AppxProvisionedPackage -Path c:\offline

DISM.exe /Image:C:\test\offline /Get-ProvisionedAppxPackages

You can get a list of the packages that are provisioned in a Windows image that will be installed for each
new user by using Dism.exe or PowerShell. For example, at a PowerShell prompt, type:

Or, at a command prompt, type:

For more information, see Take Inventory of an Image or Component Using DISM.

You can remove individual instances of an app, or remove the provisioning setting of an app.

Remove LOB apps per user account

Remove-AppxPackage Package1

You can remove a single app for the current user only. For example, at a command prompt, type:



Related topics

Remove provisioned LOB apps in a Windows image

Remove-AppxProvisionedPackage -Online -PackageName MyAppxPkg

DISM.exe /Online /Remove-ProvisionedAppxPackage /PackageName:microsoft.app1_1.0.0.0_neutral_en-
us_ac4zc6fex2zjp

When you remove a provisioned app, the app will not be installed for new user accounts. For the currently
logged in user and other user accounts that are active on the computer, the app will not be removed from
those accounts. The app will need to be uninstalled for those existing apps.

For example, to remove a provisioned LOB app, MyAppxPkg, from a Windows image, at an elevated
PowerShell prompt, type:

Or, at a command prompt, type:

App Installation Cmdlets in Windows PowerShell

DISM App Package (.appx or .appxbundle) Servicing Command-Line Options

App Packaging Tools

AppX Module Cmdlets

Change the language used in apps

DISM Cmdlets

DISM Supported Platforms

Enterprise guide to installing Universal Windows 8 apps on Windows Embedded 8 Industry

Get a Developer License

Group Policy for Beginners

Group Policy Techcenter

Customize the Start Screen

Managing Client Access to the Microsoft Store

Microsoft Volume Licensing

Remote Server Administration Tools for Windows 8.1

What is a Microsoft Store App?

Windows 8 Licensing Guide

http://go.microsoft.com/fwlink/?LinkId=243074
http://go.microsoft.com/fwlink/?LinkId=242873
http://go.microsoft.com/fwlink/?LinkId=393919
http://go.microsoft.com/fwlink/?LinkId=389195
http://go.microsoft.com/fwlink/?LinkId=393917
http://go.microsoft.com/fwlink/?LinkId=391812
http://go.microsoft.com/fwlink/?LinkId=241313
http://go.microsoft.com/fwlink/?LinkId=330723
http://go.microsoft.com/fwlink/?LinkId=330564
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/customize-the-start-screen
http://go.microsoft.com/fwlink/?LinkId=264712
http://go.microsoft.com/fwlink/?LinkId=264711
http://go.microsoft.com/fwlink/?LinkId=299896
http://go.microsoft.com/fwlink/?LinkId=264710
http://go.microsoft.com/fwlink/?LinkId=267899


Preinstall Apps Using DISM
6/15/2018 • 9 minutes to read • Edit Online

NOTENOTE

TIPTIP

Work with app packages

Extract the package filesExtract the package files

IMPORTANTIMPORTANT

Preinstall a Microsoft Store-signed app with DISMPreinstall a Microsoft Store-signed app with DISM

Interested in preinstalling Microsoft Store apps, but you aren’t an OEM? For information about sideloading apps for
organizations, see Sideload Apps with DISM.

This topic covers how to preinstall apps so they are included as part of a Windows image.

Hardware Support Apps (HSAs) are Microsoft Store Apps, and the following instructions apply.

Use DISM to offline provisioning an app into an image. You can use DISM from the Command Prompt, or the
DISM cmdlets in Windows PowerShell.

In previous versions of Windows 10, preinstalled Universal apps and Microsoft Store apps had to be pinned to the
Start menu. Windows would remove apps that were preinstalled but not pinned to the Start menu.

Starting with Windows 10, version 1803, apps can be preinstalled without being pinned to the Start Menu when
you use DISM /add-provisionedappxpackage  with the /region  option. When you preinstall an app, you can choose
to leave the app out of your LayoutModification.xml and the app will successfully install without appearing as a
Start Menu tile. When a list of regions is NOT specified, the app will be provisioned only if it is pinned to start
layout.

1. Browse to the folder where you saved the app packages that you downloaded from the Partner Dashboard.
2. Right-click each .zip folder containing your app package files. Click Extract All and select a location to save

the package file folders.

The folder contains the all of the unpacked files for the package, including a main package, any dependency
packages, and the license file.

Don't modify the folder once you have extracted the package files. If you change, add, or remove any files in the folder, the
app will fail either during installation or launch. Even browsing the folder may cause problems.

You’ll need to use the license file from the package files to test your provisioned image. Creating your own custom
data file will not allow you to accurately test an app preinstalled by an OEM.

For offline provisioning of an app into an image, you can use either the Dism.exe tool or the DISM cmdlets in
Windows PowerShell to add an app from a folder of unpacked files.

1. Open the Command Prompt as administrator.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/preinstall-apps-using-dism.md


NOTENOTE

Update or remove packages

Remove a preinstalled app by using DISMRemove a preinstalled app by using DISM

Dism /Mount-Image /ImageFile:c:\images\myimage.wim /Index:1 /mountdir:c:\test\offline

Dism /Image:c:\test\offline /Add-ProvisionedAppxPackage /PackagePath:c:\downloads\package.appxbundle 
/DependencyPackagePath:c:\downloads\dependency1.appx 
/DependencyPackagePath:c:\downloads\dependency2.appx /LicensePath=c:\downloads\package_License1.xml 
/region=all"

Dism /Unmount-Image /mountdir:c:\test\offline /commit

2. Mount a Windows image for that you want to service:

3. Add the app to the mounted image. Use the /PackagePath  and /DependencyPackagePath  options.

Packagepath  is the path to the .appx bundle or package file
DependencyPackagePath  is the path for specifying each dependency package. You can have more than one

dependency per command.
New in Windows 10, version 1803: Use the Region  option when adding apps. Region  allows you to
add an app without having to pin the app to the Start Menu.

See DISM app package servicing command-line options for information about working with app packages,
including the new /region option..

4. a. If you didn't specify /region  when preinstalling the app, pin the app to the Start Menu with
LayoutModification.xml.

or

b. If you did specify /region  when preinstalling the app, and you want to pin the app to the Start Menu for
specific regions, use the RequiredStartGoups Region="region1|region2"  element in LayoutModification.xml to
specify the regions where you want the app to appear.

5. Save changes and unmount the image. At the command prompt, type:

Microsoft Store apps don't run in audit mode. To test your deployment, run Windows and create a new user profile. For more
information about audit mode, see Audit mode overview.

Important If you are preinstalling a mobile broadband device app, you must insert the SIM card in the PC before
you run the specialize phase of Sysprep. For more information about preinstalling a mobile broadband device app,
see Preinstall the Necessary Components for a Mobile Broadband Application Experience.

You can remove a preinstalled app, including the license and custom data files, from a Windows image by using
the DISM.exe tool or the DISM cmdlets in Windows PowerShell. You should remove the old version of the app
before installing a new one.

1. Open the Deployment Tools Command Prompt, installed with the Windows ADK, with administrator privileges.
From the Start screen, type Deployment and Imaging Tools Environment, right-click the icon, and select
Run as Administrator.

2. Mount the offline image for servicing. At the command prompt, type:

https://docs.microsoft.com/en-us/windows/configuration/start-layout-xml-desktop
https://docs.microsoft.com/en-us/windows/configuration/start-layout-xml-desktop#requiredstartgroups


Use custom data files

Add a custom data file to a Windows imageAdd a custom data file to a Windows image

Dism /Image:C:\test\offline /Add-ProvisionedAppxPackage / FolderPath:f:\Apps\Fabrikam_KnowMyPC 
/CustomDataPath:f:\Contoso_Promotion.xml

Test custom data for preinstalled appsTest custom data for preinstalled apps

Dism /Mount-Image /ImageFile:c:\images\myimage.wim /Index:1 /mountdir:c:\test\offline

Dism /Image:C:\test\offline /Get-ProvisionedAppxPackages

Dism /Image:c:\test\offline /Remove-ProvisionedAppxPackage 
/PackageName:microsoft.devx.appx.app1_1.0.0.0_neutral_en-us_ac4zc6fex2zjp

Dism /Image:c:\test\offline /Add-ProvisionedAppxPackage/FolderPath:c:\downloads\appxpackage

Dism /Unmount-Image /mountdir:c:\test\offline /commit

3. Find the full package name of the app that you want to remove. At the command prompt, type:

4. Remove the app from the mounted image. For example, at the command prompt, type:

5. If you want to update the app, you can preinstall the updated version of the Microsoft Store-signed app. At
a command prompt, type:

6. Save changes and unmount the image. At the command prompt, type:

Apps that are preinstalled on a PC can access custom data specific to the installation. This custom data is added to
the app during preinstallation and becomes available at runtime. Custom data enables developers to customize an
app's features and functionality, including providing reporting capabilities.

You must specify the custom data file when you preinstall the app by using the DISM tool and through Windows
PowerShell using the Add-AppxProvisionedPackage cmdlet. The following command shows how to do this
using the DISM tool:

If a custom data file already exists in the data store for an app—for example, if the package has already been added
to the image—the existing file is overwritten. If the installation fails, the file isn't restored.

Note
You can release updates to an app through the Microsoft Store without losing the custom data file. However, if a
user deletes the app, the custom data file is no longer available, even if the user reinstalls the app.

Apps that are preinstalled on a PC can access custom data specific to the installation. This custom data is added to
the app during preinstallation and becomes available to the app at runtime. Custom data enables developers to
customize an app's features and functionality, including providing reporting capabilities.

The Custom.data file appears at the app's installed location. The name Custom.data is hard-coded and can't be
modified. Your app can check for the existence of this file to determine if the app was preinstalled on the PC. Here's
an example of how to access the Custom.data file.



var outputDiv = document.getElementById("CustomData");
Windows.ApplicationModel.Package.current.installedLocation.getFileAsync
     ("microsoft.system.package.metadata\\Custom.data").then(function (file) {
         // Read the file
         Windows.Storage.FileIO.readTextAsync(file).done(function (fileContent) {
            outputDiv.innerHTML = 
                 "App is preinstalled. CustomData contains:<br /><br />"
                 + fileContent;
         },
         function (error) {
             outputDiv.innerText = "Error reading CustomData " + error;
         });
     },
     function (error) {
         outputDiv.innerText = "CustomData was not available. App not preinstalled";
     });

Test your custom dataTest your custom data

("microsoft.system.package.metadata\\Custom.data").then(function (file) {

("Custom.data").then(function (file) {

Your Custom.data file can include any content and be in any format your app requires. The preinstallation process
simply makes it available to your app. Developers can supply the data file to the preinstallation partner, or you can
agree to a format that enables the partner to generate the content.

When you're building and debugging your app in Microsoft Visual Studio, you can't access the Custom.data file
from the app's installed location because the app isn't preinstalled yet. You can simulate using your Custom.data
file by putting a test Custom.data file in the app itself, and then loading and testing the app local file. To do this,
modify the code sample from:

to:

After you have verified your file format and content, you can change the location of the Custom.data file to the
final location, as shown in the original example above.

To test your Custom.data file

1. Open the Deployment Tools Command Prompt, installed with the Windows ADK, with administrator privileges.
From the Start screen, type Deployment and Imaging Tools Environment, right-click the icon, and select
Run as Administrator.

dism /online /Add-ProvisionedAppxPackage /PackagePath:.\CustomData_1.0.0.1_AnyCPU_Debug.appx 
/CustomDataPath:.\Test.txt /SkipLicense

2. Add the application with the custom data file:

Where /PackagePath:.\CustomData_1.0.0.1_AnyCPU_Debug.appx  points to your local app test package, and
where /CustomDataPath:.\Test.txt  points to your Custom.data file. Be aware that the file name you provide
here isn't used after the data is installed in your app.

The app now has a tile on the Start screen of the PC used to test the app. The app should be able to access
the Custom.data file. If additional debugging is needed, attach a debugger after starting the app from the
Start screen.

Note You might be required to sign out and sign in again to see the app on the Start screen.



 Preinstall a Microsoft Store device app or mobile broadband app

Preinstall the device metadata or service metadata package

3. After you're done testing your app, you must remove the preinstalled package to continue using your Dev
environment. To remove the preinstalled package using Windows PowerShell, you can use the Get-
AppxPackage cmdlet to provide the full app package name through the pipeline to the Remove-
ProvisionedAppxPackage cmdlet:

Get-AppxPackage *CustomData* | Remove-ProvisionedAppxPackage

Where *CustomData*  is the known part of your app's name

You can preinstall the necessary components for a Microsoft Store device app or a mobile broadband app using
the Deployment Image Servicing and Management (DISM) platform.

Note This article is intended for OEMs, who will be supporting a Microsoft Store device app or the mobile
broadband app on their devices.

For each type of app, two things should be preinstalled to provide the correct Microsoft Store device app or mobile
broadband app:

Microsoft Store device app, preinstall:

Microsoft Store mobile broadband app, preinstall:

1. The device metadata package
2. The app

1. The service metadata package
2. The app

Important Although metadata packages and the corresponding apps are parsed immediately after the OOBE
process completes, a user might be able to launch the app before the metadata package is parsed. In this case, the
user will see an access denied error. To avoid this, apply both the metadata package and the app to the system
image.

To preinstall a device metadata or service metadata package

1. If you are preinstalling a Microsoft Store device app then you should have acquired the device metadata
package. If you are preinstalling a mobile broadband app then you should have acquired the service
metadata package.

Note Device metadata packages and service metadata packages use the same file name extension
(.devicemetadata-ms).

2. Copy the device metadata or service metadata package (devicemetadata-ms file) to your system image in
the %ProgramData%\Microsoft\Windows\DeviceMetadataStore folder. You can do this in one of the
following ways:

Online before running Sysprep
Offline after running Sysprep by using DISM. To do this:

Dism /Mount-Image /ImageFile:C:\test\images\myimage.wim /index:1 /MountDir:C:\test\offline

a. Mount the offline image for servicing.

b. Copy the metadata package files to the device metadata store of the mounted image. For
example, to copy the 0ECF2029-2C6A-41AE-9E0A-63FFC9EAD877.devicemetadata-ms



Preinstall the Microsoft Store device app or mobile broadband app

copy 0ECF2029-2C6A-41AE-9E0A-63FFC9EAD877.devicemetadata-ms 
C:\test\offline\ProgramData\Microsoft\Windows\DeviceMetadataStore

dism /Unmount-Image /mountdir: c:\test\offline /commit

metadata package file to the device metadata store,
ProgramData\Microsoft\Windows\DeviceMetadataStore:

c. Save the changes and unmount the image.

For more info about offline image servicing, see DISM Overview.

For more info about service metadata, see Service metadata.

To preinstall the Microsoft Store device app or mobile broadband app

Dism /Mount-Image /ImageFile:C:\test\images\myimage.wim /index:1 /MountDir:C:\test\offline

dism /Image:<mounted folder> /Add-ProvisionedAppxPackage /FolderPath:<appxpackage path>

dism /Unmount-Image /mountdir: c:\test\offline /commit

1. Mount the offline image for servicing.

2. Add the Microsoft Store device app or mobile broadband app to the image.

3. Save the changes and unmount the image.

http://technet.microsoft.com/library/hh825236.aspx
http://go.microsoft.com/fwlink/p/?LinkId=698640


Export or Import Default Application Associations
5/11/2018 • 2 minutes to read • Edit Online

Generate Default Application Associations XML File

Add or Remove Default Application Association Settings to a Windows
Image

You can use the Deployment Image Servicing and Management (DISM) tool to change the default programs
associated with a file name extension or protocol in a Windows 10 image.

Deploy your Windows image to a test computer and configure the programs that are included in your image. You
can log into Windows and use Control Panel to select your default application associations. You can export the
default application associations that you have configured to an XML file on a network share or removable media
so that you can import them into the WIM or VHD file before you deploy it to your destination computers.

Set default application associations

1. Install your Windows image to a test computer. For more information about how to apply a Windows
image, see Apply Images Using DISM.

2. Start the test computer and complete Windows Setup.

3. Click Search, click Settings, and then type Default Programs. Click Default Programs.

4. You can configure default programs by file name extension or by application. For example, to set an
installed photo viewing application as the default program that is used to open all of the file types and
protocols that it supports, click Set your default programs, click the photo viewing application in the
program list, and then click Set this program as default.

Export default application association settings

Dism /Online /Export-DefaultAppAssociations:\\Server\Share\AppAssoc.xml

1. On your test computer, open a Command Prompt as administrator.

2. Export the default application association settings from the test computer to an .xml file on a network share
or USB drive. For example, at a command prompt type:

Where:

Server is the name of the server or computer that contains the share that you will export the default
application association settings.

Share is the name of the share where you will export the default application association settings.

You can change the default application association settings in a WIM or VHD file before you deploy it to your
destination computers. You can also add and remove default application association settings from an online image.

Import default application association settings

1. On your technician computer, open a Command Prompt as administrator.

2. Mount a Windows image from a WIM or VHD file. For example, at the Command Prompt type:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/export-or-import-default-application-associations.md


Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows" /MountDir:C:\test\offline

Dism.exe /Image:C:\test\offline /Import-DefaultAppAssociations:\\Server\Share\AppAssoc.xml

3. Import the .xml file that has the default application association settings to the Windows image. For example,
at the command prompt type:

Where:

Server is the name of the server or computer that contains the share that you will export the default
application association settings.

Share is the name of the share where you will export the default application association settings.

Review the default application association setting in an image

Dism.exe /Image:C:\test\offline /Get-DefaultAppAssociations

1. On your technician computer, open a Command Prompt administrator.

2. List the application associations that have been applied to the mounted image. For example, at the
Command Prompt, type:

Remove default application association settings

Dism.exe /Image:C:\test\offline /Remove-DefaultAppAssociations

1. On your technician computer, open a Command Prompt as administrator.

2. Remove the custom default application association that have been added to the mounted image. For
example, at the Command Prompt type:

Unmount the Windows image

Dism /Unmount-Image /MountDir:C:\test\images\install.wim /commit

1. On your technician computer, open a Command Prompt as administrator.

2. Unmount the image, committing changes:



Microsoft .NET Framework 3.5 Deployment
Considerations
5/11/2018 • 2 minutes to read • Edit Online

Introduction

Related topics

.NET Framework 3.5 is not included by default in Windows 10 or Windows Server 2016, but you can download
and deploy it for application compatibility. This section describes these deployment options.

In this section:

Deploy .NET Framework 3.5 by using Group Policy Feature on Demand setting
Deploy .NET Framework 3.5 by using Deployment Image Servicing and Management (DISM)
Enable .NET Framework 3.5 by using Windows PowerShell
Enable .NET Framework 3.5 by using Control Panel and Windows Update (Windows 8 only)
Enable .NET Framework 3.5 by using the Add Roles and Features Wizard
.NET Framework 3.5 deployment errors and resolution steps

Windows 10 or Windows Server 2016 include .NET Framework 4.6, which is an integral Windows component
that supports building and running the next generation of applications and web services. The .NET Framework
provides a subset of managed types that you can use to create Microsoft Store apps for Windows by using C# or
Visual Basic. For more information, see .NET Framework.

Only the metadata that is required to enable the .NET Framework 3.5 is contained in the default Windows image
(\sources\install.wim). The actual binaries are not in the image. This feature state is known as disabled with
payload removed.

You can get the .NET Framework 3.5 payload files from Windows Update or the installation media in the
\sources\sxs folder. For more information, see Installing the .NET Framework 3.5. After the .NET Framework 3.5
feature is enabled, the files are serviced just like other operating system files from Windows Update.

If you upgrade from Windows 7 (which includes .NET Framework 3.5.1 by default) to Windows 10, or from
Windows Server 2008 R2 (which has .NET Framework 3.5.1 feature installed) to Windows Server 2016, .NET
Framework 3.5 is automatically enabled.

Windows Server Installation Options

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/microsoft-net-framework-35-deployment-considerations.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/enable-net-framework-35-by-using-control-panel-and-windows-update--windows-8-only
http://go.microsoft.com/fwlink/p/?linkid=329972
http://go.microsoft.com/fwlink/p/?linkid=257556
http://blogs.msdn.com/b/e7/archive/2009/03/06/beta-to-rc-changes-turning-windows-features-on-or-off.aspx
http://go.microsoft.com/fwlink/p/?linkid=251454


Deploy .NET Framework 3.5 by using Group Policy
Feature on Demand setting
5/11/2018 • 3 minutes to read • Edit Online

Requirements

For environments that use Active Directory and Group Policy, the Feature on Demand (FoD) policy setting option
provides the most flexibility for the installation of .NET Framework 3.5. This Group Policy setting specifies the
network locations to use to enable optional features that have had their payload files removed, and for file data and
registry repair operations from failed update installations. If you disable or do not configure this setting, or if the
required files cannot be found at the locations that are specified in this policy setting, the files are downloaded
from Windows Update (if this is allowed by the policy settings for the computer). The Group Policy setting Specify
settings for optional component installation and component repair is located at Computer
Configuration\Administrative Templates\System in Group Policy Editor.

Active Directory Domain infrastructure that supports Windows 8 and Windows Server® 2012

Access rights to configure Group Policy

Target computers need network access and rights to use alternate sources, or an Internet connection to use
Windows Update

Figure 1 Group Policy Setting for Features on Demand and Feature Store Repair

When this policy is enabled, a network location (for example, a file server) can be specified for both repair of the
feature file store, and to enable features that have their payload removed. The Alternate source file path can
point to a \sources\sxs folder or a Windows image (WIM) file using the WIM: prefix. The advantage of a WIM file
is that it can be kept current with updates, and provide a current repair source and .NET Framework 3.5 binaries.
The repair WIM can be different than the initial WIM file that is used for installation. The user or process that tries
to enable an optional Windows feature requires appropriate access rights to file shares and/or WIM files.

If you select Never attempt to download payload from Windows Update, Windows Update is not contacted
during an installation or repair operation.

If you select Contact Windows Update directly to download repair content instead of Windows Server
Update Services (WSUS), any attempt to add features (for example, .NET Framework 3.5) or repair the feature

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-net-framework-35-by-using-group-policy-feature-on-demand-setting.md


Related topics

file store, uses Windows Update to download files. Target computers require Internet and Windows Update access
for this option.

Note
Windows Server Update Services (WSUS) is not supported as a source for FoD or feature file store repair.

For Windows 8 and Windows Server 2012, WSUS is not supported as a source for feature installation (for
example, adding .NET Framework 3.5 feature files) or feature file store repair operations. WSUS core scenarios
include centralized update management and patch management automation, which enables administrators to
manage the distribution of updates that are released through Microsoft Update to computers in their network.
FoD and feature file store repair rely on download of individual files to perform update or repair operations. For
example, if a single file becomes corrupted, then only that file (which could be as small as a few kilobytes) is
downloaded from the repair source. WSUS can use either full or express files to perform servicing update
operations; however, these files are not compatible with FoD or feature file store repair.

If an alternate source path is used to repair images, consider the following guidelines:

Servicing updates

Keep any repair source current with the latest servicing updates. If you are using an image from a WIM file
for FoD, you can use the Deployment Image Servicing and Management (DISM) tool to service the image.
For more information, see Mount and Modify an Image Using DISM. If you are using an online Windows
installation that is shared on your local network as a repair image, make sure that the computer has access
to Windows Update.

Multilingual images

You must include all relevant language packs with your repair source files for the locales that your image
supports. If you restore a feature without all localization files that the Windows installation requires for that
feature, installation fails. You can install additional language packs after a feature is restored.

Microsoft .NET Framework 3.5 Deployment Considerations

http://go.microsoft.com/fwlink/p/?linkid=329973


Deploy .NET Framework 3.5 by using Deployment
Image Servicing and Management (DISM)
7/17/2018 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Using DISM with Internet connectivity
RequirementsRequirements

For an online reference image that can access Windows UpdateFor an online reference image that can access Windows Update

For an offline reference imageFor an offline reference image

You can use the Deployment Image Servicing and Management (DISM) command-line tool to create a modified
image to deploy .NET Framework 3.5.

For images that will support more than one language, you must add .NET Framework 3.5 binaries before adding any
language packs. This order ensures that .NET Framework 3.5 language resources are installed correctly in the reference image
and available to users and applications.

Internet connection

Access to Windows Update. If the PC or server is behind a firewall or uses a proxy server, see KB900935 -
How the Windows Update client determines which proxy server to use to connect to the Windows Update
Web site.

Windows 8, Windows Server 2012, or the Windows Assessment and Deployment Kit (ADK) tools.

Installation media

Administrator user rights. The current user must be a member of the local Administrators group to add or
remove Windows features.

DISM /Online /Enable-Feature /FeatureName:NetFx3 /All 

1. Open a command prompt with administrator user rights (Run as Administrator) in Windows 8 or Windows
Server 2012.

2. To Install .NET Framework 3.5 feature files from Windows Update, use the following command:

Use /All to enable all parent features of the specified feature. For more information on DISM arguments,
see Enable or Disable Windows Features Using DISM.

3. On Windows 8 PCs, after installation .NET Framework 3.5 is displayed as enabled in Turn Windows
features on or off in Control Panel. For Windows Server 2012 systems, feature installation state can be
viewed in Server Manager.

DISM /Image:C:\test\offline /Enable-Feature /FeatureName:NetFx3 /All /LimitAccess /Source:D:\sources\sxs

1. Run the following DISM command (image mounted to the c:\test\offline folder and the installation media
in the D:\drive) to install .NET 3.5:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-net-framework-35-by-using-deployment-image-servicing-and-management--dism.md
http://support.microsoft.com/kb/900935
http://go.microsoft.com/fwlink/p/?linkid=325506
http://go.microsoft.com/fwlink/p/?linkid=259118


Using DISM with no Internet connectivity

WARNINGWARNING

RequirementsRequirements

StepsSteps

DISM /Image:c:\test\offline /Get-Features /Format:Table

Use /All to enable all parent features of the specified feature.

Use /LimitAccess to prevent DISM from contacting Windows Update/WSUS.

Use /Source to specify the location of the files that are needed to restore the feature.

To use DISM from an installation of the Windows ADK, locate the Windows ADK servicing folder and
navigate to this directory. By default, DISM is installed at C:\Program Files (x86)\Windows
Kits\8.0\Assessment and Deployment Kit\Deployment Tools\. You can install DISM and other
deployment and imaging tools, such as Windows System Image Manager (Windows SIM), on another
supported operating system from the Windows ADK. For information about DISM-supported platforms,
see DISM Supported Platforms.

2. Run the following command to look up the status of .NET Framework 3.5 (offline image mounted to
c:\test\offline):

A status of Enable Pending indicates that the image must be brought online to complete the installation.

You can use DISM to add .NET Framework 3.5 and provide access to the \sources\SxS folder on the installation
media to an installation of Windows that is not connected to the Internet.

If you're not relying on Windows Update as the source for installing the .NET Framework 3.5, make sure to use sources from
the same corresponding Windows operating system version. Using a source path that doesn't correspond to the same
version of Windows won't prevent a mismatched version of .NET Framework 3.5 from being installed. This can cause the
system to be in an unsupported and unserviceable state.

Windows 8, Windows Server 2012, or the Windows ADK tools.

Installation media

Administrator user rights. The current user must be a member of the local Administrators group to add or
remove Windows features.

DISM /Online /Enable-Feature /FeatureName:NetFx3 /All /LimitAccess /Source:d:\sources\sxs

1. Open a command prompt with administrator user rights (Run as Administrator).

2. To install .NET Framework 3.5 from installation media located on the D: drive, use the following command:

Use /All to enable all parent features of the specified feature.

Use /LimitAccess to prevent DISM from contacting Windows Update/WSUS.

Use /Source to specify the location of the files that are needed to restore the feature.

For more information on DISM arguments, see Enable or Disable Windows Features Using DISM.

On Windows 8 PCs, after installation, .NET Framework 3.5 is displayed as enabled in Turn Windows features on

http://go.microsoft.com/fwlink/p/?LinkId=698536
http://go.microsoft.com/fwlink/p/?linkid=325506
http://go.microsoft.com/fwlink/p/?linkid=259118


Related topics

or off in Control Panel.

Microsoft .NET Framework 3.5 Deployment Considerations



Enable .NET Framework 3.5 by using Windows
PowerShell
5/11/2018 • 2 minutes to read • Edit Online

Requirements

Steps

Related topics

For a Windows Server installation that is not connected to the Internet, you can use Windows PowerShell to add
.NET Framework 3.5 and provide access to the \sources\sxs folder on the installation media. The \sources\sxs
folder can be copied to network share (for example, \\network\share\sxs) to make it easily accessible to multiple
computers. The target computer account DOMAIN\SERVERNAME$ must have at least read access to the network
share.

Windows Server 2012 or Windows Server 2016

Installation media

Administrator user rights. The current user must be a member of the local Administrators group to add or
remove Windows features.

Target Computers might need network access and rights to use either alternate sources or an Internet
connection to use Windows Update.

powershell

Install-WindowsFeature Net-Framework-Core -source \\network\share\sxs

Get-WindowsFeature

1. Start Windows PowerShell in the Administrator Command Prompt by typing:

2. To install .NET Framework 3.5 from installation media located on a network share, use the following
command:

Where \\network\share\sxs is the location of the source files.

For more information about the Install-WindowsFeature cmdlet, see Install-WindowsFeature.

3. To verify installation, run the following command:

The Install State column should show Installed for the .NET Framework 3.5 (includes .NET 2.0 and
3.0) feature.

Microsoft .NET Framework 3.5 Deployment Considerations

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/enable-net-framework-35-by-using-windows-powershell.md
http://go.microsoft.com/fwlink/p/?linkid=329977


Enable .NET Framework 3.5 by using the Add Roles
and Features Wizard
5/11/2018 • 2 minutes to read • Edit Online

Requirements

Steps

Related topics

You can use Server Manager to enable .NET Framework 3.5 for a local or remote installation of Windows Server
2012 R2.

Windows Server 2012 R2

Installation media

Administrator user rights. The current user must be a member of the local Administrators group to add or
remove Windows features.

Target Computers might need network access and rights to use either alternate sources or an Internet
connection to use Windows Update.

1. In Server Manager, click Manage and then select Add Roles and Features to start the Add Roles and
Features Wizard.

2. On the Select installation type screen, select Role-based or feature-based installation.

3. Select the target server.

4. On the Select features screen, check the box next to .Net Framework 3.5 Features.

5. On the Confirm installation selections screen, a warning will be displayed asking Do you need to
specify an alternate source path?. If the target computer does not have access to Windows Update, click
the Specify an alternate source path link to specify the path to the \sources\sxs folder on the installation
media and then click OK. After you have specified the alternate source, or if the target computer has access
to Windows Update, click the X next to the warning, and then click Install.

If you are using Server Manager in Windows Server 2012 to add a role or feature to a remote server, the
remote server ’s computer account (DOMAIN\ComputerName$) requires access to the alternate source file
path because the deployment operation runs in the SYSTEM context on the target server.

Microsoft .NET Framework 3.5 Deployment Considerations

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/enable-net-framework-35-by-using-the-add-roles-and-features-wizard.md


.NET Framework 3.5 deployment errors and
resolution steps
5/11/2018 • 2 minutes to read • Edit Online

ERROR CODE NAME DESCRIPTION RESOLUTION STEPS

This topic describes common errors you can encounter when you use Features on Demand to enable or deploy
.NET Framework 3.5, and recommended steps to resolve the issues.

Features on Demand Error Codes

0x800F081F CBS_E_SOURCE_MISSIN
G

The source files could
not be found. Use the
Source option to specify
the location of the files
that are required to
restore the feature. For
more information about
how to specify a source
location, see Configure a
Windows Repair Source.

Verify that the source
specified has the
necessary files. The
source argument should
point to the
\sources\sxs folder on
the installation media or
the Windows folder for a
mounted image (for
example,
c:\mount\windows for
an image mounted to
c:\mount).

0x800F0906 CBS_E_DOWNLOAD_FAI
LURE

The source files could
not be downloaded. Use
the Source option to
specify the location of
the files that are
required to restore the
feature. For more
information about how
to specify a source
location, see Configure a
Windows Repair Source.

Windows couldn’t
connect to the Internet
to download necessary
files. Make sure that the
system is connected to
the Internet and click
Retry.

Verify that the computer
or server has
connectivity to Windows
Update, and that you
are able to browse to
http://update.microso
ft.com. If WSUS is used
to manage updates for
this computer, verify
that the Group Policy
setting Contact
Windows Update
directly to download
repair content instead
of Windows Server
Update Services
(WSUS) is enabled.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/net-framework-35-deployment-errors-and-resolution-steps.md
http://go.microsoft.com/fwlink/?LinkId=243077
http://go.microsoft.com/fwlink/?LinkId=243077
http://update.microsoft.com


ERROR CODE NAME DESCRIPTION RESOLUTION STEPS

Related topics

0x800F0907 CBS_E_GROUPPOLICY_
DISALLOWED

DISM failed. No
operation was
performed. For more
information, review the
log file at
%WINDIR%\logs\DISM
\dism.log.

Due to network policy
settings, Windows
couldn't connect to the
Internet to download
files required to
complete the requested
changes.

Contact your network
administrator for
assistance with the
Specify settings for
optional component
installation and
component repair
Group Policy setting.

Microsoft .NET Framework 3.5 Deployment Considerations



 

      

Device Drivers
5/11/2018 • 12 minutes to read • Edit Online

Adding Drivers

Add drivers before deployment on an offline Windows image by using DISMAdd drivers before deployment on an offline Windows image by using DISM

You can add device drivers to a Windows image before, during, or after you deploy the image. When planning
how to add drivers to your Windows deployment, it's important to understand how driver folders are added to
the image, how driver ranking affects deployment, and the digital signature requirements for drivers.

In this topic:

Adding Drivers

Managing Driver Folders

Understanding Driver Ranking

Understanding Digital Signature Requirements

Additional Resources

You can add device drivers to a Windows image:

Before deployment on an offline Windows image

During an automated deployment

After deployment on a running operating system

For more information, see Understanding Servicing Strategies.

Offline servicing occurs when you modify a Windows image entirely offline without booting the operating
system. You can add, remove, and enumerate drivers on an offline Windows image by using the DISM
command-line tool. DISM is installed with Windows and is also distributed in the Windows Assessment and
Deployment Kit (Windows ADK). For more information about DISM, see the DISM - Deployment Image
Servicing and Management Technical Reference for Windows.

When you add a driver to an offline image, it's either staged or reflected in the image:

Boot-critical drivers are reflected. In other words, the files are copied into the image according to what's
specified in the .inf file. The PC completes installation tasks during the initial boot, including updating the
Critical Devices Database (CDDB) and the registry.

Drivers that aren't boot critical are staged. In other words, they're added to the driver store. After
Windows starts, PnP detects the device and installs the matching driver from the driver store.

You can use DISM commands to add or remove drivers on a mounted or applied Windows or Windows
Preinstallation Environment (Windows PE) image.

Note
You can't use DISM to remove inbox drivers (drivers that are installed on Windows by default). You can use it
only to remove third-party or out-of-box drivers.

You can also use DISM commands to apply an unattended answer file to a mounted or applied Windows image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/device-drivers-and-deployment-overview.md


  

  

Add drivers during an automated deployment by using Windows Setup and an answer fileAdd drivers during an automated deployment by using Windows Setup and an answer file

Add drivers after deployment on a running operating system by using PnPUtil or an answer fileAdd drivers after deployment on a running operating system by using PnPUtil or an answer file

For more information, see Add and Remove Drivers to an Offline Windows Image.

If you're using DISM, you can add only .inf drivers to an offline Windows image. Drivers that display the
Designed for Windows logo are provided as .cab files. You must expand the .cab file before you install the .inf file
if you're using DISM for the installation. You must install a driver that's packaged as a .exe file or another file type
on a running Windows operating system. To run a .exe or Windows Installer (.msi) driver package, you can add a
custom command to an answer file to install the driver package. For more information, see Add a Custom
Command to an Answer File.

You can use an unattended answer file to add drivers to an image when you use Windows Setup for deployment.
In this answer file, you can specify the path of a device driver on a network share (or a local path). You accomplish
this by adding the Microsoft-Windows-PnpCustomizationWinPE or Microsoft-Windows-
PnpCustomizationNonWinPE components and specifying the configuration passes where you want to install
them. When you run Windows Setup and specify the name of the answer file, out-of-box drivers are staged
(added to the driver store on the image), and boot-critical drivers are reflected (added to the image so that they'll
be used when the computer boots). Setup uses the answer file. By adding device drivers during the windowsPE
or offlineServicing configuration passes, you can add out-of-box device drivers to the Windows image before
the computer starts. You can also use this method to add boot-critical device drivers to a Windows image. For
more information, see Add Device Drivers to Windows During Windows Setup. For more information about
how Windows Setup works, see the Windows Setup Technical Reference.

If you want to add boot-critical drivers to Windows PE, use the windowsPE  configuration pass to reflect the
drivers before the Windows PE image is booted. The difference between adding boot-critical drivers during the
windowsPE  configuration pass and adding them during the offlineServicing configuration pass is that during
the windowsPE  configuration pass, boot-critical drivers are reflected for Windows PE to use. During the
offlineServicing configuration pass, the drivers are staged to the driver store on the Windows image.

Methods for adding device drivers by using Windows Setup include these:

Using an answer file to add drivers during the offlineServicing configuration pass of Setup.

Using an answer file to add drivers during the windowsPE  configuration pass of Setup.

For Windows Server, placing drivers in the $WinPEDriver$ directory to be installed automatically during
the windowsPE  configuration pass of Setup. All drive letters with a value of C or greater are scanned for
a $WinPEDriver$ directory. The drive must be accessible to the hard disk during Setup. Make sure that
the drive does not require a storage driver to be loaded before it can be accessed.

For more information about these and other configuration passes, see Windows Setup Configuration Passes.

When you're using Windows Deployment Services for deployment in Windows Server, you can add device
drivers to your server and configure them to be deployed to clients as part of a network-based installation. You
configure this functionality by creating a driver group on the server, adding packages to it, and then adding filters
to define which clients will install those drivers. You can configure drivers to be installed based on the client's
hardware (for example, manufacturer or BIOS vendor) and the edition of the Windows image that's selected
during the installation. You can also configure whether clients install all packages in a driver group or only the
drivers that match the installed hardware on the client. For more information about how to implement this
functionality, see the Windows Deployment Services documentation.

You can use the PnPUtil tool to add or remove drivers on a running operating system. Alternatively, you can use
an answer file to automate the installation of the drivers when the computer is booted in audit mode. These
methods can be helpful if you want to maintain a simple Windows image, and then add only the drivers that are
required for a specific hardware configuration. For more information about how to use audit mode, see Boot
Windows to Audit Mode or OOBE.

https://msdn.microsoft.com/library/windows/hardware/dn915058


 

 

Drivers for Windows 10 SDrivers for Windows 10 S

Managing Driver Folders

Understanding Driver Ranking

Methods for adding device drivers online to a running operating system include these:

Using PnPUtil to add or remove PnP drivers. For more information, see Use PnPUtil at a command line to
install a Plug and Play device.

Using an answer file to automate the installation of PnP drivers when the computer is booted in audit
mode. For more information, see Add a Driver Online in Audit Mode.

Drivers in Windows 10 S must meet certain requirements. See Windows 10 S driver requirements to learn about
the types of drivers you can add to Windows 10 S.

If you're adding multiple drivers, you should create separate folders for each driver or driver category. This
makes sure that there are no conflicts when you add drivers that have the same file name. After the driver is
installed on the operating system, it's renamed to Oem*.inf to ensure unique file names in the operating system.
For example, the staged drivers named MyDriver1.inf and MyDriver2.inf are renamed to Oem0.inf and Oem1.inf
after they're installed.

When you specify a device-driver path in an answer file, all .inf drivers in the specified directory and
subdirectories are added to the driver store of the Windows image,
%SystemRoot%\System32\DriverStore\FileRepository. For example, if you want all of the drivers in the
C:\MyDrivers\Networking, C:\MyDrivers\Video, and C:\MyDrivers\Audio directories to be available in your
Windows image, specify the device-driver path, C:\MyDrivers, in your answer file. If you're not using an answer
file, you can use the /recurse command in DISM. For more information about the /recurse command, see DISM
Driver Servicing Command-Line Options. This command makes sure that all drivers in each subdirectory will be
added to the driver store in your Windows image.

If all drivers in the specified directory and subdirectories are added to the image, you should manage the answer
file or your DISM commands and these directories carefully. Do your best to address concerns about increasing
the size of the image through unnecessary driver packages.

If it isn't practical to manage your driver shares so that only the required drivers are added to your image, you
can use the Driver Package Installer (DPInst) tool to add drivers that aren't boot critical online. DPInst selectively
installs drivers that aren't boot critical only if the hardware is present or if the driver package is a better match for
the device.

One of the most common issues in deploying drivers happens when a driver is successfully imported into the
driver store but, after the system is online, PnP finds a higher-ranking driver and installs that driver instead.

The Windows PnP manager ranks these driver package properties in order of importance:

1. Signing

2. PnP ID match

3. Driver date

4. Driver version

For example, if a device has a better PnP ID match but is unsigned, a signed driver that has a compatible ID
match takes precedence. An older driver can outrank a newer driver if the older driver has a better PnP ID match
or signature.

For more information about driver ranking, see How Windows Ranks Drivers.

http://go.microsoft.com/fwlink/?LinkId=139151
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/Windows10SDriverRequirements
http://go.microsoft.com/fwlink/?LinkId=91227


 Understanding Digital Signature Requirements
Signed device drivers are a key security feature in Windows. Drivers that are installed on x64-based computers
must have a digital signature. Although it isn't required, we recommend making sure that drivers are signed
before you install them on x86-based computers.

All boot-critical drivers must contain embedded signatures. A digital signature isn't required for Plug and Play
(PnP) drivers. But when an unsigned PnP driver is installed on a running operating system, administrator
credentials are required, and you can't install such drivers on 64-bit operating systems.

There are two ways that a driver can be signed:

Kernel mode and boot-critical drivers are digitally signed via a method called embedded signing. By using
embedded signatures, every binary in the driver package is signed. Embedded signatures improve boot
loading performance. For drivers that are not PnP, signatures should be embedded so that they're not lost
during an upgrade of the operating system.

Digitally signed PnP drivers contain a catalog (.cat) file that's digitally signed. The catalog file contains a
hash of all the files in the driver's .inf file for installation. A signed catalog file is all that's required to
correctly install most PnP drivers.

Either of these sources can sign drivers:

Windows Hardware Quality Labs (WHQL), which makes sure that your drivers qualify for the Windows
Hardware Certification Program. WHQL creates a signed driver catalog. For boot-critical drivers, you
should add embedded signatures instead of relying on the catalog. Embedded signatures in boot-critical
driver image files optimize boot performance of the operating system by eliminating the requirement to
locate the appropriate catalog file when the operating system loader verifies the driver signature.

A certification authority (CA), by using a Software Publishing Certificate (SPC). For boot-critical and x64-
based kernel drivers, Microsoft provides an additional certificate that can be used to cross-sign the drivers.
Drivers that aren't boot critical don't have to be cross-signed by Microsoft or embedded. You can use the
Windows Kernel Mode Code Signing process if you need the flexibility of signing the drivers yourself. For
information about digital signatures for kernel modules on x64-based systems, see 64-Bit Driver
Guidelines.

For testing, you can also use test certificates.

If you have received an unsigned driver from a vendor for testing, you can use a test signature to validate the
driver and to test the installation. Test signing is the act of digitally signing an application by using a private key
and a corresponding code-signing certificate that's trusted only in the confines of a test environment.

These are the primary ways to generate such test-signing certificates:

Developers can generate their own self-signed certificates.

A CA can issue certificates.

For either option, test-signing certificates must be clearly identified as appropriate only for testing. For example,
the word "test" can be included in the certificate subject name, and additional legal disclaimers can be included in
the certificate. Production certificates that are issued by commercial CAs must be reserved for signing only
public beta releases and public final releases of software and internal line-of-business software.

For more information, see Requirements for Device Driver Signing and Staging.

When you're adding test-signed driver packages to Windows, consider these points:

You must install the test certificates on a running operating system. You can't install them offline.

http://go.microsoft.com/fwlink/?LinkId=529487
http://go.microsoft.com/fwlink/?LinkId=210665


 Additional Resources

Related topics

The certificate of the CA that issued the test certificate must be inserted in the Trusted Root Certification
Authorities certificate store.

Note
If the test certificate is self-signed—for example, by using the Certificate Creation Tool (MakeCert)—the
test certificate must be inserted in the Trusted Root Certification Authorities certificate store.

The test certificate that's used to sign the driver package must be inserted in the Trusted Publishers
certificate store.

You must add test certificates online (to a booted instance of the Windows image) before you can use the
Deployment Image Servicing and Management (DISM) command-line tool to add test-signed drivers
offline.

DISM validates WHQL certifications only for boot-critical drivers. But, a DISM command-line option can
override this behavior. For more information, see DISM Driver Servicing Command-Line Options.

To install and verify test-signed drivers on 64-bit operating systems, set the Windows boot configuration
to test mode by using the BCDedit tool on the destination computer. Test mode verifies that the driver
image is signed, but certificate path validation doesn't require the issuer to be configured as a trusted root
authority. For the PnP driver installation and ranking logic to treat the driver correctly, the test certificate
must be stored in the trusted certificate store of the operating system image. For information about test
mode during development, see 64-Bit Driver Guidelines.

Caution
If an unsigned or invalid boot-critical device driver is installed on an x64-based computer, the computer will not
boot. The unsigned or invalid boot-critical device driver will cause a Stop error. You should remove the driver
from either the critical device database (CDDB) or its reflected location in the image. If you're performing an
upgrade, make sure that unsigned drivers and their associated applications, services, or devices are removed or
updated with a signed driver.

If you don't enable test mode by using BCDedit, and you have a test-signed driver installed, your computer will
not boot. If you use DISM to remove the driver, all instances of the reflected driver package might not be
removed. So, we recommend that you don't deploy images that have test-signed drivers installed.

These websites provide more information about device-driver requirements:

For more information about PnP driver deployment, see PnP Device Installation Signing Requirements.

For more information about digital signatures and developing drivers, see the relevant page on the
Windows Hardware Developer Central website.

Add a Device Driver Path to an Answer File

Add a Driver Online in Audit Mode

DISM Driver Servicing Command-Line Options

Add and Remove Drivers to an Offline Windows Image

Add Device Drivers to Windows During Windows Setup

Maintain Driver Configurations when Capturing a Windows Image

BCDboot Command-Line Options

http://go.microsoft.com/fwlink/?LinkId=62690
http://go.microsoft.com/fwlink/?LinkId=89602
http://go.microsoft.com/fwlink/?LinkId=139175
https://msdn.microsoft.com/library/windows/hardware/dn915062


Deployment Troubleshooting and Log Files



 

Maintain Driver Configurations when Capturing a
Windows Image
5/11/2018 • 9 minutes to read • Edit Online

Instructing Windows Setup to Maintain Driver Configurations

Overview

A common deployment scenario is to capture a single Windows image from a reference computer and then apply
the image to a group of destination computers that have identical hardware configurations.

To save time during installation and to speed up the out-of-box experience (OOBE) for end users, you can instruct
Windows Setup to maintain the driver configurations from the reference computer as part of the Windows image.
You should do this only when the hardware on the reference computer and the hardware on the destination
computers are identical. When you do this, Windows Setup maintains driver configurations during image capture
and deployment.

Before you capture an image, generalize the computer by using an answer file that instructs Windows Setup to
maintain the driver configurations.

To maintain driver configurations by using an answer file

1. On your technician computer, open Windows System Image Manager (Windows SIM). Click Start, type
Windows System Image Manager, and then select Windows System Image Manager.

2. Create a new answer file, or update an existing answer file. For more information, see Create or Open an
Answer File and Best Practices for Authoring Answer Files.

3. Add the Microsoft-Windows-PnpSysprep/PersistAllDeviceInstalls setting. For more information, see the
Overview section in this topic.

4. If the computer has undetectable hardware, include the Microsoft-Windows-
PnpSysprep/DoNotCleanUpNonPresentDevices setting. For more information, see the Undetectable
hardware section in this topic.

Sysprep /generalize /unattend:C:\unattend.xml

5. Generalize the computer by using the answer file. For example:

The Windows in-box driver packages include device drivers that support a wide variety of popular hardware. If
your specific hardware requires additional device drivers to boot, you can preinstall additional device drivers on
your Windows image. Independent Hardware Vendors (IHVs) often supply these additional device drivers
together with their device hardware. For more information about how to add device drivers, see Add a Driver
Online in Audit Mode.

To prepare a Windows image for deployment to multiple computers, you must use the System Preparation
(Sysprep) tool to generalize the Windows image. Generalizing a Windows image removes the computer-specific
information and prepares the device drivers for first boot. This preparation includes these steps:

Device state for hardware is removed.

Boot-critical driver settings are reset to their default values.

Device log files are deleted.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/maintain-driver-configurations-when-capturing-a-windows-image.md
https://msdn.microsoft.com/library/windows/hardware/dn915085
https://msdn.microsoft.com/library/windows/hardware/dn915073


 

Best Practices for Driver Revisions and Driver Ranking

Troubleshooting Hardware Configuration Differences

When you generalize the computer, use an answer file that has the Microsoft-Windows-
PnpSysPrep\PersistAllDeviceInstalls setting to save time. This setting prevents Windows Setup from removing
and reconfiguring the device state for identical hardware. On first boot, the detected device drivers are already
preconfigured, potentially enabling a quicker first-boot experience.

Important
Avoid using the PersistAllDeviceInstalls setting when the hardware and the hardware configuration on the
reference computer are not identical to those of the destination computers. Even seemingly minor differences in
hardware or hardware configuration can cause severe or easily overlooked problems. For more information, see
the Troubleshooting Hardware Configuration Differences section of this topic.

It's a good practice not to use the PersistAllDeviceInstalls setting on your primary reference image. Instead, for
each group of computers that have a different hardware configuration, first load your primary reference image
onto a new reference computer that has the planned hardware configuration. Next, capture a new image of this
setup and use the PersistAllDeviceInstalls setting.

For more information about how to generalize the Windows image, see Sysprep (Generalize) a Windows
installation.

Don't maintain multiple versions or revisions of the same driver package in the same image. Use offline or online
servicing tools to update drivers.

Normally, when Windows Setup boots a computer and multiple versions of a driver package exist on that
computer, Setup determines which driver to install by using driver ranking. But when you use the
PersistAllDeviceInstalls setting, the normal driver-ranking processes don't occur. So, devices that use outdated
drivers may remain installed. For more information about driver ranking, see How Windows Ranks Drivers on
MSDN.

If you must add a device driver to an image that uses the PersistAllDeviceInstalls setting, you can update your
device drivers by using one of the following methods:

Use offline servicing tools, like the Deployment Image Servicing and Management (DISM) tool or an
unattended answer file. For more information, see Add and Remove Drivers to an Offline Windows Image.

Use online servicing methods or tools, like an unattended answer file. For more information, see Add a
Driver Online in Audit Mode.

For the PersistAllDeviceInstalls setting to work correctly, the hardware configuration must be identical on the
reference computer and on the destination computers. Hardware configuration includes the following
components:

Hardware make and model.

Firmware. Updates, revisions, and configuration differences can cause some devices to report different
criteria for matching device drivers or to use different resources. For example:

Peripheral Component Interconnect (PCI)–based devices can embed different subsystem revision
numbers in their reported hardware IDs.

BIOS revisions can change the Advanced Configuration and Power Interface (ACPI) namespace.
This causes Windows Setup to report existing devices differently or to introduce existing devices as
new devices.

BIOS system configuration differences can cause system devices to claim different memory, I/O,

http://go.microsoft.com/fwlink/?LinkId=91227


Low-risk, medium-risk, and high-risk differences in hardware configurationLow-risk, medium-risk, and high-risk differences in hardware configuration

Low-risk differencesLow-risk differences

Medium-risk differencesMedium-risk differences

High-risk differencesHigh-risk differences

Types of problems that can occur with a hardware configuration changeTypes of problems that can occur with a hardware configuration change

direct memory access (DMA), or interrupt request (IRQ) resources.

Physical location. Hardware configurations must use the same slot, port, or socket numbers to connect to
external devices. For example:

PCI expansion cards must be inserted in the same slot numbers.

USB devices must be connected or wired to the same port numbers on the same USB host
controllers and integrated hubs.

Storage devices must be connected to the same storage controllers and channels.

When you use the PersistAllDeviceInstalls setting, any hardware differences can potentially cause problems.
But some differences are more likely to cause problems than others.

For the following types of hardware differences, you may be able to work around potential driver conflicts and still
use the PersistAllDeviceInstalls setting:

CPU clock speed

Amount of memory

Hard disk capacity

External input devices, like keyboards and mouse devices

Monitors

For the following types of hardware differences, we recommend that you don't use the PersistAllDeviceInstalls
setting:

Video cards

Storage drives and media readers, like optical drives and card readers

Internal or integrated bus devices, like USB or 1394 devices

When these types of hardware differences exist, using this setting may not reduce installation time, even if you
work around potential driver conflicts.

For major hardware differences, don't use the PersistAllDeviceInstalls setting. These differences include:

Motherboard chipset or CPU brand

Storage controllers

Form-factor differences, like a change from a desktop to a laptop or from a laptop to a desktop

Keyboard layout differences, like a change from a standard 101-key keyboard to a Japanese 106-key
keyboard

Any other devices that are in the enumeration path of the Windows boot volume

Even seemingly minor differences in hardware or hardware configuration can cause severe or easily overlooked
problems, like these:



Hardware configuration differences that can cause system boot failuresHardware configuration differences that can cause system boot failures

SYSTEM-SUPPLIED DEVICE SETUP CLASS CLASSGUID

System instability

Inability to use some of the basic or extended functionality of a device

Extended boot times and extended installation times

Misnamed devices in the Devices and Printers folder, Device Manager, and other device-related user
interfaces

Severe system problems that leave the computer in a non-bootable state

When the boot-critical hardware is not identical on the reference computer and destination computers, using the
PersistAllDeviceInstalls setting can cause severe system problems that can leave the computer in a non-
bootable state.

Boot-critical driver packages can belong to any of the following Windows device setup classes, as identified by the
ClassGUID directive in the <Version> section of the .inf files in their driver packages.

System {4D36E97D-E325-11CE-BFC1-08002BE10318}

Computer {4D36E966-E325-11CE-BFC1-08002BE10318}

Processor {50127DC3-0F36-415E-A6CC-4CB3BE910B65}

PCMCIA {4D36E977-E325-11CE-BFC1-08002BE10318}

HDC {4D36E96A-E325-11CE-BFC1-08002BE10318}

SCSIAdapter {4D36E97B-E325-11CE-BFC1-08002BE10318}

DiskDrive {4D36E967-E325-11CE-BFC1-08002BE10318}

CDROM {4D36E965-E325-11CE-BFC1-08002BE10318}

FDC {4D36E969-E325-11CE-BFC1-08002BE10318}

FloppyDisk {4D36E980-E325-11CE-BFC1-08002BE10318}

Volume {71A27CDD-812A-11D0-BEC7-08002BE2092F}

USB {36FC9E60-C465-11CF-8056-444553540000}

SBP2 {D48179BE-EC20-11D1-B6B8-00C04FA372A7}



  

SYSTEM-SUPPLIED DEVICE SETUP CLASS CLASSGUID

Undetectable hardwareUndetectable hardware

Troubleshooting Driver Conflicts

Example of a potential driver conflictExample of a potential driver conflict

1394 {6BDD1FC1-810F-11D0-BEC7-08002BE2092F}

Enum1394 {C459DF55-DB08-11D1-B009-00A0C9081FF6}

Keyboard {4D36E96B-E325-11CE-BFC1-08002BE10318}

Mouse {4D36E96F-E325-11CE-BFC1-08002BE10318}

HIDClass {745A17A0-74D3-11D0-B6FE-00A0C90F57DA}

Ports {4D36E978-E325-11CE-BFC1-08002BE10318}

For more information about these device setup classes, see System-Supplied Device Setup Classes on MSDN.

When you deploy a new computer to an end user, some hardware, like a removable device or a device that has an
on/off switch, may not be present or detected during first boot. By default, on first boot, Windows Setup removes
the preconfigured device state for undetected hardware.

To deploy hardware that may not be present or detected on first boot, add any applicable device drivers to the
reference image, connect or turn on the applicable devices so that Windows can install them, and use the
Microsoft-Windows-PnpSysprep/DoNotCleanUpNonPresentDevices setting when you capture the image.

Important
Using the DoNotCleanUpNonPresentDevices setting can lead to the unnecessary storage of excess device
states and contribute to slower boot times.

To avoid driver conflicts between independent boot-critical driver packages, the IHV must make sure that each
device driver uses different service names, registry key values, and binary file names.

In the following example, a fictitious IHV named Fabrikam produces two types of storage controllers:
StandardController and ExtremeController. Fabrikam assumes that only one type of storage controller is installed
at a time on a particular computer.

The driver package defines the StandardController and ExtremeController configurations to use the same driver
service name, storctrl. The storctrl driver service uses different service settings that change depending on which
hardware (StandardController or ExtremeController) is installed. Because both StandardController and
ExtremeController use the same service, they cannot coexist.

This sample shows the contents of the driver package file Storctrl.inf:

http://go.microsoft.com/fwlink/?LinkId=237677


[Version]
Signature = "$WINDOWS NT$"
Class = SCSIAdapter
ClassGuid = {4D36E97B-E325-11CE-BFC1-08002BE10318}
...
[Manufacturer]
%Fabrikam% = Fabrikam,NTx86

[Fabrikam.NTx86]
%StandardController% = StandardController_DDInstall,PCI\VEN_ABCD&DEV_0001
%ExtremeController%  = ExtremeController_DDInstall, PCI\VEN_ABCD&DEV_0002

...

[StandardController_DDInstall.Services]
AddService = storctrl,0x00000002,StandardController_ServiceInstall

[StandardController_ServiceInstall]
ServiceType  = 1 ; SERVICE_KERNEL_DRIVER
StartType    = 0 ; SERVICE_BOOT_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ImagePath    = %12%\storctrl.sys
AddReg       = StandardController_ServiceSettings

[StandardController_ServiceSettings]
HKR,Settings,LowPowerMode,0x00010001,1
HKR,Settings,ErrorCorrection,0x00010001,1

...

[ExtremeController_DDInstall.Services]
AddService = storctrl,0x00000002,ExtremeController_ServiceInstall

[ExtremeController_ServiceInstall]
ServiceType  = 1 ; SERVICE_KERNEL_DRIVER
StartType    = 0 ; SERVICE_BOOT_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ImagePath    = %12%\storctrl.sys
AddReg       = ExtremeController_ServiceSettings

[ExtremeController_ServiceSettings]
HKR,Settings,LowPowerMode,0x00010001,0
HKR,Settings,ErrorCorrection,0x00010001,4
...

Related topics

If StandardController is on the reference computer and its settings are maintained during image capture, the
storctrl driver service is preconfigured. If ExtremeController is on the destination computer, Windows may use the
preconfigured settings and files that are intended for StandardController. This can cause unexpected results.

The IHV can help resolve the conflict by using one of these options:

Create separate driver packages that have separate .inf files for each configuration, and import only the
required driver package into the Windows image during deployment. For example, split Storctrl.inf into two
separate .inf files, one version for StandardController and one version for ExtremeController, and import only
the required driver package into the Windows image.

Create another service in the driver package for each configuration. Give each service a different name (for
example, storctrl and storctrlx) and point to a different binary image file (for example, Storctrl.sys and
Storctrlx.sys).

Device Drivers and Deployment Overview



Add a Driver Online in Audit Mode
5/11/2018 • 2 minutes to read • Edit Online

Adding a Device Driver

To add a device driver during the auditSystem configuration passTo add a device driver during the auditSystem configuration pass

You can use an answer file to automate the installation of device drivers when the computer is booted in audit
mode.

The auditSystem configuration pass processes unattended Setup settings while Windows is running in system
context, before a user logs on to the computer in audit mode. The auditSystem configuration pass runs only if
the computer is booted in audit mode. To add device drivers during the auditSystem configuration pass, add the
Microsoft-Windows-PnpCustomizationsNonWinPE component to your answer file in the auditSystem
configuration pass, and specify the path for each device driver. After you run Setup, boot Windows in audit mode.
You can run the Sysprep command with the /audit option to configure the computer to start in audit mode the
next time that it boots. Or, in the answer file, you can configure the Microsoft-Windows-Deployment\Reseal\
Mode  setting to audit. For more information, see Unattended Windows Setup Reference.

1. Locate the .inf files that you want to install during audit mode for the device driver.

2. On your technician computer, open Windows System Image Manager (Windows SIM). Click Start, type
Windows System Image Manager, and then select Windows System Image Manager.

3. Open your answer file and expand the Components node to display available settings.

4. Add the Microsoft-Windows-PnpCustomizationsNonWinPE component to your answer file in the
auditSystem configuration pass.

5. Expand the Microsoft-Windows-PnpCustomizationsNonWinPE  node in the answer file. Right-click
DevicePaths, and then click Insert New PathAndCredentials.

A new PathAndCredentials list item appears.

6. For each location that you access, add a separate PathAndCredentials list item.

7. In the Microsoft-Windows-PnpCustomizationsNonWinPE component, specify the path of the device
driver and the credentials that are used to access the file if the file is on a network share.

Note
You can include multiple device-driver paths by adding multiple PathAndCredentials list items. If you
add multiple list items, you must increment the value of Key  for each path. For example, if you add two
separate driver paths, the first path uses the Key  value of 1, and the second path uses the Key  value of 2.

8. Save the answer file and close Windows SIM. The answer file must resemble this example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-a-driver-online-in-audit-mode.md
https://msdn.microsoft.com/library/windows/hardware/dn923009
https://msdn.microsoft.com/library/windows/hardware/dn923277


Related topics

<?xml version="1.0" encoding="utf-8" ?> 
<unattend xmlns="urn:schemas-microsoft-com:unattend">
   <settings pass="auditSystem">
      <component name="Microsoft-Windows-PnpCustomizationsNonWinPE" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
         <DriverPaths>
            <PathAndCredentials wcm:keyValue="1" wcm:action="add">
               <Credentials>
                  <Domain>Fabrikam</Domain> 
                  <Password>MyPassword</Password> 
                  <Username>MyUserName</Username> 
               </Credentials>
               <Path>\\networkshare\share\drivers</Path> 
            </PathAndCredentials>
         </DriverPaths>
      </component>
   </settings>
</unattend>

Setup /unattend:C:\unattend.xml

Sysprep /audit /reboot

9. Boot in Windows Preinstallation Environment (Windows PE), run Windows Setup, and specify the name
of the answer file. For example:

The specified answer file is cached to the system so that when you run audit mode, the computer applies
settings in the answer file.

Setup finishes.

10. Run the Sysprep command with the /audit option to configure the computer to start in audit mode the
next time that it boots. For example:

When Windows reboots in audit mode, device drivers that you specified in the answer file are added.

You can use the PNPUtil tool to add, remove, and enumerate drivers on a running operating system. For more
information about how to use PNPUtil to add or remove Plug and Play drivers, see Install a Plug and Play
Device.

Device Drivers and Deployment Overview

Add Device Drivers to Windows During Windows Setup

DISM Driver Servicing Command-Line Options

Add and Remove Drivers to an Offline Windows Image

Audit Mode Overview

Boot Windows to Audit Mode or OOBE

http://go.microsoft.com/fwlink/?LinkId=139151


Add and Remove Drivers to an offline Windows
Image
4/24/2018 • 5 minutes to read • Edit Online

NOTENOTE

Add drivers to an offline Windows image

You can use DISM to install or remove driver (.inf) files in an offline Windows or WinPE image. You can either
add or remove the drivers directly by using the command prompt, or apply an unattended answer file to a
mounted .wim, .ffu, .vhd, or .vhdx file.

When you use DISM to install a device driver to an offline image, the device driver is added to the driver store in
the offline image. When the image is booted, Plug and Play (PnP) runs and associates the drivers in the store to
the corresponding devices on the computer.

To add drivers to a Windows 10 image offline, you must use a technician computer running Windows 10, Windows Server
2016, or Windows Preinstallation Environment (WinPE) for Windows 10. Driver signature verification may fail when you
add a driver to a Windows 10 image offline from a technician computer running any other operating system.

To learn how to add a driver on a running Windows PC, see Add a driver online in audit mode or Install a plug
and play device. To learn how to add a driver to a PC running WinPE, see Drvload command line options.

To add drivers to an offline image, you have to mount an image prior to adding drivers.

If you're adding drivers to a WinPE image, you can add them to the WinPE image in the output folder you
specified when you ran copype, for example: C:\WinPE_amd64\media\sources\boot.wim . This ensures that drivers
will be included in WinPE each time you build WinPE media from that folder.

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows Drive" 
/MountDir:C:\test\offline

Dism /Image:C:\test\offline /Add-Driver /Driver:C:\drivers\mydriver.inf

Dism /Image:C:\test\offline /Add-Driver /Driver:c:\drivers /Recurse

1. Mount a Windows image. For example:

See Mount and modify a Windows image using DISM for more info.

2. Add a driver to the image.

To install all of the drivers from a folder and all its subfolders, point to the folder and use the /Recurse
option.

To see all DISM driver servicing command line options, see DISM driver servicing command-line options.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-and-remove-drivers-to-an-offline-windows-image.md
http://go.microsoft.com/fwlink/?LinkId=139151


Remove drivers from an offline Windows image

Add drivers to an offline Windows image by using an unattended
answer file

WARNINGWARNING

Dism /Image:C:\test\offline /Add-Driver /Driver:C:\drivers\mydriver.inf /ForceUnsigned

Dism /Image:C:\test\offline /Get-Drivers 

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

Using /Recurse  can be handy, but it's easy to bloat your image with it. Some driver packages include multiple .inf
driver packages, which often share payload files from the same folder. During installation, each .inf driver package is
expanded into a separate folder. Each individual folder has a copy of the payload files. We've seen cases where a
popular driver in a 900MB folder added 10GB to images when added with the /Recurse option.

To install an unsigned driver, use /ForceUnsigned to override the requirement that drivers installed on
X64-based computers must have a digital signature.

3. Check to see if the driver was added. Drivers added to the Windows image are named Oem*.inf. This
guarantees unique naming for newly added drivers. For example, the files MyDriver1.inf and
MyDriver2.inf are renamed Oem0.inf and Oem1.inf.

4. Commit the changes and unmount the image.

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows 10 Home" 
/MountDir:C:\test\offline

Dism /Image:C:\test\offline /Remove-Driver /Driver:OEM1.inf /Driver:OEM2.inf

WARNINGWARNING

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

1. At an elevated command prompt, mount the offline Windows image:

2. Remove a specific driver from the image. Multiple drivers can also be removed on one command line.

Removing a boot-critical driver package can make the offline Windows image unbootable. For more information,
see DISM Driver Servicing Command-Line Options.

3. Commit the changes and unmount the image.

1. Gather the device driver .inf files that you intend to install on the Windows image.



NOTENOTE

NOTENOTE

<?xml version="1.0" ?><unattend xmlns="urn:schemas-microsoft-com:asm.v3" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State">
   <settings pass="offlineServicing">
      <component name="Microsoft-Windows-PnpCustomizationsNonWinPE" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS">
         <DriverPaths>
            <PathAndCredentials wcm:keyValue="1">
               <Path>\\networkshare\share\drivers</Path>
               <Credentials>
                  <Domain>Fabrikam</Domain>
                  <Username>MyUserName</Username>
                  <Password>MyPassword</Password>
               </Credentials>
            </PathAndCredentials>
         </DriverPaths>
      </component>
   </settings>
</unattend>

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Index:1 /MountDir:C:\test\offline

All drivers in the directory and subdirectories that are referenced in the answer file are added to the image. You
should manage the answer file and these directories carefully to address concerns about increasing the size of the
image with unnecessary driver packages.

2. Use Windows System Image Manager (Windows SIM) to create an answer file that contains the paths to
the device drivers that you want to install.

Add the Microsoft-Windows-PnpCustomizationsNonWinPE\DriverPaths\PathAndCredentials\Credentials

component to your answer file in the offlineServicing configuration pass.
For each location that you intend to access, add a separate PathAndCredentials list item by right-
clicking on DriverPaths in the Answer File pane and clicking Insert New PathAndCredentials.

See Configure components and settings in an answer file for information on how to modify an answer
file.

3. For each path in Microsoft-Windows-PnpCustomizationsNonWinPE , specify the path to the device driver and
the credentials that are used to access the file, if the file is on a network share.

When you include multiple device driver paths by adding multiple PathAndCredentials list items, you must
increment the value of Key for each path. For example, you can add two separate driver paths where the value of
Key for the first path is equal to 1 and the value of Key for the second path is equal to 2.

4. Save the answer file and exit Windows SIM. The answer file must resemble the following sample.

5. Mount the Windows image that you intend to install the drivers to by using DISM:

If you're working with a VHD or FFU, specify /Index:1 .

6. Apply the answer file to the mounted Windows image:

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/wsim/configure-components-and-settings-in-an-answer-file


Related topics

DISM /Image:C:\test\offline /Apply-Unattend:C:\test\answerfiles\myunattend.xml

Dism /Image:C:\test\offline /Get-Drivers 

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

For more information about how to apply an answer file, see DISM Unattended Servicing Command-
Line Options.

The .inf files referenced in the path in the answer file are added to the Windows image.

7. Check to see if the driver was added. Drivers added to the Windows image are named Oem*.inf. This
guarantees unique naming for newly added drivers. For example, the files MyDriver1.inf and
MyDriver2.inf are renamed Oem0.inf and Oem1.inf.

For example, type:

8. Unmount the .wim file and commit the changes. For example, type:

If you need drivers for WinPE to see the local hard disk drive or a network, you must use the windowsPE
configuration pass of an answer file to add drivers to the WinPE driver store and to reflect boot-critical drivers
required by WinPE. For more information, see Add Device Drivers to Windows During Windows Setup.

Device Drivers and Deployment Overview

Add Device Drivers to Windows During Windows Setup

DISM - Deployment Image Servicing and Management Technical Reference for Windows



Add Device Drivers to Windows During Windows
Setup
5/11/2018 • 2 minutes to read • Edit Online

Add Drivers to New Installations (windowsPE)

To install Windows® on some hardware designs, you may need to add device drivers to Windows Setup. You
can add drivers to Windows Setup by using an answer file that specifies the path to the driver files. To do this in
new installations, you add the Microsoft-Windows-PnpCustomizationWinPE component during the windowsPE
configuration pass, add the driver paths, and then specify the answer file.

You can also modify existing images and add and remove drivers. You can service offline images in several ways.
For example, you can add the Microsoft-Windows-PnpCustomizationsNonWinPE component during the
offlineServicing configuration pass, add or remove the driver paths, and then specify the name of the answer
file. For more information about how to modify drivers on an offline Windows image by using an answer file,
and also other methods of adding drivers to and removing drivers from an existing image, see Add and Remove
Drivers to an Offline Windows Image.

For new installations, you add drivers during the windowsPE configuration pass.

This method initializes Windows Preinstallation Environment (Windows PE) and processes Windows PE
settings from the answer file, as follows:

1. Windows stages the Windows PE drivers in the RAM driver store.. Windows loads boot-critical drivers
that Windows PE requires to access the local disk and network. When you right-click DevicePaths and
select Insert New PathAndCredentials into Windows PE , Windows PE processes other Windows PE
customizations that the answer file specifies.

2. The Windows Setup process applies the Windows image. Boot-critical drivers appear on the Windows
image before Setup installs that image. Other drivers that you added to the Windows PE driver store
appear in the Windows image driver store. When Windows Setup processes the offlineServicing pass,
Windows Setup also adds any drivers that the driver path specifies to the Windows image driver store.

To add a device driver during the windowsPE pass

1. Use Windows System Image Manager (Windows SIM) to create an answer file that contains the paths to
the device drivers that you intend to install.

2. Add the Microsoft-Windows-PnpCustomizationsWinPE  component to your answer file in the
windowsPE configuration pass.

3. Expand the Microsoft-Windows-PnpCustomizationsWinPE  node in the answer file. Right-click
DevicePaths, and then select Insert New PathAndCredentials.

A new PathAndCredentials list item appears.

4. For each location that you access, add a separate PathAndCredentials list item.

You can include multiple device driver paths by adding multiple PathAndCredentials list items. If you
add multiple list items, you must increment the Key  value for each path. For example, if you add two
separate driver paths, the first path uses the Key  value of 1 , and the second path uses the Key  value of 
2 .

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-device-drivers-to-windows-during-windows-setup.md


Related topics

<?xml version="1.0" encoding="utf-8" ?> 
<unattend xmlns="urn:schemas-microsoft-com:unattend">
   <settings pass="windowsPE">
      <component name="Microsoft-Windows-PnpCustomizationsWinPE" processorArchitecture="x86" 
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 
xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
         <DriverPaths>
            <PathAndCredentials wcm:keyValue="1" wcm:action="add">
               <Credentials>
                  <Domain>Fabrikam</Domain> 
                  <Password>MyPassword</Password> 
                  <Username>MyUserName</Username> 
               </Credentials>
               <Path>\\server\share\drivers</Path> 
            </PathAndCredentials>
         </DriverPaths>
      </component>
   </settings>
</unattend>

Setup /unattend:C:\unattend.xml

5. Save the answer file, and then close Windows SIM. The answer file must resemble the following example:

6. Boot to Windows PE.

7. At a command prompt, run Windows Setup. Specify the name of the answer file. For example:

Windows Setup adds the device drivers in the \\server\share\drivers path to the system during the setup
process.

For more information about drivers, see Device Drivers and Deployment Overview and Add a Driver Online in
Audit Mode. For more information about Windows components, see Unattended Windows Setup Reference.

Windows Setup Technical Reference

Boot from a DVD

Deploy a Custom Image

Boot Windows to Audit Mode or OOBE

Use a Configuration Set with Windows Setup

Add a Custom Script to Windows Setup

http://go.microsoft.com/fwlink/?LinkId=206281
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


Configuration and settings
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Customize the Default User Profile by Using CopyProfile Use copyprofile to copy settings from a user profile to the
default user

Work with Product Keys and Activation Learn about product keys and activation

High DPI Support for IT Professionals Learn how to configure PCs so they can use High DPI

This section covers various configuration options when deploying Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configuration-and-settings.md


Customize the Default User Profile by Using
CopyProfile
2/6/2018 • 5 minutes to read • Edit Online

NOTENOTE

Create an answer file with the CopyProfile setting

Configure Default User Profile Settings

You can use the CopyProfile  setting to customize a user profile and then copy that profile to the default user
profile. Windows uses the default user profile as a template to assign a profile to each new user. By customizing
the default user profile, you can configure settings for all user accounts that are created on the computer. By using 
CopyProfile , you can customize installed applications, drivers, desktop backgrounds, internet explorer settings,

and other configurations. Note that some settings are not preserved by using CopyProfile .

Using CopyProfile for Start menu customization isn't supported. Here are the ways to manage custom Start layouts in
Windows 10:

OEMs can use layoutmodification.xml. See Customize the Start layout for more information.
IT pros can use the following resources learn about managing the Windows 10 Start Menu:

Customize Windows 10 Start and taskbar with Group Policy
Windows 10 Start Layout Customization

In Windows SIM, create an answer file with amd64_Microsoft-Windows-Shell-Setup_neutral\  added to Pass 4 -
Specialize, and set CopyProfile  to True . Save this answer file as copyprofile.xml . You'll use this answer file
when you run Sysprep.

For more information, see Best Practices for Authoring Answer Files and Unattended Windows Setup Reference
Guide.

Configure user settings in audit mode and then generalize the Windows installation by using an answer file with 
CopyProfile . If you install Windows with another answer file, make sure that answer file doesn't have 
CopyProfile  or any settings that create additional user accounts.

IMPORTANTIMPORTANT

1. Install Windows on a reference computer and boot in audit mode. For more information, see Boot
Windows to Audit Mode or OOBE.

Don't use a domain account, because the CopyProfile  setting runs after the computer is removed from the
domain when you run Sysprep. As a result, you'll lose any settings that you configured in a domain. If you change
the default user profile and then join the computer to a domain, the customizations that you made to the default
user profile will appear on new domain accounts.

2. Customize the built-in administrator account by installing applications, desktop shortcuts, and other
settings.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/customize-the-default-user-profile-by-using-copyprofile.md
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/customize-start-layout
https://docs.microsoft.com/en-us/windows/configuration/customize-windows-10-start-screens-by-using-group-policy
https://blogs.technet.microsoft.com/deploymentguys/2016/03/07/windows-10-start-layout-customization/
https://msdn.microsoft.com/library/windows/hardware/dn922445
https://msdn.microsoft.com/library/windows/hardware/dn915073
http://go.microsoft.com/fwlink/?LinkId=206281


Test the User Profile Customizations

IMPORTANTIMPORTANT

IMPORTANTIMPORTANT

C:\Windows\System32\Sysprep\Sysprep /generalize /oobe /shutdown /unattend:F:\CopyProfile.xml

There is a limit to the number of provisioned Windows Runtime-based apps that you can install. However you can
create scripts to install additional non-provisioned apps. For more information, see Sideload Apps with DISM.

3. After your customizations are completed, insert the media that contains the CopyProfile answer file in the
reference computer. For example, you can copy the answer file to a USB drive.

4. On the reference computer, open an elevated command prompt, and then type this command:

where F is the letter of the USB flash drive or other removable media. The Sysprep tool removes computer-
specific information from the image, while preserving the user profile settings that you configured. For
more information, see Sysprep (Generalize) a Windows installation.

After the image is generalized, the computer shuts down, capture the image by booting to Windows PE and then
capture the Windows installation by using DISM. For more information, see WinPE: Create USB Bootable drive
and Capture Images of Hard Disk Partitions Using DISM. After the image is captured, you can deploy it to a
destination computer by using DISM. For more information, see Apply Images Using DISM.

After the customized image is deployed to a destination computer, you can test the user profile customizations.
You can go through Out-Of-Box Experience (OOBE) to test the end user experience, or you can test the user
customizations in audit mode.

Apps based on the Windows Runtime won't start in audit mode because audit mode uses the built-in administrator account.
To run Windows Runtime-based apps you must modify a registry key before you can validate your Windows installation in
audit mode.

To test the user profile customizations after OOBE

1. Install Windows to a test computer.

2. After Windows is installed, go through OOBE and specify the computer name, user account name, and
other items. After OOBE is complete, the Windows start screen appears.

3. Log onto the computer with the user account specified during OOBE and verify that your apps and
customizations appear.

To test the user profile customizations in audit mode

1. Boot to audit mode by using an answer file or by pressing Ctrl+Shift+F3 when OOBE starts. For more
information, see Boot Windows to Audit Mode or OOBE.

2. Verify that your customizations work as intended. To test Windows Runtime-based apps, modify the
following registry key:

a. From an elevated command prompt, run Regedit.exe.

b. Browse to the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Syste



Troubleshooting CopyProfile

Related topics

m\FilterAdministratorToken registry key.

c. Click FilterAdministrationToken, and then type 1 as the value data.

d. Log off from the computer.

e. Log back on to the computer, and start the Windows Runtime-based apps to verify that your
customizations work as intended.

f. After you complete validation of your Windows Runtime-based apps, reset the
FilterAdministrationToken registry key to 0.

If the user profile settings aren't successfully copied:

1. Make sure that you set the CopyProfile  setting only once during the deployment process.

2. When you customize user settings, only use only the built-in administrator account on the computer to
avoid accidentally copying settings from the wrong profile.

3. Confirm that you didn't use a domain account.

4. Verify that there are no additional user accounts other than the built-in administrator account that you
configured:

NOTENOTE

a. Click Start, and then type Control Panel.

b. Click Control Panel, and then click Add or remove user accounts.

c. Select any additional user account other than the built-in administrator account that you configured,
and then delete it.

Delete all other user accounts on the computer before you customize the built-in administrator account.

5. Make sure that non-provisioned Windows Runtime-based apps that are stored in the tile layout are
installed within two hours of user logon to preserve the tile layout on the Start screen, when apps are
registered after the new user first logs on.

6. Some settings can be configured only by using the CopyProfile  unattend setting, and other settings can be
configured by using Group Policy.

Use Group Policy to configure settings that are reset by the new user logon process. You can also
create scripts to define these user settings.

-or-

Use the CopyProfile  unattend setting instead. For more information, see Unattended Windows
Setup Reference.

Sysprep (System Preparation) Overview

Sysprep Process Overview

Sysprep Command-Line Options

http://go.microsoft.com/fwlink/?LinkId=206281


Work with Product Keys and Activation
5/11/2018 • 2 minutes to read • Edit Online

Select Which Windows Edition to Install

Activate Windows

You can enter a product key during an automated installation of Windows by including it in your answer file.

You can also use product keys to select an image to install during an automated Windows installation.

To select a Windows edition to install, you can do one of the following:

Install Windows manually, without an answer file. Windows Setup installs the default edition from the
Windows product DVD.

Install Windows with an answer file, and include a product key in Microsoft-Windows-
Setup\UserData\ProductKey\ Key . Each product key is specific to a Windows edition. Entering the product
key in this setting does not activate Windows.

Install Windows with an answer file, and then manually type in a product key during Windows Setup. The
product key selects a Windows edition to install.

Warning
If you have multiple Windows images with the same Windows edition that are stored in the same Windows
image file (.wim), you can use the setting: Microsoft-Windows-Setup\ImageInstall\OSImage\InstallFrom\
MetaData  to differentiate between them. You must still provide a product key using one of the methods listed

in the previous list.

For information about managing Windows product keys when changing the Windows image to a higher edition,
see Change the Windows Image to a Higher Edition Using DISM.

To automatically activate Windows by using a product key, you can do one of the following:

Use the Microsoft-Windows-Shell-Setup\ ProductKey  unattend setting. You can use either a single-use
product key or a Volume License Multiple Activation Key. For more information, see the Volume Activation
Planning Guide.

The product key used to activate Windows must match the Windows edition that you install. If you use a
product key to select a Windows edition, we recommend using the same key to activate Windows, so that
the edition you install is the same as the edition that you activate.

Original Equipment Manufacturers (OEMs) can use OEM-specific activation tools.

Warning
In most Windows deployment scenarios, you no longer have to use the SkipRearm  answer file setting to reset
the Windows Product Activation clock when you run the Sysprep command multiple times on a computer.
The SkipRearm  setting is used to specify the Windows licensing state. If you specify a retail product key or
volume license product key, Windows is automatically activated. You can run the Sysprep command up to 8
additional times on a single Windows image. After running Sysprep 8 times on a Windows image, you must
recreate your Windows image. For more information about Windows components and settings that you can
add to an answer file, see the Unattended Windows Setup Reference.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/work-with-product-keys-and-activation-auth-phases.md
http://go.microsoft.com/fwlink/p/?LinkID=734870
http://go.microsoft.com/fwlink/?LinkId=206281


Related topics
Windows Deployment Options

How Configuration Passes Work

Sysprep (Generalize) a Windows installation

Change the Windows Image to a Higher Edition Using DISM

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-deployment-options


Change the Windows Image to a Higher Edition
Using DISM
5/11/2018 • 2 minutes to read • Edit Online

Find and Change Current Edition of Windows

You can use the Windows® edition-servicing commands to change one edition of Windows to a higher edition of
Windows. The edition packages for each potential target edition are staged in the Windows image. This is
referred to as an edition-family image. You can use the command-line options to list potential target editions.
Because the target editions are staged, you can service a single image, and the updates will be applied
appropriately to each edition in the image.

You need a product key to change the Windows edition online. Offline changes do not require a product key. If
you change the image to a higher edition using offline servicing, you can add the product key by using one of the
following methods:

Enter the product key during the out-of-box experience (OOBE).

Use an unattended answer file to enter the product key during the specialize configuration pass.

Use Deployment Image Servicing and Management (DISM) and the Windows edition-servicing
command-line option /Set-ProductKey after you set the edition offline.

For more information about product keys, see Work with Product Keys and Activation.

You can find the edition of Windows your image is currently set to by mounting the image and running DISM
commands on the mounted image.

To find the current edition

Dism /Get-ImageInfo /ImageFile:C:\test\images

Dism /Mount-Image /ImageFile:C:\test\images /Index:1 /MountDir:C:\test\offline

Dism /Image:C:\test\offline /Get-CurrentEdition

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. At the command prompt, type the following command to retrieve the name or index number for the image
that you want to modify.

3. Type the following command to mount the offline Windows image.

An index or name value is required for most operations that specify an image file.

4. Type the following command to find the edition of Windows your image is currently set to.

Note which edition of Windows your image is currently set to. If the image has already been changed to a
higher edition you should not change it again. We recommend that you use the lowest edition as a starting

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/change-the-windows-image-to-a-higher-edition-using-dism.md


Related topics

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

point.

5. Unmount the image or continue with the next procedure. To unmount your image, type the following
command.

To change to a higher edition of Windows

Dism /Mount-Image /ImageFile:C:\test\images /Name:<Image_name> /MountDir:C:\test\offline

Dism /Image:C:\test\offline /Get-TargetEditions

Dism /Image:C:\test\offline /Set-Edition:Professional

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

1. Type the following command to mount the offline Windows image (if it is not already mounted).

2. Type the following command to find the editions of Windows that you can change your image to.

Note the edition-ID for the edition you want to change to.

Note
You cannot set a Windows image to a lower edition. The lowest edition will not appear when you run the
/Get-TargetEditions option. You should not use this procedure on an image that has already been
changed to a higher edition.

3. Type the following command specifying the edition-ID to change the Windows image to a higher edition.

4. Type the following command to unmount the image and commit your changes.

Understanding Servicing Strategies

DISM Windows Edition-Servicing Command-Line Options

DISM - Deployment Image Servicing and Management Technical Reference for Windows



High DPI Support for IT Professionals
5/11/2018 • 2 minutes to read • Edit Online

Windows 8.1 has new features that improve the end user ’s experience with premium high density display panels.
When using Windows 8.1, activities such as projecting to an external display and desktop scaling on the primary
display are significantly improved from previous Windows releases. You will see the most benefit from these
features when you are using a dense display, such as a 2560x1440 display with 225 DPI and 200% desktop
scaling. This topic explains what is distinctive about these premium display parts, and what Windows 8.1 does to
provide better support for them. It also explains some potential issues—including display fuzziness or blurriness—
that might impact some users with lower density displays at 125% scaling, and how enterprise IT professionals
can address them in Windows 8.1.

In this section:

High DPI and Windows 8.1

Fixing blurry text in Windows 8.1 for IT Professionals

High DPI projection and multi-monitor configurations

DPI-related APIs and registry settings

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/high-dpi-support-for-it-professionals.md


 

 

High DPI and Windows 8.1
5/11/2018 • 4 minutes to read • Edit Online

Key concepts
What is DPIWhat is DPI

What are Windows scale factorsWhat are Windows scale factors

Why this matters to usersWhy this matters to users

Why this matters to enterprisesWhy this matters to enterprises

What’s new about DPI
Display hardware market changesDisplay hardware market changes

This topic introduces the key concepts of DPI and display scaling and describes what is new in Windows 8.1.

In this topic:

Key concepts

What’s new about DPI

Dots per inch (DPI)) is the physical measurement of number of pixels in a linear inch of a display. DPI is a function
of display resolution and size; a higher resolution or a smaller size will lead to higher DPI, and a lower resolution or
a larger size will lead to lower DPI. When a display has a higher DPI, pixels are smaller and closer together, so that
the user interface (UI) and other displayed content appears smaller than intended.

Windows® ensures that everything appears on the screen at a usable and consistent size by instructing
applications (including the Windows desktop shell) to resize their content by a scale factor. This number depends
on the display DPI as well as other factors that impact the user ’s perception of the display. Almost all desktop
displays and most current laptop displays are in the range of 95-110 DPI; for these devices, no scaling is required,
and Windows sets a scale factor of 100%. However, there are a number of new devices, particularly in the premium
laptop and tablet markets, which have higher displays with over 200 DPI. For these devices, Windows sets higher
scale factors to ensure that the user experience is comfortably viewable.

Users typically spend hours reading and working on Windows devices, so it is important to ensure that the device
they are looking at is optimized for their comfort. Therefore, it is important for Windows to present the content in
the most readable way so that eye fatigue is reduced, and productivity is not impacted. As display technology
improves, this can be delivered in a combination of higher DPI displays and better scaling in Windows. Windows 8
provides features that automatically adjust the default scaling to better match newer, more dense DPI displays.

As Windows devices improve, high density displays will become increasingly common in enterprise environments.
Enterprises are also moving towards a more mobile workforce that use laptops in meetings to project, docking
solutions when at the desk. To ensure optimum productivity, enterprise users should not need to manage how their
screens lock when they project, or how their docking solutions present their workspace when they sit down at a
desk. Windows 8 does this automatically for most users, but there remain some edge cases which IT professionals
in enterprise environments might need to help support. This topic describes how Windows automatically does the
right thing in most instances, and where IT might need to step in and help the user out.

With the advent of higher DPI displays. Windows devices that are available during and after 2013 will routinely
feature DPIs that are much higher than what has been previously available. Instead of laptops with 13” and
1366x768 resolutions, you will see screen resolutions up to 3200x1800 at 13”. For these laptops to be usable,

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/high-dpi-and-windows.md


Windows 8.1 changesWindows 8.1 changes

FEATURE WINDOWS 8 WINDOWS 8.1

How these changes impact enterprise usersHow these changes impact enterprise users

Windows scaling has to move from 100% (13.3” 1366x768) to 125% (13.3” 1600x900), 150% (10.6” 1920x1080)
or 200% (13.3” 2560x1440). Before Windows 8, only 100%, 125% and 150% were automatically set to match the
display; in Windows 8, 200% support has been added.

Windows 8 includes a number of feature changes that are specific for high DPI, as shown in Table 1 Windows 8.1
DPI Changes:

Table 1 Windows 8.1 DPI Changes

Support for 200% scaling No Yes

Per-monitor DPI No Yes

Scaling of existing DPI-aware
applications

No Yes

Per-monitor DPI aware applications No Yes

Viewing distance incorporated in
default DPI calculation

No Yes

Logoff free DPI change No Yes

Per-monitor DPI aware Internet
Explorer

No Yes

Auto-DPI configuration of Remote
Desktop

No Yes

The first two of the above features have the biggest impact on Windows 8 usability. In more detail:

1. Improved 200% scaling support: Windows 8.1 identifies high DPI display devices on a dynamic basis and
natively supports up to 200% scale factors. Windows 8 only identified a high DPI display during first boot,
and only supported up to 150% scaling without user customization. This feature ensures that users who buy
premium laptops with high DPI displays will automatically receive the 200% scaling required to make
content easily visible.

2. Per-monitor DPI: Windows 8.1 sets different scale factors for different displays, and can scale content
appropriately. Windows 8 only sets a single scale factor that is applied to all displays. This feature ensures
that users with High DPI devices (that is, 150% and 200% scaling laptops) who project or dock their devices
with conventional 100% scaling projectors and desktop monitors display properly sized content on those
screens.

For the users on laptops with 100% scaling, the Windows 8.1 feature changes have no impact. For users who
acquire new devices that have high DPI, Windows 8.1 provides a significant benefit.



Related topics

It is possible that some users will acquire devices that fall in-between, featuring Windows scaling of 125%. These
devices can require the user or the IT professional to configure them correctly or update/tweak applications to
improve usability. The troubleshooting section of this topic can help IT professionals identify these systems, these
applications, and undertake the right mitigation tactics.

High DPI Support for IT Professionals



 

Fixing blurry text in Windows 8.1 for IT Professionals
5/11/2018 • 5 minutes to read • Edit Online

How to tell if an application is not DPI-aware

Windows® desktop apps fall broadly into two classes: apps that are DPI-aware and those that are not. DPI-aware
apps actively let Windows know during application launch that they are capable of scaling themselves to work well
on a high DPI display. These apps include: Internet Explorer, Office, Firefox, and .NET 2.0+ (including WPF) apps.
These apps generally work well across a wide range of scale factors. Therefore, if your enterprise line of business
apps are also DPI-aware, your users should not have a problem with any Windows 8.1 displays or scale factors.

However, if an application is not DPI aware, and is running on a high DPI display, Windows scales the app by
applying bitmap scaling to the application output. This ensures that the application is the correct size on a high DPI
display. In most instances this will result in crisp and usable applications, but in some instances, the result is less
crisp and might have a slightly fuzzy or blurry appearance because of the bitmap scaling.

In this topic:

How to tell if an application is not DPI-aware

What you can do about apps that aren’t DPI-aware

Tell Windows not to scale an app that’s not DPI-aware

Use the Process Explorer tool to determine if an app is DPI-aware. Figure 1 Process Explorer shows this utility in
use, with the column for DPI Awareness enabled. (By default, process explorer does not show the DPI
Awareness column. To turn this column on, click the View menu, click Select Columns, check the box for DPI
Awareness, and click OK.) The column titled DPI Awareness tells you whether a particular process is aware of
DPI or not.

Figure 1 Process Explorer

Windows 8.1 distinguishes between three classes of applications.

Table 1 DPI Awareness Apps

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/fixing-blurry-text-in-windows-for-it-professionals.md
http://go.microsoft.com/fwlink/p/?linkid=204774


   

  

DPI AWARENESS EXAMPLES BEHAVIOR

What you can do about apps that aren’t DPI-aware
Run the latest version of the app or ask the application vendor to update their app to be DPI awareRun the latest version of the app or ask the application vendor to update their app to be DPI aware

Tell Windows not to scale an app that’s not DPI-awareTell Windows not to scale an app that’s not DPI-aware

Unaware Mmc.exe (Microsoft Management
Console and its plugins)

Windows bitmap scales the
application to any high DPI displays
that are attached to the system;
can be fuzzy at 125% and 150%
scale factors.

System-aware Office apps Application scales itself at launch to
the system DPI (usually the same as
the primary display DPI); Windows
scales the app to any displays that
do not match this.

Per-monitor-aware Internet Explorer 11 Application dynamically scales itself
to the display DPI.

Microsoft recommends that all applications become DPI-aware. It is possible that newer versions of your
applications are already DPI-aware. If they are not, you can ask your app vendor to update their app to be DPI
aware. Microsoft provides developer resources that can help them update their app, including the following:

Making Your Desktop Apps Shine on High- DPI Displays (BUILD 2013 presentation)

Writing DPI-Aware Desktop Applications in Windows 8.1

Dynamic DPI sample

In the cases where users cannot deal with the bitmap scaling of apps that aren’t DPI-aware (for example, 125%
scaling and fuzzy applications), individual Windows desktop applications can be shimmed to not be scaled. Users
can do this by using the Compatibility tab of the application’s Properties UI. For example, Figure 2 Application
Properties shows how a user can disable bitmap scaling:

http://go.microsoft.com/fwlink/p/?linkid=329827
http://go.microsoft.com/fwlink/p/?LinkID=307061
http://go.microsoft.com/fwlink/p/?linkid=329826


Use Windows 8 DPI scaling (not generally recommended)Use Windows 8 DPI scaling (not generally recommended)

Figure 2 Application Properties

You can manage bulk-shimming of applications by using the Compatadmin tool, which is available in the
Application Compatibility Toolkit that is included in the Windows Assessment and Deployment Kit (ADK). You can
download the Windows ADK from Windows Assessment and Deployment Kit (ADK) for Windows® 8. For more
information about how to use the Compatadmin tool, see How to use the Compatibility Administrator utility in
Windows.

Important
Disabling display scaling can result in content that is too small to be read or interacted with reliably; it can also
produce visual artifacts such as clipped or overlapped content. These issues depend on details of how the app was
written. Consequently, we recommend only changing this setting if absolutely required. This shim should not be
applied to apps that do not require it, or to devices that do not require it.

Windows 8.1 includes a Windows 8 compatibility scaling mode that can be deployed to address all visual blurring
issues with certain displays. Note that using the compatibility mode turns off all the benefits of the Windows 8.1
DPI features. This method should only be used as a last resort, if the enterprise environment includes too many
apps that aren’t DPI-aware to be mitigated by applying application shimming. Users can access this mode in the
DPI CPL UI by checking the box that says Let me choose one scaling level for all my displays:

Figure 3 Scaling Level Option

http://go.microsoft.com/fwlink/p/?linkid=288775
http://go.microsoft.com/fwlink/p/?linkid=329828


Understanding high DPI, display types, and Windows scalingUnderstanding high DPI, display types, and Windows scaling

SCALE FACTOR 100% MAINSTREAM 125% VALUE 150% PREMIUM 200% PREMIUM

Related topics

This setting can also be applied during deployment if you have many specific apps that need remediation and you
plan a large scale roll-out to low or mid-density displays. You can customize your image in Audit mode before
deployment. See Audit Mode Overview. See also the next section that explains how to programmatically perform
device detection and registry customization.

Windows 8.1 scales apps that aren’t DPI-aware dynamically by resizing the bitmap generated by the application.
Bitmap scaling works best when scaled at integer multiples (for example, 1x, 2x, 3x), but can have visual artifacts
that are often perceived as blurry/fuzzy at non-integer multiples (for example, 125%, 150%.)

Windows supports a full spectrum of screen sizes, resolutions, and therefore DPI. There will be some DPI ranges
that result in less than optimal Windows scaling for apps that aren’t DPI-aware.

Table 2 Scaling Values describes the possible issues that users can encounter at different Windows scaling values:

Table 2 Scaling Values

Scaling benefit N/A Small size
improvement

Significant size
improvement

Critical size
improvement

Bitmap scaling of
unaware apps

N/A Most noticeable
fuzziness

Less noticeable
fuzziness

Clear and crisp

Scaling of aware
apps

N/A Clear and crisp Clear and crisp Clear and crisp

As shown in the preceding table, most of the issues manifest at the 125% scaling ratio. For this reason, any
mitigation should target apps that aren’t DPI-aware on 125% scaling systems only.

For information about how to identify 125% systems or how to revert to Windows 8 scaling behavior for a 125%
system, see DPI-related APIs and registry settings.

High DPI Support for IT Professionals

http://go.microsoft.com/fwlink/p/?linkid=214469


High DPI projection and multi-monitor configurations
5/11/2018 • 2 minutes to read • Edit Online

Projection experiences

Duplicate mode (default for projection and typically used for projection)Duplicate mode (default for projection and typically used for projection)

Extend mode (typical for multi-monitor desktop scenarios)Extend mode (typical for multi-monitor desktop scenarios)

What this means for the IT ProfessionalWhat this means for the IT Professional

Related topics

Many enterprise users use secondary displays for such purposes as docking, projection, or extending their desktop
to a secondary display.

These scenarios do not impact the guidance for 150% and 200% devices, but for users with 125% display devices
who also use a desktop docking station or secondary monitor, we recommend the Windows 8 compatibility mode
that is described in Fixing blurry text in Windows 8.1 for IT Professionals. Additional guidance about compatible
devices and projectors is provided in this topic.

Windows 8.1 has optimized support for projection experiences. In previous versions of Windows, the user of a
high DPI device might see content that was too big on the low DPI projector, making it difficult to get all the
appropriate content on screen for presentation purposes. There are two projection modes: Duplicate and Extend.
This section describes how Windows supports each of these modes.

The default projection mode is called Duplicate mode. (Type Win+P at the keyboard to see a list of the four multi-
monitor display modes: PC screen only, Duplicate, Extend, and Second screen only.) In Duplicate mode, the
same content is presented on the laptop display as on the projector. This makes it easiest for the presenter to
interact directly with the content being display on the screen, particularly with laptop or tablet that supports touch.
In this mode, Windows will look at both displays, try to find the best common resolution, and then put both
displays into that resolution. In Windows 8.1, if this resolution change has an impact on the display scale factor,
Windows will then rescale based on the new scale factor, thereby ensuring the best projection experience.

In the Extend mode, the projector is treated as a separate display from the primary display. This mode is typical for
users using a multi-monitor setup or docking scenario. The user can drag or move content to the separate display
by using the mouse or touchpad. This is not the default option but some users prefer this setting (to give just one
example, because it allows the user to separate note taking from their presentation). In this mode, Windows 8.1
associates an appropriate scale factor for each display, and when the user moves content to the projector, Windows
will rescale it appropriately, again ensuring the best projection experience.

For projection scenarios, per-monitor scaling is required to provide a usable projection experience for 150% and
200% displays. In some cases, users who have 125% devices might have issues with apps that aren’t DPI-aware
being fuzzier when projected. See Fixing blurry text in Windows 8.1 for IT Professionals for guidance on how to
turn off per-app DPI scaling in these cases.

Important
Projectors work best in duplicate mode if they support resolutions and video modes that are similar to the device
that is projecting. For example, if the dominant portable devices in the enterprise have 1366x768 and 1920x1080
displays, the projectors that are used should support the same resolutions for the best duplicate mode experiences.

High DPI Support for IT Professionals

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/high-dpi-projection-and-multi-monitor-configurations.md


 

DPI-related APIs and registry settings
5/11/2018 • 4 minutes to read • Edit Online

Primary display native resolution

DISPLAY SIZE
DISPLAY
RESOLUTION

HORIZONTAL
(PIXELS) VERTICAL (PIXELS) PANEL DPI SCALING LEVEL

10.6" FHD 1920 1080 208 150%

10.6" HD 1366 768 148 100%

11.6" WUXGA 1920 1200 195 150%

11.6" HD 1366 768 135 100%

13.3" WUXGA 1920 1200 170 150%

13.3" QHD 2560 1440 221 200%

13.3" HD 1366 768 118 100%

15.4" FHD 1920 1080 143 125%

15.6" QHD+ 3200 1800 235 200%

17" FHD 1920 1080 130 125%

23" QFHD (4K) 3840 2160 192 200%

24" QHD 2560 1440 122 125%

If you need to perform deployment customizations, the following sections explain the registry keys and system
parameters that your post-installation scripts might need to access.

In this topic:

Primary display native resolution

Primary display DPI scale factor

Scaling mode

Scaling override in Windows 8.1 scaling mode

System-wide scale factor in Windows 8 scaling mode

Table 1 Windows 8.1 Scaling Levels, while by no means exhaustive, provides information on the Windows 8.1
scaling level for a number of common displays. Panel DPI indicates the physical pixel density of the panel, and
Scaling level indicates the scale factor that will be used for this display.

Table 1 Windows 8.1 Scaling Levels

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dpi-related-apis-and-registry-settings.md


 

// Get desktop dc
desktopDc = GetDC(NULL);
// Get native resolution
horizontalResolution = GetDeviceCaps(desktopDc,HORZRES);
verticalResolution = GetDeviceCaps(desktopDc,VERZRES);

Primary display DPI scale factor

// Get desktop dc
desktopDc = GetDC(NULL);
// Get native resolution
horizontalDPI = GetDeviceCaps(desktopDc,LOGPIXELSX);
verticalDPI = GetDeviceCaps(desktopDc,LOGPIXELSY);

DPI SCALE FACTOR

96 100

120 125

144 150

192 200

DPI AWARENESS MODE MANIFEST SETTING RETURNED VALUE

None None 96 for all displays, regardless of the
scale factor

System DPI Aware <dpiAware>True</dpiAware> The DPI of the primary display at the
time the Windows session was started
(when the user first logged in to
Windows)

To programmatically find this information for any device, you can write a utility program that reports back data.
The native primary resolution is retrieved by calling the API GetDeviceCaps() function, using the hdc for the
desktop and the HORZRES and VERZRES indices:

For more information about GetDC, see GetDC() function.

Similarly, you can get the pixel density by using the LOGPIXELSX and LOGPIXELSY indices:

These results are returned in a coordinate system in which 96 corresponds to 100%, as shown in Table 2 DPI Scale
Factors.

Table 2 DPI Scale Factors

Note
This API will return different results depending on the DPI awareness mode of your application. Configuring the
awareness mode requires adding XML to the application manifest, as detailed below:

http://go.microsoft.com/fwlink/p/?linkid=331144
http://go.microsoft.com/fwlink/p/?linkid=331145


 

 

Per-Monitor DPI Aware <dpiAware>True/PM</dpiAware> The DPI of the primary display at the
time the Windows session was started
(when the user first logged in to
Windows). To obtain the DPI of the
display that the application is located
on, use GetWindowDpi() or
GetDpiForMonitor()

DPI AWARENESS MODE MANIFEST SETTING RETURNED VALUE

Scaling mode

KEY VALUE MEANING

0 Different scale factors for each display: Windows 8.1
default.Content that is moved from one display to another will
be the right size, but can be bitmap-scaled.

1 Same scale factor is applied to all displays: Windows 8 and
earlier Windows versions behavior. Content that is moved
from one display to another might be the wrong size.

Scaling override in Windows 8.1 scaling mode

KEY VALUE MEANING

<0 Reduce each display scale factor from the default by this value
(for example, if the default was 150% scaling, -1 corresponds
to 125%, -2 to 100%).

0 Use the default value for each display.

0> Increase each display factor by this value (using the previous
example, +1 corresponds to 200% scaling).

For more information about this manifest setting, see SetProcessDPIAware function.

The Control Panel\ Appearance and Personalization\Display user interface (UI) includes a checkbox: Let me
choose one scaling level for all my displays, which controls whether the system applies a single scale factor to
all displays (as in Windows 8 and earlier versions of Windows), or different scale factors that take into account the
pixel density of each display (the Windows 8.1 default). This checkbox configures the HKCU\Control
Panel\Desktop\Win8DpiScaling registry key in Windows 8.1.

Table 3 HKCU\Control Panel\Desktop\Win8DpiScaling Values

When the Let me choose one scaling level for all my displays checkbox is cleared and the system is running
in the Windows 8.1 scaling mode, the user is provided with a slider that lets them override the current scale
factors, from Smaller, to Medium, to Larger. This setting is configured in the HKCU\Control
Panel\Desktop\DesktopDPIOverride registry key.

Table 4 HKCU\Control Panel\Desktop\DesktopDPIOverride Values

All display scale factors in this mode are constrained to be one of these four values: 100%, 125%, 150%, 200%. In
addition, after scaling is applied, applications expect to have at least 720 effective lines of resolution (that is, the
physical vertical resolution of the display divided by the scale factor); this can further limit the range of allowed
display scale factors. Table 5 Display Values shows which values are allowed for different sized displays:

https://msdn.microsoft.com/en-us/library/windows/desktop/mt748624.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn280510.aspx
http://go.microsoft.com/fwlink/p/?linkid=331146


 

VERTICAL LINES SUPPORTED SCALE FACTORS

<900 100%

>= 900 and <1080 100%, 125%

>=1080 and <1440 100%, 125%, 150%

>=1440 100%, 125%, 150%, 200%

System-wide scale factor in Windows 8 scaling mode

KEY VALUE MEANING

96 100% scaling on every display

120 125% scaling on every display

144 150% scaling on every display

192 200% scaling on every display

<other> <other>*100/96 scaling on every display

Related topics

Table 5 Display Values

When the Let me choose one scaling level for all my displays checkbox is checked, the user can specify a scale
factor that applies to all displays, regardless of each display’s pixel density. By using the custom setting, the user
can select values other than 100%, 125%, 150%, 200%, although they are limited to the range (100%-500%). This
setting is configured in the HKCU\Control Panel\Desktop\LogPixels registry key.

Table 6 HKCU\Control Panel\Desktop\LogPixels Values

Documentation for developing High DPI applications

High DPI Support for IT Professionals

https://msdn.microsoft.com/library/windows/desktop/dd464646.aspx


Features
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Features On Demand How to work with Features on Demand

Enable or Disable Windows Features Using DISM How to work with legacy Windows features

Configure a Trusted Image Identifier for Windows Defender How to add a trusted image identifier to Windows Defender

Configure Windows System Assessment Test Scores How to generate a WinSAT formal file prior to shipping it to
the end-users

Add or Remove Packages Offline Using DISM How to work with (.cab) packages

This section covers how you can add and remove or enable and disable features from a Windows installation.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-features.md


Features On Demand
6/29/2018 • 2 minutes to read • Edit Online

TIPTIP

Adding or removing Features on Demand
Using DISM to add or remove capabilities:Using DISM to add or remove capabilities:

COMMAND DESCRIPTION EXAMPLE

Features on Demand (FODs) are Windows feature packages that can be added at any time. Common features
include language resources like handwriting recognition or the .NET Framework (.NetFx3). When a Windows 10
PC needs a new feature, it can request the feature package from Windows Update.

OEMs can preinstall FODs into a Windows image with DISM's /Add-Capability  option. By default 
/Add-Capability  downloads features from Windows Update and adds them to the image, but you can use the 
/Source  and /LimitAccess  options to tell Windows where to download features from:

/Source allows you to choose a location where the capability source files are located. You can use
multiple /Source arguments.

/LimitAccess tells DISM to not check Windows Update or Windows Server Update Services for the
capability source files.

See DISM Capabilities Package Servicing Command-Line Options for more information.

Unlike previous feature packs, Features on Demand can be applicable to multiple Windows builds, and can be
added using DISM without knowing the build number. Always use Features on Demand that match the
architecture of the operating system. Adding Features on Demand of the wrong architecture might not return an
error immediately, but will likely cause functionality issues in the operating system.

If you install an update (hotfix, general distribution release [GDR], or service pack) prior to installing a Feature on Demand
or language pack, you'll have to reinstall the update. Always install language packs and Features on Demand before you
install updates.

Use the /Online option to add the capability to your PC.
Use the /Image:<mount path> option to add the capability to a mounted Windows image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/features-on-demand-v2--capabilities.md


/Add-Capability

DISM looks for source files in the
following locations:

DISM.exe /Online /Add-Capability
/CapabilityName:Language.Basic~~~en-
US~0.0.1.0

/Get-Capabilities Get capabilities in the image. DISM /Online /Get-Capabilities

/Get-CapabilityInfo Get information of a capability in the
image.

DISM /Online /Get-CapabilityInfo
/CapabilityName:Language.Basic~~~en-
US~0.0.1.0

/Remove-Capability

Note: You cannot remove a capability
that other packages depend on. For
example, if you have the French
handwriting and basic capabilities
installed, you can't remove the basic
capability.

DISM.exe /Online /Remove-Capability
/CapabilityName:Language.Basic~~~en-
US~0.0.1.0

COMMAND DESCRIPTION EXAMPLE

Related topics

Adds a capability to an image.

For packages with dependencies
this also pulls dependent packages.
For example, if you add the Speech
package, you'll also get the Text-to-
speech and Basic packages in
addition to Speech.

1. If /Source is specified, DISM
looks in the specified locations
first.

2. If /Source is not specified, or if
the source files are not found in
the specified locations, DISM
checks the locations specified
by group policy.

3. If the files still aren't found, and
if DISM is running against an
online image, and if
/LimitAccess is not specified, it
looks for the files on Windows
Update.

Removes a capability from an
image.

To see all available DISM commands for capabilities, see DISM Capabilities Package Servicing Command-Line
Options.

Available Features on Demand
Language and region Features on Demand
Add Language Packs to Windows
DISM Capabilities Package Servicing Command-Line Options



  

  

  

Available Features on Demand
7/27/2018 • 4 minutes to read • Edit Online

Available non-language Features on Demand
.NET Framework.NET Framework

NAME CAPABILITY NAME INSTALL SIZE

NetFx3 NetFX3~~~~ 306.33 MB

AccessibilityAccessibility

NAME CAPABILITY NAME INSTALL SIZE

Accessibility - Braille Support Accessibility.Braille~~~~0.0.1.0 13.83 MB

Developer ModeDeveloper Mode

The following Features on Demand are available for Windows 10. You can use either 
DISM /image:<path_to_image> /get-capabilities  or DISM /online /get-capabilities  to see which Features on

Demand are available in your image of Windows 10. To see how to add Features on Demand, see Features on
Demand.

To see available Features on Demand for languages and regions, see Language and region Features on Demand

.NET framework adds support for 3rd party .NET3.x apps. If this Feature on Demand is not installed, .NET3.x apps
won't work.

Recommendation: Preinstall these Features on Demand on devices that are preloaded with apps that require
.NET3.x.

This Feature on Demand enables Braille devices to work with the inbox Narrator screen reader. Without this
Feature on Demand, Braille drivers and translation tables will be missing, causing Braille to not function properly.

Recommendation: Don't include these Features on Demand in your image, as doing so could conflict with Braille
device rights restrictions.

This Feature on Demand's installation can be triggered by a user from the Windows Settings app.

An on-device diagnostic platform used via a browser. Installs a SSH server on the device for UWP remote
deployment as well as Windows Device Portal.

Enabling Developer Mode will attempt to auto-install this Feature on Demand. On devices that are WSUS-
managed, this auto-install will likely fail due to WSUS blocking FOD packages by default. If this Feature on
Demand is not successfully installed, device discovery and Device Portal can't be enabled, preventing remote
deployment to the device.

Recommendation: In general, don't preinstall on devices. If you are building an image for "developer edition"
devices, where the primary market for the device is developers or users who plan on developing or testing UWPs,
consider preinstalling.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/features-on-demand-non-language-fod.md


  

  

  

  

NAME CAPABILITY NAME INSTALL SIZE

Windows Developer Mode Tools.DeveloperMode.Core~~~~0.0.1.0 12.63 MB

Graphics ToolsGraphics Tools

NAME CAPABILITY NAME INSTALL SIZE

Graphics Tools Tools.Graphics.DirectX~~~~0.0.1.0 68.83 MB

Mixed RealityMixed Reality

NOTENOTE

NAME CAPABILITY NAME INSTALL SIZE

Windows Mixed Reality Analog.Holographic.Desktop~~~~0.0.1
.0

1.35 GB

Internet ExplorerInternet Explorer

NAME CAPABILITY NAME INSTALL SIZE

Internet Explorer 11 Browser.InternetExplorer~~~~0.0.11.0 1.5 MB

OneSyncOneSync

Used for Direct3D application development. It is typically installed by AAA game engine developers, enterprise
graphics software developers, or niche hobbyists.

Recommendation: Don't install. This Feature on Demand is only needed by specific users who can trigger
installation through Visual Studio when certain optional packages are chosen at install.

This Feature on Demand enables Mixed Reality (MR) devices to be used on a PC. If this Feature on Demand is not
present, MR devices may not function properly.

Note: Make sure to add this feature on demand prior to adding an update (hotfix, general distribution release
[GDR], or service pack).

Recommendation: Recommended for MR-Ready badged PCs, otherwise do not preinstall.

The Mixed Reality Feature on Demand has a large installation size. This FOD also requires the installation of an additional
data assets package, if an updated asset package is available. Updates to the Mixed Reality FOD are available via regular
Windows LCUs. The data assets update package, when available, is a separate download from the Microsoft Update Catalog.

Internet Explorer Features on Demand enable preinstallation of Internet Explorer. Internet Explorer will not be
enabled on a device that does not have this Feature on Demand added.

Recommendation: Include this Feature on Demand on images that include Internet Explorer.

This Feature on Demand is a mail, contacts, and calendar sync component. Not including this Feature on Demand
on your Windows image will cause UWP apps such as Mail, People, and Calendar to not be able to properly sync.

Recommendation: Preinstall this Feature on Demand on your Windows image.

http://www.catalog.update.microsoft.com


  

  

  

  

NAME CAPABILITY NAME INSTALL SIZE

Exchange ActiveSync and Internet Mail
Sync Engine

OneCoreUAP.OneSync~~~~0.0.1.0 18.21 MB

OpenSSH (Beta)OpenSSH (Beta)

NAME CAPABILITY NAME INSTALL SIZE

OpenSSH Client (Beta) OpenSSH.Client~~~~0.0.1.0 6.05 MB

OpenSSH Server (Beta) OpenSSH.Server~~~~0.0.1.0 5.61 MB

PrintingPrinting

NAME CAPABILITY NAME INSTALL SIZE

Enterprise Cloud Print Print.EnterpriseCloudPrint~~~~0.0.1.0 3.28 MB

Mopria Cloud Service Print.MopriaCloudService~~~~0.0.1.0 11.13 MB

Retail Demo Experience (RDX)Retail Demo Experience (RDX)

NAME CAB NAME

Language-neutral Retail Demo Content Microsoft-Windows-RetailDemo-OfflineContent-Content-
Package.cab

Language specific Retail Demo Content Microsoft-Windows-RetailDemo-OfflineContent-
Content-language-country-Package.cab

XPS ViewerXPS Viewer

The OpenSSH Features on Demand enable the use of OpenSSH on a Windows PC.

Recommendation: Don't include these Features on Demand on your image.

These Features on Demand are for devices running Windows Server as a Print Server role which supports Azure
AD joined devices. If this FOD is not installed, then a Windows Server acting as a Print Server will only support
the printing needs of traditional domain joined devices. Azure AD joined devices will not be able to discover
corporate printers.

Recommendation: Only preinstall the Features on Demand on Windows Server devices running as a Print
Server role.

These Features on Demand add the retail demo package to a device, for use in retail stores. These features are
available as .cab packages on the FOD ISO, and should be added with DISM /add-package . See Add or remove
packages offline with DISM.

Install the base retail demo pack: Microsoft-Windows-RetailDemo-OfflineContent-Content-Package, and the
English retail demo pack: Microsoft-Windows-RetailDemo-OfflineContent-Content-en-us-Packagelanguage-
neutral.

Recommendation: Preinstall these packs on all devices, as well as other language-specific FODs to ensure that
any Windows 10 device can be used as a demo device. Windows will automatically remove these FODs after a
user goes through a non-RetailDemo OOBE.

This Feature on Demand allows you to read, copy, print, sign, and set permissions for XPS documents.



NAME CAPABILITY NAME INSTALL SIZE

XPS Viewer XPS.Viewer~~~~0.0.1.0 16.91 MB

Related topics

Recommendation: In general, OEMs shouldn't preinstall this FOD. OEMs and IT pros can consider preinstalling
this FOD when they are building a PC that will use XPS documents.

Features on Demand

Language and region Features on Demand



  

Language and region Features on Demand
6/21/2018 • 3 minutes to read • Edit Online

Language and region-related Features on Demand reference

Language Features on DemandLanguage Features on Demand

COMPONENT SAMPLE PACKAGE NAME SAMPLE CAPABILITY NAME DESCRIPTION

Basic Microsoft-Windows-
LanguageFeatures-Basic-
fr-fr-Package.cab

Language.Basic~~~fr-
FR~0.0.1.0

Spell checking, text
prediction, word breaking,
and hyphenation if available
for the language.

Fonts Microsoft-Windows-
LanguageFeatures-Fonts-
Thai-Package.cab

Language.Fonts.Thai~~~und-
THAI~0.0.1.0

Fonts.

Optical character recognition Microsoft-Windows-
LanguageFeatures-OCR-
fr-fr-Package.cab

Language.OCR~~~fr-
FR~0.0.1.0

Basic

Features on Demand are available to add language capabilities to your Windows images. To view available non
language or region-related Features on Demand, see Available Features on Demand.

To see how to add Features on Demand to your Windows image, see Features on Demand.

Recommendation: Preinstall the relevant language capabilities for the languages you expect users in the device’s
target market to need.

Language Features on Demand are available in seven types:

Note: Not all Features on Demand are available for every language.

You must add this
component before
adding any of the
following components. 

Recommendation:
Preinstall the relevant
language capabilities for
the languages you
expect users in the
device’s target market to
need.

Recommendation: If a
PC will be sold to a
certain region, install
that region's Font (e.g.,
th-TH should be
preinstalled on devices
shipping to regions with
Thai language). Example,
th-TH requires the Thai
font pack.

See font capabilities for
available font
capabilities.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/features-on-demand-language-fod.md


        

Handwriting recognition Microsoft-Windows-
LanguageFeatures-
Handwriting-fr-fr-
Package.cab

Language.Handwriting~~~fr-
FR~0.0.1.0

Enables handwriting
recognition for devices with
pen input.

Text-to-speech Microsoft-Windows-
LanguageFeatures-
TextToSpeech-fr-fr-
Package.cab

Language.TextToSpeech~~~fr-
FR~0.0.1.0

Enables text to speech, used
by Cortana and Narrator.

Speech recognition Microsoft-Windows-
LanguageFeatures-
Speech-fr-fr-
Package.cab

Language.Speech~~~fr-
FR~0.0.1.0

Recognizes voice input, used
by Cortana and Windows
Speech Recognition.

COMPONENT SAMPLE PACKAGE NAME SAMPLE CAPABILITY NAME DESCRIPTION

Font Features on DemandFont Features on Demand

REGION DESCRIPTION FONT CAPABILITY REQUIRED

Recommendation:
Preinstall for the device’s
target language on any
device with a touch- or
pen-capable screen. 

These have a
dependency on the
basic component of the
same language.

Recommendation:
Don't install this
capability by default.
This FOD installs one
language by default, and
the user will select and
download additional
languages as needed.

These have a
dependency on the
basic component of the
same language.

Recommendation:
Don't install this
capability by default.
This FOD installs one
language by default, and
the user will select and
download additional
languages as needed.

These have
dependencies of the
basic and text-to-speech
components of the
same language.

When adding languages for some regions, you'll need to add Features on Demand that add font support.

Recommendation: If a PC will be sold to a certain region, install that region's Font (e.g., th-TH should be
preinstalled on devices shipping to regions with Thai language).



am-ET Amharic Microsoft-Windows-LanguageFeatures-
Fonts-Ethi-Package

ar-SA Arabic (Saudi Arabia) Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

ar-SY Arabic (Syria) Microsoft-Windows-LanguageFeatures-
Fonts-Syrc-Package

as-IN Assamese Microsoft-Windows-LanguageFeatures-
Fonts-Beng-Package

bn-BD Bangla (Bangladesh) Microsoft-Windows-LanguageFeatures-
Fonts-Beng-Package

bn-IN Bangla (India) Microsoft-Windows-LanguageFeatures-
Fonts-Beng-Package

chr-Cher-US Cherokee (Cherokee) Microsoft-Windows-LanguageFeatures-
Fonts-Cher-Package

fa-IR Persian Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

gu-IN Gujarati Microsoft-Windows-LanguageFeatures-
Fonts-Gujr-Package

he-IL Hebrew Microsoft-Windows-LanguageFeatures-
Fonts-Hebr-Package

hi-IN Hindi Microsoft-Windows-LanguageFeatures-
Fonts-Deva-Package

ja-JP Japanese Microsoft-Windows-LanguageFeatures-
Fonts-Jpan-Package

km-KH Khmer Microsoft-Windows-LanguageFeatures-
Fonts-Khmr-Package

kn-IN Kannada Microsoft-Windows-LanguageFeatures-
Fonts-Knda-Package

kok-IN Konkani Microsoft-Windows-LanguageFeatures-
Fonts-Deva-Package

ko-KR Korean Microsoft-Windows-LanguageFeatures-
Fonts-Kore-Package

ku-Arab-IQ Central Kurdish (Arabic) Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

lo-LA Lao Microsoft-Windows-LanguageFeatures-
Fonts-Laoo-Package

REGION DESCRIPTION FONT CAPABILITY REQUIRED



ml-IN Malayalam Microsoft-Windows-LanguageFeatures-
Fonts-Mlym-Package

mr-IN Marathi Microsoft-Windows-LanguageFeatures-
Fonts-Deva-Package

ne-NP Nepali Microsoft-Windows-LanguageFeatures-
Fonts-Deva-Package

or-IN Odia Microsoft-Windows-LanguageFeatures-
Fonts-Orya-Package

pa-Arab-PK Punjabi (Arabic) Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

pa-IN Punjabi Microsoft-Windows-LanguageFeatures-
Fonts-Guru-Package

prs-AF Dari Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

sd-Arab-PK Sindhi (Arabic) Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

si-LK Sinhala Microsoft-Windows-LanguageFeatures-
Fonts-Sinh-Package

syr-SY Syriac Microsoft-Windows-LanguageFeatures-
Fonts-Syrc-Package

ta-IN Tamil Microsoft-Windows-LanguageFeatures-
Fonts-Taml-Package

te-IN Telugu Microsoft-Windows-LanguageFeatures-
Fonts-Telu-Package

th-TH Thai Microsoft-Windows-LanguageFeatures-
Fonts-Thai-Package

ti-ET Tigrinya Microsoft-Windows-LanguageFeatures-
Fonts-Ethi-Package

ug-CN Uyghur Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

ur-PK Urdu Microsoft-Windows-LanguageFeatures-
Fonts-Arab-Package

zh-CN Chinese (Simplified) Microsoft-Windows-LanguageFeatures-
Fonts-Hans-Package

zh-TW Chinese Traditional (Hong Kong, Macau
and Taiwan)

Microsoft-Windows-LanguageFeatures-
Fonts-Hant-Package

REGION DESCRIPTION FONT CAPABILITY REQUIRED



  

  

Additional fonts available:Additional fonts available:

NAME DESCRIPTION

Microsoft-Windows-LanguageFeatures-Fonts-
PanEuropeanSupplementalFonts-Package

Pan-European Supplemental Fonts. Includes additional fonts:
Arial Nova, Georgia Pro, Gill Sans Nova, Neue Haas Grotesk,
Rockwell Nova, Verdana Pro.

Other region-specific requirementsOther region-specific requirements

REGION PACKAGE DESCRIPTION RECOMMENDATION

zh-TW Microsoft-Windows-
InternationalFeatures-
Taiwan-
Package~31bf3856ad364e3
5~amd64~~.cab

Supplemental support for
Taiwan date formatting
requirements. Package will
be provided to customers
located in Taiwan.

Preinstall only on devices
shipping to the Taiwan
market. Not installing this
capability on devices causes
any API calls to that use the
Taiwan calendar to fail.

List of all language-related features on demandList of all language-related features on demand

Related topics

These fonts are optional and not required for any region.

Note that this feature is distributed as a .cab file on the Feature on Demand ISO. Use DISM /add-package  to add it
to your image. See Add or remove packages offline with DISM for more information.

Download the list of all available language FODs

Available Features on Demand

Add Language Packs to Windows

DISM Capabilities Package Servicing Command-Line Options

https://download.microsoft.com/download/8/B/5/8B549DF3-6813-4665-A246-276ECCC9F2EE/Windows-10-1803-FOD-to-LP-Mapping-Table.xlsx


Enable or Disable Windows Features Using DISM
5/11/2018 • 5 minutes to read • Edit Online

To mount an offline image for servicing

To find available Windows features in an image

The Deployment Image Servicing and Management (DISM) tool is a command-line tool that is used to modify
Windows® images. You can use DISM to enable or disable Windows features directly from the command
prompt, or by applying an answer file to the image. You can enable or disable Windows features offline on a WIM
or VHD file, or online on a running operating system.

Dism /Get-ImageInfo /ImageFile:C:\test\images\install.wim

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Base Windows Image" 
/MountDir:C:\test\offline

1. Open a command prompt with administrator privileges.

2. To use DISM from an installation of the Windows Assessment and Deployment Kit (Windows ADK), locate
the Windows ADK servicing folder and navigate to this directory. By default, DISM is installed at
C:\Program Files (x86)\Windows Kits\10.0\Assessment and Deployment Kit\Deployment Tools\ in
Windows 10, C:\Program Files (x86)\Windows Kits\8.1\Assessment and Deployment Kit\Deployment
Tools\ in Windows 8.1and C:\Program Files (x86)\Windows Kits\8.0\Assessment and Deployment
Kit\Deployment Tools\ in Windows 8.

DISM is available in:

Windows 10
Windows 8.1
Windows 8
Windows Server 2016 Technical Preview
Windows Server 2012 R2
Windows Server 2012
Windows Preinstallation Environment (WinPE) for Windows 10
WinPE 5.0
WinPE 4.0

You can install DISM and other deployment and imaging tools, such as Windows System Image Manager
(Windows SIM), on another supported operating system from the Windows ADK. For more information,
see DISM Supported Platforms.

3. Use the /Get-ImageInfo  option to retrieve the name or index number for the image that you want to
modify. An index or name value is required for most operations that specify an image file.

For example, at the command prompt type:

4. Mount the offline Windows image. For example, type:

1. List all of the features available in the operating system. For example, type:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/enable-or-disable-windows-features-using-dism.md


To enable Windows features

To restore removed Windows features

Dism /online /Get-Features

Dism /Image:C:\test\offline /Get-Features

Dism /online /Get-FeatureInfo /FeatureName:TFTP

To service an offline image, specify the location of the mounted image directory. For example, type:

You can use >featurelist.txt  to redirect the output of the command to a text file that is named featurelist.

2. Review the list of features to find the feature that you want to enable, disable, remove, or restore.

3. Use /Get-FeatureInfo  to list information about the specific feature you are interested in. For example, type:

Dism /online /Enable-Feature /FeatureName:TFTP /All

Dism /Image:C:\test\offline /Enable-Feature /FeatureName:TFTP /All

Dism /online /Get-FeatureInfo /FeatureName:TFTP

1. Enable a specific feature in the image. You can use the /All  argument to enable all of the parent features
in the same command. For example, type:

To service an offline image, specify the location of the mounted image directory. For example, type:

2. Optional: Get the status of the feature you have enabled. For example, type:

If the status is Enble Pending, you must boot the image in order to enable the feature entirely.

Dism /Online /Enable-Feature /FeatureName:TFTP /Source:Z:\sources\SxS /Source:C:\test\mount\windows 
/LimitAccess

1. Enable a specific feature in the image. If you do not specify a source, DISM will look in the default location
specified by group policy for the required files needed to enable the feature For more information, see
Configure a Windows Repair Source.

If the files are not found in the default location, DISM will contact Windows Update (WU) for the required
files. You can use the /LimitAccess  argument to prevent DISM from contacting WU.

If you specify multiple /Source  arguments, the files are gathered from the first location where they are
found and the rest of the locations are ignored.

For example, type:

To service an offline image, specify the location of the mounted image directory. For example, type:



To disable Windows features

To remove Windows features for on-demand installation

To enable or disable Windows features by using DISM and an answer
file

Dism /Image:C:\test\offline /Enable-Feature /FeatureName:TFTP /Source:C:\test\mount\windows

Dism /online /Get-FeatureInfo /FeatureName:TFTP

2. Optional: Get the status of the feature you have enabled. For example, type:

If the status is EnablePending, you must boot the image in order to enable the feature entirely.

Dism /online /Disable-Feature /FeatureName:TFTP

Dism /Image:C:\test\offline /Disable-Feature /FeatureName:TFTP

Dism /online /Get-FeatureInfo /FeatureName:TFTP

1. Disable a specific feature in the image. For example, type:

To service an offline image, specify the location of the mounted image directory. For example, type:

2. Optional: Use DISM /GetFeatureInfo  to get the status of the feature you have disabled. For example, type:

If the status is DisablePending, you must boot the image in order to disable the feature entirely.

Dism /online /Disable-Feature /FeatureName:TFTP /Remove

Dism /Image:C:\test\offline /Disable-Feature /FeatureName:TFTP /Remove

Dism /online /Get-FeatureInfo /FeatureName:TFTP

1. Remove a specific feature in the image without removing the feature's manifest from the image. This option
can only be used when servicing Windows 10, Windows 8.1, Windows 8, Windows Server 2016 Technical
Preview, Windows Server 2012 R2, or Windows Server 2012. For more information, see Configure a
Windows Repair Source.

For example, type:

To service an offline image, specify the location of the mounted image directory. For example, type:

2. Optional: Use DISM /GetFeatureInfo  to get the status of the feature you have disabled. For example, type:

The status is Disabled. Beginning with Windows 10, the payload is not removed from Windows client
SKUs in order to support push-button reset. The payload is removed from Windows Server SKUs.



To commit changes on an offline image

Related topics

Dism /online /Apply-Unattend:C:\test\answerfiles\myunattend.xml

Dism /Image:C:\test\offline /Apply-Unattend:C:\test\answerfiles\myunattend.xml

1. In Windows SIM, open an existing catalog by clicking Select a Windows Image on the File menu and
specifying the catalog file type (.clg) in the drop-down list, or create a new catalog by clicking Create
Catalog on the Tools menu.

2. Expand the catalog in the Windows Image pane, and then expand Packages.

3. Expand Foundation, and right-click Microsoft-Windows-Foundation-Package.

4. Click Add to Answer File.

5. Click Enabled or Disabled next to the features that you intend to enable or disable. Click the arrow to
select the opposite choice.

You might have to expand an item to see all its children. You must enable the parent if any one of its
children are enabled.

Note
You can't restore or remove a Windows feature for features on demand with an unattended answer file.

6. Click Tools on the main menu, and then click Validate Answer File.

7. Correct any errors that appear in the Messages pane, and save the answer file.

8. At the command prompt, type the following command to apply the unattended answer file to the image.

To service an offline image, specify the location of the mounted image directory. For example, type:

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

Commit the changes and unmount the image. For example, type:

DISM - Deployment Image Servicing and Management Technical Reference for Windows

DISM Operating System Package Servicing Command-Line Options

DISM Unattended Servicing Command-Line Options

Configure a Windows Repair Source



Configure a Trusted Image Identifier for Windows
Defender
8/10/2018 • 2 minutes to read • Edit Online

Adding a Trusted Image Identifier

Make your devices work faster right out of the box by adding a trusted image identifier to Windows Defender.

Without an image identifier, when the device accesses a file for the first time, Windows Defender scans it. This is
known as an on-access scan. Optimization mechanisms, such as caching, help reduce unnecessary scans of files
that have already been scanned. When Windows Defender performs a quick scan or a full scan, the rest of the files
on the system will be marked as safe.

With an image identifier, after your image has been deployed, Windows marks the files deployed as part of the
image as safe. New or updated files will still be scanned.

Note
If you deploy a series of devices and then later determine that there is a potential security problem with image,
contact your Depth Project Manager (PM) within the Windows Ecosystem Engagement team. Provide the unique
identifier of the image. Microsoft will add this unique identifier into Windows Update. After a device with that
unique identifier receives updates from Windows Update, Windows Defender performs scans on all of the files on
that device.

For optimal performance, we recommend that you add this setting when you prepare the device for final
deployment, after you perform a full scan of the final image.

To add a trusted image identifier

Sysprep /oobe /shutdown /unattend:Unattend.xml

1. Create an answer file that you are going to use with Sysprep, and add the Security-Malware-Windows-
Defender\ TrustedImageIdentifier  setting. For more info, see Use Answer Files with Sysprep.

2. For the TrustedImageIdentifier  setting, specify a unique identifier for the image, such as a GUID or other
unique value (example: "Contoso Laptop Model 1 2018-07-31").

3. Install Windows on the reference computer, and perform all updates that are described in the "Common
Sysprep Scenarios" section of the Sysprep (System Preparation) Overview topic.

4. Perform a scan of the image by using Windows Defender or another scanning tool. This can help make sure
that the image is safe.

5. When you run Sysprep for the final time, use the Sysprep command together with the /oobe and /unattend
options, as follows:

6. Perform other offline tasks, such as offline servicing of the image. Capture and apply the image to other
devices, and then deliver the device to the customer.

The next time that the device starts, Windows identifies all of the files currently on the system, and skips
these files during subsequent scans.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-a-trusted-image-identifier-for-windows-defender.md


Related topics
Sysprep Process Overview

Use Answer Files with Sysprep



Configure Windows System Assessment Test Scores
5/11/2018 • 7 minutes to read • Edit Online

To run WinSAT on a complete system

The Windows® System Assessment Tests (WinSAT) are used to analyze the performance of several system
components, including CPU, memory, disk, and graphics.

The WinSAT results are summarized in the Performance Information and Tools Control Panel item as
Windows Experience Index (WEI) scores. These scores show consumers the performance characteristics of their
systems.

WinEI scores are no longer generated during OOBE, nor are prepop xml files used to create WinSAT formal files
during OOBE. We recommended that you generate the WinSAT formal file on the system prior to shipping it to
the end-users. This allows WinSAT scores to be available as soon as end-user boots their systems, and allows the
optimizations that depend on these results to be immediately available. Because the assessments are not run
during the out-of-box experience, the WinSAT and WEI scores are no longer generated when a user finishes
OOBE. Instead, the scores can be generated at two other times, using other mechanisms besides prepopulating
WinSAT on the system that will ship.

End users can explicitly request an assessment by using the Re-run the assessment option in the
Performance Information and Tools Control Panel item.

When the system is idle, subsequent to the first boot, the remaining WinSAT assessments will run using the
Maintenance Scheduler if they were not prepopulated.

Use the prepop option with the WinSAT command-line tool to run assessments against component systems.

To run WinSAT per computer (for all systems):

1. Install Windows 8 and boot to audit mode. For more information about audit mode, see Audit Mode
Overview.

2. Add supplemental components, such as out-of-box drivers.

3. Run WinSAT prepop.

This will generate the WinSAT prepop .xml results files to the Datastore directory, located at: 
%WINDIR%\performance\winsat\datastore\

4. [Optional] If you plan to capture this installation to deploy onto other computers, run sysprep /generalize
/audit /shutdown and then capture the installation. Deploy the image to a PC that you intend to ship, and
boot it.

5. Verify that Windows boots to audit mode, and then run WinSAT moobe.

This generates a WinSAT formal file from the matching prepop files, and ensures that the WinSAT formal
file is available when the end-user boots the system the first time. Windows scales some features based on
the WinSAT formal file, and if this file is not present on the system, then the system might experience
performance problems, including unnecessary storage device defragmentation, lack of optimized memory
management and prefetching optimizations.

Note
To reduce the time a PC spends on the factory floor, we recommend using WinSAT prepop when you are

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-windows-system-assessment-test-scores.md
http://go.microsoft.com/fwlink/?LinkId=214469


To run WinSAT for selective PC configurations and PC components

creating your master Windows images. On the factory floor, you would only need to run WinSAT moobe.
However, if you want to run both WinSAT prepop and WinSAT moobe on the factory floor, you can use
WinSAT formal instead. This option creates the same set of files as running both WinSAT prepop and
WinSAT moobe and should be used in scenarios when you are not able to run WinSAT prepop on your
master Windows images.

6. Run the sysprep /oobe to configure Windows to boot to OOBE.

Warning
Running sysprep /generalize after running WinSAT moobe will delete the results that WinSAT moobe
created. We recommend that you run WinSAT moobe or WinSAT formal on the factory floor for each PC
that you intend to ship to a customer.

The system is now ready to be shipped to a customer. The benefit of running all of the WinSAT assessments per
computer image is that the customer’s computer always has a complete set of WinSAT results. It also has the most
accurate WinSAT results. In this use, accurate means that if the consumer used on-demand rating of a system, that
system would get a rating equal to or greater than the rating that was prepopulated by WinSAT.

Pre-population is not meant to enable transferring WinSAT data among systems with very different capabilities,
such as among laptops and desktops, because the data is not accurate across widely differing systems. Instead, it is
meant to make it easier to re-use WinSAT data among similar systems; those systems that contain the same
motherboard/chipset and similar CPU, video cards and disks.

The following procedure describes how to run WinSAT on selected configurations within a line of similar
computers. This involves running the WinSAT prepop commands multiple times.

1. Identify the configurations that you intend to include in the PC, including video processors, memory, and
storage devices.

2. Install Windows 8 and boot to audit mode. For more information about audit mode, see Audit Mode
Overview.

3. Add supplemental components, such as out-of-box drivers.

4. Run WinSAT prepop.

5. Run Sysprep /generalize /audit /reboot. This will remove any non-prepop WinSAT .xml files.

6. Copy the resulting WinSAT prepop .xml files from %WINDIR%\performance\winsat\datastore  to the network
share that you are using to store WinSAT results.

7. Upgrade one of the components. For example, increase the memory of one configuration in your set of
computers.

8. Run WinSAT prepop -mem test. Using the tool this way ensures that only tests relevant to the specified
component will run. An additional .xml file is generated that shows the memory test results.

9. Restore the original memory configuration, and upgrade a different component, such as the video card.

Note
Because WinSAT results can be used with configurations of the same level or higher, if you revert to the
base configuration, the test results are relevant to a broader range of computers.

10. Re-run the test using the WinSAT prepop -graphics command. Only tests relevant to the specified
component run. An additional .xml file is generated for the Graphics results.

11. Store the new results files with the original .xml results files on your network share.

http://go.microsoft.com/fwlink/?LinkId=214469


WinSAT Prepop Command-line Options

12. To prepopulate the WinSAT results for a new computer with similar components, copy the .xml files from
the network share to the target computer's WinSAT Datastore directory: 
%WINDIR%\performance\winsat\datastore . You can copy the entire set of WinSAT prepop files from the

network share to the local WinSAT directory. WinSAT will find the correct set for the current computer.

13. On the new computer run WinSAT moobe . This generates a WinSAT formal file from the matching prepop
files, and ensures that the WinSAT formal file is available when the end-user boots the system the first time.
Windows scales some features based on the WinSAT formal file, and if this file is not present on the system,
then the system might experience performance problems, including unnecessary storage device
defragmentation, lack of optimized memory management and prefetching optimizations.

When running WinSAT moobe WinSAT examines the following directory for results files: 
%WINDIR%\performance\winsat\datastore . If WinSAT does not discover a relevant set of .xml files, it will ignore the

irrelevant files and treat the system as unrated. The DWM test will run immediately, and the other tests will run as
a maintenance task, or when the end-user opts to run the tests from the Performance Information and Tools
Control Panel item. If WinSAT finds a relevant set of prepop .xml files, it uses the files to generate a formal .xml file
which will be available for use when the end-user boots the computer for the first time. This enables scaling of
features and allows Windows to perform appropriate optimizations.

WinSAT determines relevance by using hardware IDs. This includes: CPUID, memory DIMM configuration, hard
disk model and size, and video card PNP ID. If the relevant secondary assessment is not present, WinSAT will run
both the primary and secondary assessments; for example, both CPU and memory.

The advantage of this second option, running on selective configurations, is that WinSAT assessments may be run
on fewer configurations and copied to similar systems. The disadvantage is that if a set of WinSAT files is not
relevant to the current system, those tests will be ignored and the system will be treated as unrated, and
optimizations and feature scaling will not be performed when the end-user boots the computer.

The syntax for prepopulation is as follows:

Winsat prepop [-datastore <directory>][-graphics | -cpu | -mem | -disk | -dwm]

The following command runs all WinSAT tests: Winsat prepop .

You can prepopulate only one subsystem, such as DWM, subject to the following dependencies:

The DWM assessment can be run independently.

The disk assessment can be run independently.

The CPU assessment requires that a relevant memory assessment is present.

The memory assessment requires that a relevant CPU assessment is present.

The graphics assessment requires that relevant CPU and memory assessments are present.

The syntax for moobe is as follows:

Winsat moobe [-datastore <directory>]

The WinSAT file naming pattern is as follows:

For Windows 8, there is a %type%  identifier, Prepop . This identifies datastore files that are a result of
prepopulation. The naming pattern is:

%IdentifierDerivedFromDate% %Component%.Assessment(Prepop).WinSAT.xml



Related topics

Where %IdentifierDerivedFromDate%  is year-month-day and time represented as, for example, 0012-08-01 14.48.28

where the test was run on August 1, 2012 at 2:48:28 PM.

A WinSAT formal file created from running winsat prepop followed by winsat moobe; or from running winsat
formal uses the following naming pattern:

%IdentifierDerivedFromDate% Formal.Assessment(Initial).WinSAT.xml

Windows Deployment Options

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-deployment-options


Add or Remove Packages Offline Using DISM
5/11/2018 • 3 minutes to read • Edit Online

To add packages to an offline image by using DISM

To remove packages from an offline image by using DISM

Deployment Image Servicing and Management (DISM.exe) is a command-line tool that is used to update offline
Windows® images. There are two ways to install or remove packages offline with DISM. You can either apply an
unattend answer file to the offline image, or you can add or remove the package directly from the command
prompt.

If you are installing multiple packages to a Windows image, and there are dependency requirements, the best
way to ensure the correct order of the installation is by using an answer file. You can use DISM to apply the
Unattend.xml answer file to the image. When you use DISM to apply an answer file, the unattend settings in the
offlineServicing configuration pass are applied to the Windows image.

You must install the latest version of the Windows Assessment and Deployment Kit (Windows ADK), which
contains all of the tools that are required, including DISM.

Dism /Get-ImageInfo /ImageFile:C:\test\images\install.wim

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows 7 HomeBasic" 
/MountDir:C:\test\offline

Dism /Image:C:\test\offline /Add-Package /PackagePath:C:\packages\package1.cab 
/PackagePath:C:\packages\package2.cab

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

1. At an elevated command prompt, locate the Windows ADK servicing folder, and type the following
command to retrieve the name or index number for the image that you want to modify.

An index or name value is required for most operations that specify an image file.

2. Type the following command to mount the offline Windows image.

3. At a command prompt, type the following command to add a specific package to the image. You can add
multiple packages on one command line. They will be installed in the order listed in the command line.

4. At a command prompt, type the following command to commit the changes and unmount the image.

Dism /Get-ImageInfo /ImageFile:C:\test\images\install.wim

1. At an elevated command prompt, locate the Windows ADK servicing folder, and type the following
command to retrieve the name or index number for the image that you want to modify.

An index or name value is required for most operations that specify an image file.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-or-remove-packages-offline-using-dism.md


To add or remove packages offline by using DISM and an answer file

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows 7 HomeBasic" 
/MountDir:C:\test\offline

Dism /Image:C:\test\offline /Get-Packages

DISM /Image:C:\test\offline /Remove-Package 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0 /PackageName:Microsoft-
Windows-MediaPlayer-Package~31bf3856ad364e35~x86~~6.1.6801.0

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

2. Type the following command to mount the offline Windows image.

3. Optional: Type the following command to list the packages in the image.

You can use >featurelist.txt  to redirect the output of the command to a text file that is named
FeatureList.

4. Review the list of packages that are available in your mounted image and note the package identity of the
package.

5. At a command prompt, specify the package identity to remove it from the image. You can remove multiple
packages on one command line.

You can use the /PackagePath option to point to the original source of the package, or to specify the path
to the .cab file, or you can use the /PackageName option to specify the package by name as it is listed in
the image. For more information, see DISM Operating System Package Servicing Command-Line
Options.

6. At a command prompt, type the following command to commit the changes and unmount the image.

Dism /Get-ImageInfo /ImageFile:C:\test\images\install.wim

1. Open Windows SIM.

2. To add a new package, click Insert on the main menu, and select Package(s). Browse to the package you
want to add, and then click Open.

3. To remove an existing package, select the package in the Answer file pane that you want to remove. In the
Properties pane, change the Action property to Remove.

Note
The packages must be added to the offlineServicing configuration pass.

4. Validate and save the answer file.

5. At an elevated command prompt, locate the Windows ADK servicing folder, and then type the following
command to retrieve the name or index number for the image that you want to mount.

6. Type the following command to mount the offline Windows image.



Related topics

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /name:"Windows 7 HomeBasic" 
/MountDir:C:\test\offline

DISM /Image:C:\test\offline /Apply-Unattend:C:\test\answerfiles\myunattend.xml

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

An index or name value is required for most operations that specify an image file.

7. At a command prompt, type the following command to apply the unattended answer file to the image.

8. At a command prompt, type the following command to commit the changes and unmount the image.

For more information about Windows SIM, see Windows Setup Technical Reference.

DISM - Deployment Image Servicing and Management Technical Reference for Windows

DISM Operating System Package Servicing Command-Line Options

DISM Unattended Servicing Command-Line Options



Configure Oobe.xml
5/11/2018 • 2 minutes to read • Edit Online

In This Section

Related topics

Oobe.xml is a content file used to collect text and images for customizing Windows® OOBE. To build a single
Windows image that contains multiple languages to deliver to more than one country or region, you can add
multiple Oobe.xml files to customize the content based on the language and country/region selections of the
customer.

Oobe.xml Settings

How Oobe.xml Works

Windows Deployment Options

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-oobexml.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-deployment-options


Oobe.xml Settings
10/12/2017 • 6 minutes to read • Edit Online

Oobe.xml Settings

This topic describes the settings that can be set in Oobe.xml.

The following shows how elements are ordered in Oobe.xml. Not all elements and sections are required for
Windows to process Oobe.xml.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oobexml-settings.md


<FirstExperience>
  <oobe>
    <oem>
      <name></name>
      <eulafilename></eulafilename>
      <computername></computername>
      <registration>
        <title></title>
        <subtitle></subtitle>
        <customerinfo>
          <label></label>
          <defaultvalue></defaultvalue>
        </customerinfo>
        <checkbox1>
          <label></label>
          <defaultvalue></defaultvalue>
        </checkbox1>
        <checkbox2>
          <label></label>
        </checkbox2>
        <checkbox3>
          <label></label>
        </checkbox3>
        <link1>
          <label></label>
        </link1>
        <link2>
          <label></label>
        </link2>
        <link3>
          <label></label>
        </link3>
        <hideSkip></hideSkip>
      </registration>
    </oem>
    <defaults>
      <language></language>
      <location></location>
      <keyboard></keyboard>
      <adjustForDST></adjustForDST>
    </defaults>
    <hidSetup>
      <title></title>
      <mouseImagePath></mouseImagePath>
      <mouseText></mouseText>
      <mouseErrorImagePath></mouseErrorImagePath>
      <mouseErrorText></mouseErrorText>
      <keyboardImagePath></keyboardImagePath>
      <keyboardErrorImagePath></keyboardErrorImagePath>
      <keyboardText></keyboardText>
      <keyboardPINText></keyboardPINText>
      <keyboardPINImagePath></keyboardPINImagePath>
      <keyboardErrorText></keyboardErrorText>
    </hidSetup>
  </oobe>
</FirstExperience>

ELEMENT SETTING DESCRIPTION VALUE

<oem>

The following tables show descriptions and values for elements available in Oobe.xml.

The following table shows description for OEM customization and registration pages.



<name> Optional. Text to describe
the name of the OEM.

String.

<eulafilename> Optional. Text with the
filename of the EULA file.

Absolute path to the EULA
.rtf file. The EULA .html
document must be in the
same folder. Windows knows
to look for the .html file in
that location.

<computername> Optional. Text to describe
the name of the computer

String.

<registration> Optional. Additional details
are below.

<registration>

<title> Required if registration
element is used. Text to title
the Registration page.

String of up to 25 characters.

<subtitle> Required if registration
element is used. Text to
describe the Registration
page.

<customerinfo>

<label> Text to label customerinfo.
Rquired for customerinfo to
appear.

String of up to 250
characters. We strongly
recommend that you use no
more than 100 characters
because this length of text
will fit on one line.

<defaultvalue> Value to set customerinfo as
selected or not. If this field is
checked, information from
the four input fields will be
provided via asymmetric key
encryption. If not checked,
no information from the four
input fields will be provided.

True or False. True means the
check box default condition
is selected. False means the
check box default condition
isn't selected.

<checkbox1>

ELEMENT SETTING DESCRIPTION VALUE

Note: .htm files are
ignored.

Important: All HTML
files in OOBE must use
UTF-8 encoding.

See OEM license terms
to learn about creating
an .html EULA file.

https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/oem-license


<label> Text to label checkbox1.
Required for checkbox1 to
appear.

String of up to 250
characters. We strongly
recommend that you use no
more than 100 characters
because this length of text
will fit on one line.

<defaultvalue> Value to set checkbox1 as
selected or not selected.

True or False. True means the
check box default condition
is selected. False means the
check box default condition
isn't selected.

<checkbox2>

<label> Text to label checkbox2.
Required for checkbox2 to
appear.

String of up to 250
characters. We strongly
recommend that you use no
more than 100 characters
because this length of text
will fit on one line.

<defaultvalue> Value to set checkbox3 as
selected or not selected.

True or False. True means the
check box default condition
is selected. False means the
check box default condition
isn't selected.

<checkbox3>

<label> Text to label checkbox3.
Required for checkbox3 to
appear.

String of up to 250
characters. We strongly
recommend that you use no
more than 100 characters
because this length of text
will fit on one line.

<defaultvalue> Value to set checkbox3 as
selected or not selected.

True or False. True means the
check box default condition
is selected. False means the
check box default condition
isn't selected.

<link1>

<label> Label for the link to the
HTML file. Required for link1
to appear.

String of up to 100
characters.

<link> File must be named
linkfile1.html. OOBE searches
for these files under the
oobe\info folder. OOBE
searches for files under the
appropriate locale and
language specific subfolders
of oobe\info.

linkfile1.html

ELEMENT SETTING DESCRIPTION VALUE



<link2>

<label> Label for the link to the
HTML file. Required for link2
to appear.

String of up to 100
characters.

<link> File must be named
linkfile2.html. OOBE searches
for these files under the
oobe\info folder. OOBE
searches for files under the
appropriate locale and
language specific subfolders
of oobe\info.

linkfile2.html

<link3>

<label> Label for the link to the
HTML file. Required for link3
to appear.

String of up to 100
characters.

<link> File must be named
linkfile3.html. OOBE searches
for these files under the
oobe\info folder. OOBE
searches for files under the
appropriate locale and
language specific subfolders
of oobe\info.

linkfile3.html

<hideSkip> Optional. Controls whether
or not the Skip button is
displayed to the user. Default
is False, resulting in the skip
button being visible.

True or False. True means the
skip button is not visible to
the user. False means the
skip button is displayed as
an option to the user.

ELEMENT SETTING DESCRIPTION VALUE

ELEMENT SETTING DESCRIPTION VALUE

<defaults>

<language> Specifies the default
language on the system.

Decimal identifier for
language. These values can
be found in the following
topic, Available Language
Packs for Windows.

<location> Specifies the default location
on the system.

GeoID. A list of GeoIDs is
available here.

The following table shows values for language and location.

https://msdn.microsoft.com/en-us/library/dd374073%28VS.85%29.aspx


<keyboard> Specifies the default
timezone on the system.

Keyboard ID string. This can
be found with the
GetKeyboardLayoutList API.
Or, by prepending a colon
and the appropriate LCID to
one of the keyboard layout
IDs listed under
HKLM\SYSTEM\CurrentCont
rolSet\Control\Keyboard
Layouts

<adjustforDST> Specifies whether to adjust
for Daylight Saving Time.

True or False. True means
adjust for Daylight Saving
Time based on the time
zone. False means always
remain on Standard Time.

ELEMENT SETTING DESCRIPTION VALUE

ELEMENT SETTING DESCRIPTION VALUE

<hidsetup>

<title>

<mouseImagePath> Absolute path to the mouse
pairing instruction image.

Absolue path to the image.

<mouseText> Help text that displays at the
bottom of the page.

String

<mouseErrorImagePath> Absolute path to the mouse
pairing error image.

<mouseErrorText> Error that displays to users
along with mouse pairing
error image.

String

The following table shows values for HID setup.

The image must not be
larger than 630 x 372
pixels. It's scaled to fit in
portrait mode or on
small form factors.

The image must not be
larger than 630 x 372
pixels. It's scaled to fit in
portrait mode or on
small form factors.



<keyboardImagePath> Absolute path to the first
keyboard pairing instruction
image.

<keyboardErrorImagePath> Absolute path to the
keyboard pairing error
image.

Absolute path to the image

<keyboardText> Specifies the text to prompt
the user to pair the
keyboard.

String

<keyboardPINText> Specifies the prompt text for
the user to enter a pin for
the keyboard.

String

<keyboardPINImagePath> Absolute path to the
keyboard pairing instruction
image.

Absoulte path to image

<keyboardErrorText> Specifies the text to use
when an error occurs when
pairing the keyboard.

String

ELEMENT SETTING DESCRIPTION VALUE

How to Customize OOBE

The image must not be
larger than 630 x 372
pixels. It’s scaled to fit in
portrait mode or on
small form factors.

The image must not be
larger than 630 x 372
pixels. It's scaled to fit in
portrait mode or on
small form factors.

The image must not be
larger than 630 x 372
pixels. It’s scaled to fit in
portrait mode or on
small form factors.

To customize OOBE by using Oobe.xml

1. Create a file named Oobe.xml and store this file in Windows\System32\Oobe\Info.

2. By using an XML editor or a text editor, such as Notepad, update Oobe.xml with the appropriate files, paths,
and content.

3. Save your updated version of Oobe.xml in Windows\System32\Oobe\Info, or in the appropriate language-
and locale-specific folders required for your customizations.

4. Test OOBE.

Test OOBE

a. On the Start menu, point to All Programs, and then click Accessories.



Related topics

b. Right-click the command prompt shortcut, and click Run as administrator. Accept the User
Account Control dialog box.

c. Navigate to \Windows\System32\Sysprep

d. Run sysprep /oobe.

e. Start the computer.

Configure Oobe.xml



How Oobe.xml Works
5/11/2018 • 4 minutes to read • Edit Online

Single-language deployments

Oobe.xml is a content file that you can use to organize text and images and to specify and preset settings for
customizing the Windows first experience. You can use multiple Oobe.xml files for language- and region-specific
license terms and settings so that users see appropriate information as soon as they start their PCs. By specifying
information in the Oobe.xml file, OEMs direct users to perform only the core tasks that are required to set up
their PCs.

Windows checks for and loads Oobe.xml in the following locations, in the following order :

1. %WINDIR%\System32\Oobe\Info\Oobe.xml

2. %WINDIR%\System32\Oobe\Info\Default\Oobe.xml

3. %WINDIR%\System32\Oobe\Info\Default\<language>\Oobe.xml

4. %WINDIR%\System32\Oobe\Info\<country/region>\Oobe.xml

5. %WINDIR%\System32\Oobe\Info\<country/region>\<language>\Oobe.xml

If you have customizations that span all countries/regions and languages, the Oobe.xml files can be placed in
Location 1.

If you're shipping a single-region, single-language system, your custom Oobe.xml file should be placed in the
\Info (Location 1) or \Default (Location 2) directory. Those locations are functionally equivalent.

If you're shipping to multiple countries/regions and your OOBE settings require customizations for individual
countries/regions, each with a single language, all of your Oobe.xml files should be placed in Locations 4 and 5.

If you're shipping to multiple countries/regions with multiple languages, the following guidelines apply:

Place country/region-specific information in Location 4.

Place language-specific information for each respective country/region in Location 5.

If you're delivering PCs to one country/region in a single language, you should place a single Oobe.xml file in
\%WINDIR%\System32\Oobe\Info. This file can contain all of your customizations to the Windows first
experience.

For example, an English version of Windows that's delivered to the United States can have the following directory
structure:

\%WINDIR%\System32\Oobe\Info\Oobe.xml

If you're delivering PCs to more than one country/region in a single language, and you plan to vary your
customizations in different locations, place an Oobe.xml file in \%WINDIR%\System32\Oobe\Info.

This file can contain the default regional settings that you plan to show to the user. You should also include a
default set of customizations, in case the user selects a country/region that you haven't made specific
customizations for. The Oobe.xml file should also contain the <eulafilename> node with the name of the
customized license terms that you plan to use.

Place an Oobe.xml file for each country/region that contains unique customized content in

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/how-oobexml-works.md


Multiple-language or region deployments

\%WINDIR%\System32\<country/region that you're deploying to>\<language that you're deploying in>. After
the user has chosen a country/region, these files are used to display additional customizations.

For example, an English version of Windows delivered to the United States and Canada can have the following
directory structure:

\%WINDIR%\System32\Oobe\Info\Oobe.xml (EUL A file name and regional settings)

\%WINDIR%System32\Oobe\Info\244\1033\Oobe.xml (United States custom content)

\%WINDIR%\System32\Oobe\Info\39\1033\Oobe.xml (Canada custom content)

If you're delivering PCs to one or more countries/regions and are delivering PCs running Windows with additional
language packs, place an Oobe.xml file in \%WINDIR%\System32\Oobe\Info. This file can contain the default
regional settings that you plan to show to the user. You should also include a default set of customizations, in case
the user selects a country/region that you haven't made specific customizations for. This Oobe.xml should also
contain the <eulafilename> node with the name of the custom license terms that you plan to use.

Place an Oobe.xml file for each country/region that contains unique customized content in
\%WINDIR%\System32\<country/region that you're deploying to>\<language that you're deploying in>. After
the user has chosen a country/region, this file is used to display additional customizations.

For example, an English version of Windows that's delivered to the United States and Canada would use the
following directory structure:

\%WINDIR%\System32\Oobe\Info\Oobe.xml (logo, EUL A file name, and regional settings)

\%WINDIR%\System32\Oobe\Info\244\1033\Oobe.xml (United States custom content)

\%WINDIR%\System32\Oobe\Info\39\1033\Oobe.xml (Canada custom content)

If you're delivering PCs to one or more countries/regions and are delivering PCs running Windows with additional
language packs, place an Oobe.xml file in \%WINDIR%\System32\Oobe\Info. This Oobe.xml file should
contain the <eulafilename> node with the name of the customized EUL A that you plan to use.

Place an Oobe.xml for each Windows language that you're including in
\%WINDIR%\System32\Default\<language that you're deploying in>. These files should contain the default
regional settings that you plan to show for a given language, as well as a default set of customizations, in case the
user selects a country/region that you haven't made specific customizations for.

Place an Oobe.xml file for each country/region that contains customized content in \%WINDIR%\System32\
<country/region that you're deploying to>\<language that you're deploying in>. After the user has chosen a
country/region, this file is used to display your additional customizations.

For example, a version of Windows with English and French language packs that's delivered to the United States
and Canada would use the following directory structure:

Logo and EUL A:

\%WINDIR%\System32\Oobe\Info\Oobe.xml (logo and EUL A file name)

Regional settings and fallback for content that's not localized for the specific country/region:

\%WINDIR%\System32\Oobe\Info\Default\1033\Oobe.xml (default regional settings and English
content if the user chooses a country/region other than the United States or Canada)

\%WINDIR%\System32\Oobe\Info\Default\1036\Oobe.xml (default regional settings and French
content if the user chooses a country/region other than United States or Canada)



Country/region folder formatCountry/region folder format

Language folder formatLanguage folder format

%WINDIR%\System32\Oobe\Info\Default\3082\Oobe.xml

Country-specific or region-specific content in the appropriate languages

\%WINDIR%\System32\Oobe\Info\244\1033\Oobe.xml (United States custom content in English)

\%WINDIR%\System32\Oobe\Info\244\1036\Oobe.xml (United States custom content in French)

\%WINDIR%\System32\Oobe\Info\39\1033\Oobe.xml (Canada custom content in English)

\%WINDIR%\System32\Oobe\Info\39\1036\Oobe.xml (Canada custom content in French)

To identify the country/region:

\%WINDIR%\System32\Oobe\Info\46\Oobe.xml

1. Look up the country/region GeoID identifier using the Table of Geographical Locations on MSDN . These
values are presented in hexadecimal.

2. Convert the value from hexadecimal to decimal, and use that value for the folder name. For example, to
create a folder for Chile (GeoID 0x2E), name the folder "46".

To identify the language, use the decimal version of the Locale ID (LCID) value. For example, to create a Spanish
folder, name the folder "3082".

There are many more LCIDs than languages. A few LCIDs correlate to the languages that can be released with
Windows. For more information about which languages release with Windows, at what level of localization, and
their decimal identifiers, see Available Language Packs on TechNet.

http://go.microsoft.com/fwlink/?LinkId=131360
http://go.microsoft.com/fwlink/?LinkId=206620


Localize
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Language Packs Overview of language packs in Windows 10

Available Language Packs for Windows See which language packs and language interface packs are
available for Windows 10

Add Language Packs to Windows Learn how to add lanugages to Windows

Multilingual Windows Image Creation Learn how to create a Windows image that contains multiple
lanugages

Configure International Settings in Windows Learn how to specify the default language, locale, and
keyboard values during deployment or after Windows is
installed

Add Multilingual Support to a Windows Distribution Learn how to use Windows Setup to deploy a multilingual
distribution of Windows

Add Multilingual Support to Windows Setup Learn how configure your Windows installation media to
support choosing different languages for Windows Setup and
your Windows installation

Default Input Profiles (Input Locales) in Windows Learn how to configure input locales, which describe the
language of the input entered, and the keyboard on which it is
being entered

Default Time Zones Learn how to set the default time zone for Windows

Keyboard Identifiers and Input Method Editors for Windows Identify the keyboard type of a Windows installation

Where is lp.cab? Find out where to find language pack packages

Windows allows you to create Windows images for different languages and regions. This sections covers how to
create Windows deployments to support localized Windows PCs.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/localize-windows.md


  

Language Packs
5/11/2018 • 3 minutes to read • Edit Online

Language Packs in Windows 10

Language packs for Windows

Where to get language packs and LIPsWhere to get language packs and LIPs

Add languages to WindowsAdd languages to Windows

To design PCs that work better for customers in different regions, you can set up Windows with the right set of
local languages, settings, and keyboards or other input devices.

To help you reduce the size of your image, language packs in Windows 10 are split into the following language
components and Features On Demand:

UI Text (the language pack .cab file)
Basic (spell check, typing)
Fonts
Handwriting
Optical character recognition
Text-to-speech
Speech
Retail Demo experience

To significantly reduce image size, you can choose to only add core language pack UI resources to your image.

To learn more about the types of available components and their dependencies, see Language Pack Types. Note,
that not all components and features on demand are available for every language.

To learn more about adding language components to Windows, see Add Language Packs to Windows.

Language packs contain the text for the dialog boxes, menu items, and help files that you see in
Windows.

Language interface packs (LIPs) are available for some regions. L IPs provide additional translations for
the most widely-used dialog boxes, menu items, and help file content, but are not full language packs. L IPs
rely on a parent language pack to provide the remainder of the content.

OEMs and System Builders with Microsoft Software License Terms can download language packs and LIPs
from the Microsoft OEM site or the OEM Partner Center.
IT Professionals can download language packs from the Microsoft Volume Licensing Site.
After Windows is installed, end users can download and install additional language packs in Settings > Time
& language > Region and language > Add a language.

Related information:

Available Language Packs for Windows. Lists all of the supported language packs and LIPs for multiple
versions of Windows, and their identifier codes.

When you include more than one language or a L IP to Windows, your customers will be able to choose the
language that best meets their needs during Windows OOBE.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/language-packs-and-windows-deployment.md
http://go.microsoft.com/fwlink/?LinkId=131359
http://go.microsoft.com/fwlink/?LinkId=131358
http://go.microsoft.com/fwlink/?LinkId=125893


Language packs for recovery tools

Prepare keyboards, time zones, and other regional settings

Languages for apps

Related topics

There's a few different ways to install language packs:

You can add a language pack to Windows by using the Dism /Add-Package tool. See Add and Remove
Language Packs on a Running Windows Installation or Add and Remove Language Packs Offline Using
DISM.
To deploy a multilingual version of Windows by using Windows Setup (for example, a corporate image
Windows DVD or a set of images available on a corporate network), you can add language resources to
the installation program. See Add Multilingual Support to a Windows Distribution.

For corporate or network-based deployments, you may also need to update the Windows Preinstallation
Environment (Windows PE) that users see when they choose how and where to install Windows to their
PC. For more information, see WinPE: Mount and Customize.

After Windows is installed, end users can download and install additional language packs and LIPs from
the Language Control Panel. For more information, see the Local Language Program.

When things go wrong, the Windows Recovery Environment (Windows RE) can help recover the system and
data. When you update the available languages for Windows, update the available languages in the recovery
tools: Customize Windows RE.

You can specify the default keyboard layout, language, or locale, either during deployment or after Windows is
installed.

Configure International Settings in Windows
Default Input Profiles (Input Locales) in Windows: Lists the default input profiles (language and keyboard
pairs) used for each region.
Default Time Zones: Lists the default time zone used for each region.
Keyboard identifiers for Windows: Lists the keyboard hexadecimal values used when configuring input
profiles.

Many apps include support for multiple languages, though some require separate installation of language packs
to work properly. Consult with the app developer.

In general, install all of your languages onto Windows before installing apps. This helps make sure that the
language resource files are available for each of the available apps.

For more information, see Multilingual User Interface (Windows).

Add Language Packs to Windows

Features On Demand

http://go.microsoft.com/fwlink/?LinkId=262343
http://go.microsoft.com/fwlink/p/?LinkId=698642


Available Language Packs for Windows
1/4/2018 • 6 minutes to read • Edit Online

Supported Language Packs and Language Interface Packs

Language PacksLanguage Packs

LANGUAGE/REGION LANGUAGE/REGION TAG LANGUAGE/REGION ID
LANGUAGE/REGION DECIMAL
ID

Arabic (Saudi Arabia) ar-SA 0x0401 1025

Bulgarian (Bulgaria) bg-BG 0x0402 1026

Chinese (Hong Kong SAR) zh-HK 0x0c04 3076

Chinese (PRC) zh-CN 0x0804 2052

Chinese (Taiwan) zh-TW 0x0404 1028

The following tables show the supported language packs for Windows 10, Windows Server 2016, and Windows
Server 2012 R2, and supported language interface packs (L IPs) for Windows 10. L IPs are available for
Windows 10, but are not available for Windows Server. For more information, see Language packs.

Windows Server and Windows 10 language packs are not interchangeable. Windows Server language packs
cannot be used on Windows 10, and Windows 10 language packs cannot be used on Windows Server.

L IPs must be installed to the operating system that they support. Windows 10 LIPs cannot be used on Windows
8.1; similarly, Windows 8.1 L IPs cannot be used on Windows 10.

To learn how to get language packs and language interface packs, see Get language packs and LIPs.

For a complete list of supported languages and locales, see Locale Identifier Constants and Strings.

To learn how to add languages to Windows, see Add Language Packs to Windows.

The following tables include these settings:

Language/region. The name of the language that will be displayed in the UI. All 38 language packs are
available for Windows 10 and Windows Server 2016. In Windows Server 2012 the user interface (UI) is
localized only for the 18 languages listed in bold.
Language/region tag. The language identifier based on the language tagging conventions of RFC 3066.
This setting is used with the Deployment Image Servicing and Management (DISM) tool, or in an
unattended answer file.
Language/region ID . The hexadecimal representation of the language identifier. This setting is used with
the keyboard identifier when specifying an input method using DISM.
Language/region decimal identifier.The decimal representation of the language identifier. This setting is
used in Oobe.xml.

Note: No longer used.
See zh-TW.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/available-language-packs-for-windows.md
https://support.microsoft.com/help/14236/language-packs#lptabs=win10
https://msdn.microsoft.com/en-us/library/dd318693(v=vs.85).aspx


Croatian (Croatia) hr-HR 0x041a 1050

Czech (Czech Republic) cs-CZ 0x0405 1029

Danish (Denmark) da-DK 0x0406 1030

Dutch (Netherlands) nl-NL 0x0413 1043

English (United States) en-US 0x0409 1033

English (United Kingdom) en-GB 0x0809 2057

Estonian (Estonia) et-EE 0x0425 1061

Finnish (Finland) fi-FI 0x040b 1035

French (Canada) fr-CA 0x0c0c 3084

French (France) fr-FR 0x040c 1036

German (Germany) de-DE 0x0407 1031

Greek (Greece) el-GR 0x0408 1032

Hebrew (Israel) he-IL 0x040d 1037

Hungarian (Hungary) hu-HU 0x040e 1038

Italian (Italy) it-IT 0x0410 1040

Japanese (Japan) ja-JP 0x0411 1041

Korean (Korea) ko-KR 0x0412 1042

Latvian (Latvia) lv-LV 0x0426 1062

Lithuanian (Lithuania) lt-LT 0x0427 1063

Norwegian, Bokmål
(Norway)

nb-NO 0x0414 1044

Polish (Poland) pl-PL 0x0415 1045

Portuguese (Brazil) pt-BR 0x0416 1046

Portuguese (Portugal) pt-PT 0x0816 2070

Romanian (Romania) ro-RO 0x0418 1048

Russian (Russia) ru-RU 0x0419 1049

LANGUAGE/REGION LANGUAGE/REGION TAG LANGUAGE/REGION ID
LANGUAGE/REGION DECIMAL
ID



Serbian (Latin, Serbia) sr-Latn-CS 0x081a 2074

Serbian (Latin, Serbia) sr-Latn-RS 0x241A 9242

Slovak (Slovakia) sk-SK 0x041b 1051

Slovenian (Slovenia) sl-SI 0x0424 1060

Spanish (Mexico) es-MX 0x080a 2058

Spanish (Spain) es-ES 0x0c0a 3082

Swedish (Sweden) sv-SE 0x041d 1053

Thai (Thailand) th-TH 0x041e 1054

Turkish (Turkey) tr-TR 0x041f 1055

Ukrainian (Ukraine) uk-UA 0x0422 1058

LANGUAGE/REGION LANGUAGE/REGION TAG LANGUAGE/REGION ID
LANGUAGE/REGION DECIMAL
ID

Language Interface Packs (LIPs)Language Interface Packs (LIPs)

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Afrikaans (South
Africa)

af-ZA Primary: en-US 0x0436 1078

Albanian (Albania) sq-AL Primary: en-US 0x041c 1052

Amharic (Ethiopia) am-ET Primary: en-US 0x045e 1118

Armenian (Armenia) hy-AM Primary: en-US 0x042b 1067

Note: No longer used.
See sr-Latn-RS.

Except where noted, the following LIPs are available for Windows 10. For Windows Server, options to change
keyboard and regional settings such as currency, time zones, and time/date format are available but L IPs are not
available. For more information, see Language packs.

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, ru-RU

https://support.microsoft.com/help/14236/language-packs#lptabs=win10


Assamese (India) as-IN Primary: en-US 0x044d 1101

Azerbaijan az-Latn-AZ Primary: en-US 0x042c 1068

Bangla (Bangladesh) bn-BD Primary: en-US 0x0845 2117

Basque (Basque) eu-ES Primary: es-ES 0x042d 1069

Belarusian be-BY Primary: ru-RU 0x0423 1059

Bangla (India) bn-IN Primary: en-US 0x0445 1093

Bosnian (Latin) bs-Latn-BA Primary: en-US 0x141a 5146

Catalan ca-ES Primary: es-ES 0x0403 1027

Central Kurdish ku-ARAB-IQ Primary: en-US 0x0492 1170

Cherokee chr-CHER-US Primary: en-US 0x045c 1116

Dari prs-AF Primary: en-US 0x048c 1164

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Secondary: en-
GB

Secondary: en-
GB, ru-RU

Secondary: en-
GB

Secondary: en-
GB, en-US, fr-FR

Secondary: en-
GB, en-US

Secondary: en-
GB

Secondary: en-
GB, hr-HR, sr-
Latn-RS

Secondary: en-
GB, en-US, fr-FR

Secondary: ar-SA,
en-GB

Secondary: en-
GB

Secondary: en-
GB



Filipino fil-PH Primary: en-US 0x0464 1124

Galician gl-ES Primary: es-ES 0x0456 1110

Georgian (Georgia) ka-GE Primary: en-US 0x0437 1079

Gujarati (India) gu-IN Primary: en-US 0x0447 1095

Hausa (Latin, Nigeria) ha-Latn-NG Primary: en-US 0x0468 1128

Hindi (India) hi-IN Primary: en-US 0x0439 1081

Icelandic (Iceland) is-IS Primary: en-US 0x040f 1039

Igbo (Nigeria) ig-NG Primary: en-US 0x0470 1136

Indonesian
(Indonesia)

id-ID Primary: en-US 0x0421 1057

Inuktitut (Latin,
Canada)

iu-Latn-CA Primary: en-US 0x085d 2141

Irish (Ireland) ga-IE Primary: en-US 0x083c 2108

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Secondary: en-
GB

Secondary: en-
GB, en-US

Secondary: en-
GB, ru-RU

Secondary: en-
GB

Secondary: en-
GB, fr-FR

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Not available in
Windows 10.

Secondary: en-
GB

Secondary: en-
GB



isiXhosa (South
Africa)

xh-ZA Primary: en-US 0x0434 1076

isiZulu (South Africa) zu-ZA Primary: en-US 0x0435 1077

Kannada (India) kn-IN Primary: en-US 0x044b 1099

Kazakh (Kazakhstan) kk-KZ Primary: en-US 0x043f 1087

Khmer (Cambodia) km-KH Primary: en-US 0x0453 1107

K'iche' (Guatemala) quc-Latn-GT Primary: es-MX 0x0486 1158

K'iche' (Guatemala) qut-GT Primary: es-MX 0x0486 1158

Kinyarwanda rw-RW Primary: en-US 0x0487 1159

Kiswahili (Kenya) sw-KE Primary: en-US 0x0441 1089

Konkani (India) kok-IN Primary: en-US 0x0457 1111

Kyrgyz (Kyrgyzstan) ky-KG Primary: ru-RU 0x0440 1088

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, ru-RU

Secondary: en-
GB

Secondary: es-ES,
en-US, en-GB

No longer used. Secondary: es-ES,
en-US, en-GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, en-US



Lao (Laos) lo-LA Primary: en-US 0x0454 1108

Luxembourgish
(Luxembourg)

lb-LU Primary: fr-FR 0x046e 1134

Macedonian
(FYROM)

mk-MK Primary: en-US 0x042f 1071

Malay (Malaysia,
Brunei, and
Singapore)

ms-MY Primary: en-US 0x043e 1086

Malayalam (India) ml-IN Primary: en-US 0x044c 1100

Maltese (Malta) mt-MT Primary: en-US 0x043a 1082

Maori (New Zealand) mi-NZ Primary: en-US 0x0481 1153

Marathi (India) mr-IN Primary: en-US 0x044e 1102

Mongolian (Cyrillic) mn-MN Primary: en-US 0x0450 1104

Nepali (Federal
Democratic Republic
of Nepal)

ne-NP Primary: en-US 0x0461 1121

Norwegian, Nynorsk
(Norway)

nn-NO Primary: nb-NO 0x0814 2068

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Secondary: en-
GB

Secondary: de-
DE, en-GB, en-US

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, ru-RU

Secondary: en-
GB

Secondary: en-
GB, en-US



Odia (India) or-IN Primary: en-US 0x0448 1096

Persian fa-IR Primary: en-US 0x0429 1065

Punjabi (India) pa-IN Primary: en-US 0x0446 1094

Punjabi (Arabic) pa-Arab-PK Primary: en-US 0x0846 2118

Quechua (Peru) quz-PE Primary: es-MX 0x0c6b 3179

Scottish Gaelic gd-GB Primary: en-US 0x0491 1169

Serbian (Cyrillic,
Bosnia and
Herzegovina)

sr-Cyrl-BA Primary: en-US 0x1C1A 7194

Serbian (Cyrillic,
Serbia)

sr-Cyrl-CS Note: No
longer used. See sr-
Latn-RS.

Primary: sr-Latn-CS 0x0c1a 3098

Serbian (Cyrillic,
Serbia)

sr-Cyrl-RS Primary: sr-Latn-RS 0x281A 10266

Sesotho sa Leboa
(South Africa)

nso-ZA Primary: en-US 0x046c 1132

Setswana (South
Africa)

tn-ZA Primary: en-US 0x0432 1074

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB

Secondary: es-ES,
en-GB, en-US

Secondary: en-
GB

Secondary: en-
GB, sr-Latn-RS

Secondary: en-
GB, en-US

Secondary: en-
GB, en-US

Secondary: en-
GB

Secondary: en-
GB



Sindhi (Arabic) sd-Arab-PK Primary: en-US 0x0859 2137

Sinhala (Sri Lanka) si-LK Primary: en-US 0x045b 1115

Tajik (Cyrillic) tg-Cyrl-TJ Primary: ru-RU 0x0428 1064

Tamil (India) ta-IN Primary: en-US 0x0449 1097

Tatar (Russia) tt-RU Primary: ru-RU 0x0444 1092

Telugu (India) te-IN Primary: en-US 0x044a 1098

Tigrinya ti-ET Primary: en-US 0x0473 1139

Turkmen tk-TM Primary: ru-RU 0x0442 1090

Urdu ur-PK Primary: en-US 0x0420 1056

Uyghur ug-CN Primary: zh-CN 0x0480 1152

Uzbek (Latin) uz-Latn-UZ Primary: en-US 0x0443 1091

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, en-US

Secondary: en-
GB

Secondary: en-
GB, en-US

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, en-US

Secondary: en-
GB

Secondary: en-
GB, en-US

Secondary: en-
GB, ru-RU



Valencian ca-ES-valencia Primary: es-ES 0x0803 2051

Vietnamese vi-VN Primary: en-US 0x042a 1066

Welsh (Great Britain) cy-GB Primary: en-US 0x0452 1106

Wolof wo-SN Primary: fr-FR 0x0488 1160

Yoruba (Nigeria) yo-NG Primary: en-US 0x046a 1130

LANGUAGE/REGION
LANGUAGE/REGION
TAG

BASE
LANGUAGE/REGION LANGUAGE/REGION ID

LANGUAGE/REGION
DECIMAL ID

Related topics

Secondary: en-
GB, en-US

Secondary: en-
GB

Secondary: en-
GB

Secondary: en-
GB, en-US

Secondary: en-
GB

Add Language Packs to Windows

Windows Language Pack Default Values

Default Input Locales for Windows Language Packs



    

Add Language Packs to Windows
7/27/2018 • 13 minutes to read • Edit Online

NOTENOTE

Language Pack Types

NOTENOTE

COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION

Language pack Microsoft-Windows-
Client-Language-
Pack_x64_es-es.cab

None UI text, including basic
Cortana capabilities.

If you're looking to add a language to your personal PC, see Add and switch input and display language preferences in
Windows 10.

OEMs can add language packs to localize PCs and devices for customers in different regions.

For Windows 10 for desktop editions (Home, Pro, Enterprise, and Education), language packs have been split
into language components and Features On Demand. This reduction in image size can be helpful when creating
images for lower-cost devices with small storage. It can also reduce the time required to create and deploy
images.

You can install multiple languages onto the same Windows 10 image. Use care to limit the amount and types of
language packs included with each image. While the Windows 10 language packs are smaller, having too many
affects disk space, and can affect performance, especially while updating and servicing Windows.

The table below gives an overview of the types of language components that are available in Windows 10.

To install a language, do the following for each language:

1. Add the language pack and the Basic components.
2. To preload Cortana features, also add the Text-to-speech, and Speech recognition.
3. Add Fonts and Optical character recognition for the most popular languages within a region to improve

your user ’s first experience (strongly recommended). If they’re not already installed, Windows downloads
and installs them in the background when the user chooses that language for the first time.

4. Add handwriting recognition for devices with pen inputs.
5. Add Windows Recovery Environment (WinRE) components so that end users can more easily recover their

PCs.

Not all language components are available for every language.

Other customizations that can be preset:

Currency, time zone, or calendar formats
Keyboard Identifiers and Input Method Editors for Windows

Some capabilities have additional dependencies, as shown in the following table.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-language-packs-to-windows.md
https://support.microsoft.com/en-us/help/4027670/windows-add-and-switch-input-and-display-language-preferences-in-windo


Language interface pack Microsoft-Windows-
Client-Language-
Interface-Pack_x64_ca-
es-valencia.cab

Requires a specific fully-
localized or partially-
localized language pack.
Example: ca-es-valencia
requires es-es. To learn
more, see Available
Language Packs for
Windows.

UI text, including basic
Cortana capabilities.

Not all of the language
resources for the UI are
included in a LIP. LIPs
require at least one
language pack (or parent
language). A parent
language pack provides
support for a LIP. The parts
of the UI that are not
translated into the LIP
language are displayed in
the parent language. In
countries or regions where
two languages are
commonly used, you can
provide a better user
experience by applying a
LIP over a language pack.

Basic Microsoft-Windows-
LanguageFeatures-
Basic-fr-fr-Package

None Spell checking, text
prediction, word breaking,
and hyphenation if available
for the language.

You must add this
component before adding
any of the following
components.

Fonts Microsoft-Windows-
LanguageFeatures-
Fonts-Thai-Package

None Fonts.

Required for some regions
to render text that appears
in documents. Example, th-
TH requires the Thai font
pack. To learn more, see
Language and region
Features On Demand.

Optical character
recognition

Microsoft-Windows-
LanguageFeatures-OCR-
fr-fr-Package

Basic Recognizes and outputs text
in an image.

Handwriting recognition Microsoft-Windows-
LanguageFeatures-
Handwriting-fr-fr-
Package

Basic Enables handwriting
recognition for devices with
pen input.

Text-to-speech Microsoft-Windows-
LanguageFeatures-
TextToSpeech-fr-fr-
Package

Basic Enables text to speech, used
by Cortana and Narrator.

Speech recognition Microsoft-Windows-
LanguageFeatures-
Speech-fr-fr-Package

Basic, Text-To-Speech
recognition

Recognizes voice input,
used by Cortana and
Windows Speech
Recognition.

COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION



Retail Demo experience Microsoft-Windows-
RetailDemo-
OfflineContent-
Content-fr-fr-Package

Basic, plus the base retail
demo pack: Microsoft-
Windows-RetailDemo-
OfflineContent-Content-
Package, and the English
retail demo pack: Microsoft-
Windows-RetailDemo-
OfflineContent-Content-en-
us-Package.

Retail Demo experience.

WinRE Multiple, see Customize
Windows RE.

None Used to help end users
repair and recover their
PCs. See Customize
Windows RE.

COMPONENT SAMPLE FILE NAME DEPENDENCIES DESCRIPTION

Where do I download the language packs?

Other considerations

To see what's available, see Available Language Packs for Windows.

OEMs and System Builders with Microsoft Software License Terms can download language packs and LIPs
from the Microsoft OEM site or the OEM Partner Center.
IT Professionals can download language packs from the Microsoft Volume Licensing Site.
Users can add languages after Windows is installed, by goiung to Settings > Time & language > Region
and language > Add a language. See Add and switch input and display language preferences in Windows
10 for more information.

Some languages require more hard-disk storage space than others.
Although you can add a bunch of language packs at once using the commands: DISM /Add-Package,
DISM /Apply-Unattend, or LPKSetup, don't add too many at once, because the device may not have
enough memory to handle it. General recommendations: from Windows in audit mode, don't add more than
20 language packs at a time. From Windows PE, don't add more than 7. If WinPE is still running out of
memory, you can customize WinPE by adding temporary storage (scratch space).
Cross-language upgrades are not supported. This means that during upgrades or migrations, if you upgrade
or migrate an operating system that has multiple language packs installed, you can upgrade or migrate to
the system default UI language only. For example, if English is the default language, you can upgrade or
migrate only to English.
The default language cannot be removed because it is used to generate computer security identifiers (S IDs).
The default UI language is the language that is selected during the Out-Of-Box-Experience (OOBE), the UI
language specified in the Deployment Image Servicing and Management (DISM) command-line tool, or in
the unattended answer file if you skip OOBE.
To add language packs using Windows PE, you may need to add pagefile support to Windows PE. For more
information, see Deployment Image Servicing and Management (DISM) Best Practices.
If you install an update (hotfix, general distribution release [GDR], or service pack [SP]) that contains
language-dependent resources prior to installing a language pack, the language-specific changes in the
update won't be applied when you add the language pack. You need to reinstall the update to apply
language-specific changes. To avoid reinstalling updates, install language packs before installing updates.
The version of the language pack must match the version of Windows. For example, you can't add a
Windows 10 language pack to Windows 8, or add Windows 8 language pack to Windows 10. The build
number must also match.

https://docs.microsoft.com/windows-hardware/customize/desktop/retail-demo-experience
http://go.microsoft.com/fwlink/?LinkId=131359
http://go.microsoft.com/fwlink/?LinkId=131358
http://go.microsoft.com/fwlink/?LinkId=125893
https://support.microsoft.com/en-us/help/4027670/windows-add-and-switch-input-and-display-language-preferences-in-windo
http://go.microsoft.com/fwlink/?LinkID=624512


 

 

Installation methods

Add or remove languages using Windows Setup

Add or remove languages offline

You can add a language pack to an image in the following ways:

Offline installation. If you need to add a language pack or configure international settings on a custom
Windows image, you can use DISM.
Using Windows Setup.
On a running operating system. If you need to boot the operating system to install an application or to
test and validate the installation, you can add a language pack to the running operating system by using
DISM or the language pack setup tool (Lpksetup.exe). You can use this method only for language packs that
are stored outside of the Windows image. For more information, see Add and Remove Language Packs on a
Running Windows Installation and Add Language Interface Packs to Windows.

To deploy a multilingual edition of Windows by using Windows Setup

1. Add or remove language packs in the \Langpacks folder in a distribution share.

NOTENOTE

2. Recreate the Lang.ini file. Windows Setup uses the Lang.ini file to identify the language packs that are
inside the image and in the Windows distribution share. The Lang.ini file also identifies the language that
is displayed during Windows Setup. You must also regenerate the Lang.ini file if you plan to create
recovery media for images that contain multiple languages.

You can use DISM international servicing command-line options to recreate the Lang.ini file based on
any language-pack updates. Do not manually modify the Lang.ini file. To learn more, see DISM
Languages and International Servicing Command-Line Options.

3. If you deploy a multilingual image, or need to apply a specific language pack to a Windows image for a
specific device, you can add the language pack by using Windows Setup and an unattended answer file.
The language pack must be added to the image before international settings can be configured. For more
information about how to add a language pack to an answer file, see Add a Package to an Answer File. To
add a language pack and configure international settings, use the WindowsPE  configuration pass to add
the language pack and other configuration passes to configure international settings. For more
information, see Configure International Settings in Windows

If language and locale settings are specified in an answer file, those settings overwrite any previous default. For
example, if you first change the default UILanguage  setting to FR-FR by using the DISM command-line tool on
an offline image and then later apply an unattended answer file that specifies EN-US as the UI language, EN-US
will be the default UI language.

4. Use Setup to install the language packs that are in the distribution share.

To learn more, see Add Multilingual Support to a Windows Distribution or Add Multilingual Support to
Windows Setup.

Here's how to add and remove languages on an offline image (install.wim).

To save space, you can remove English language components when deploying to non-English regions. You'll
need to uninstall them in the reverse order from how you add them.

Mount the images

https://msdn.microsoft.com/library/windows/hardware/dn915066


md C:\mount\windows
Dism /Mount-Image /ImageFile:install.wim /Index:1 /MountDir:"C:\mount\windows"
md C:\mount\winre
Dism /Mount-Image /ImageFile:"C:\mount\windows\Windows\System32\Recovery\winre.wim" /index:1 
/MountDir:"C:\mount\winre"

Mount the Windows and Windows RE images. The Windows RE image file is part of the Windows
image.

Add a language

rem Remove the paragraph marks to make this into one really big, long command. 
Dism /Add-Package /Image:"C:\mount\windows"
     /PackagePath="C:\Languages\Microsoft-Windows-Client-Language-Pack_x64_fr-fr.cab"
     /PackagePath="C:\Languages\Microsoft-Windows-LanguageFeatures-Basic-fr-fr-Package.cab"
     /PackagePath="C:\Languages\Microsoft-Windows-LanguageFeatures-OCR-fr-fr-Package.cab"
     /PackagePath="C:\Languages\Microsoft-Windows-LanguageFeatures-Handwriting-fr-fr-Package.cab"
     /PackagePath="C:\Languages\Microsoft-Windows-LanguageFeatures-TextToSpeech-fr-fr-Package.cab"
     /PackagePath="C:\Languages\Microsoft-Windows-LanguageFeatures-Speech-fr-fr-Package.cab"
Dism /Get-Capabilities /Image:"C:\mount\windows"

rem Thai example (add th-TH first).
Dism /Add-Package /Image:"C:\mount\windows"
     /PackagePath="C:\Languages\fr-fr x64\Microsoft-Windows-LanguageFeatures-Fonts-Thai-Package"
Dism /Get-Capabilities /Image:"C:\mount\windows"

1. Add the language to Windows. You can use either the /Add-Package or /Add-Capabilities commands to
add the capabilities.

For packages with dependencies, make sure you install the packages in order. For example, to enable
Cortana, install: the language pack .cab, then Basic, then TextToSpeech, then Speech, in this order.

If you’re not sure of the dependencies, it’s OK to put them all in the same folder, and then add them all at
once using the same DISM /Add-Package command.

After adding the language pack, verify that it's in the images.

2. Add any other capabilities, such as fonts, required for that region. To learn more, see Features On
Demand V2 (Capabilities).

3. When you add languages to Windows, when possible, add them to WinRE to ensure a consistent
language experience in recovery scenarios. This requires a matching version of Windows and the
Windows ADK. Windows RE now requires the WinPE-HTA package, this is new for Windows 10.

After adding the packages, verify that they're in the image.



Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\lp.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-Rejuv_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-EnhancedStorage_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-Scripting_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-SecureStartup_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-SRT_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-WDS-Tools_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-WMI_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-StorageWMI_fr-fr.cab"
Dism /Image:C:\mount\winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-HTA_fr-fr.cab"
Dism /Get-Packages /Image:"C:\mount\winre"

Example output from /Get-Packages: Package Identity : Microsoft-Windows-WinPE-Rejuv_fr-fr ... fr-
FR~10.0.9926.0 State : Installed

Add a language interface pack (LIP)

Dism /Image:C:\mount\windows /Add-Package /PackagePath:C:\Languages\Microsoft-Windows-Client-
Language-Pack_x64_bn-in.cab
     /PackagePath="C:\Languages\bn-in x64\Microsoft-Windows-LanguageFeatures-Basic-bn-in-Package.cab"

Dism /Add-Package /Image:"C:\mount\windows"
     /PackagePath="C:\Languages\Microsoft-Windows-LanguageFeatures-Fonts-Beng-Package"

Dism /Get-Packages /Image:"C:\mount\windows" 

1. Add the LIP and desired/available capabilities to the Windows image. Some regions don't have any
related capabilities, while others have partial or complete sets.

After adding the packages, verify that they're in the image.

2. Add any other capabilities, such as fonts, required for that region.

3. Verify that they're in the image.

Remove a language

1. To save space, you can remove languages from an image.

You'll need to uninstall them in the reverse order from how you add them.



DISM /Remove-Capability /Image:"C:\mount\windows"
 /CapabilityName:Language.Speech~~~en-US~0.0.1.0 
DISM /Remove-Capability /Image:"C:\mount\windows"
 /CapabilityName:Language.TextToSpeech~~~en-US~0.0.1.0
DISM /Remove-Capability /Image:"C:\mount\windows"
 /CapabilityName:Language.Handwriting~~~en-US~0.0.1.0
DISM /Remove-Capability /Image:"C:\mount\windows"
 /CapabilityName:Language.OCR~~~en-US~0.0.1.0
DISM /Remove-Capability /Image:"C:\mount\windows"
 /CapabilityName:Language.Basic~~~en-US~0.0.1.0
Dism /Remove-Package /Image:"C:\mount\windows" /PackageName:Microsoft-Windows-Client-LanguagePack-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0
DISM /Get-Packages /Image:"C:\mount\windows"
DISM /Get-Capabilities /Image:"C:\mount\windows"

Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-Rejuv-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0 
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-HTA-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-StorageWMI-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0 
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-WMI-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-WDS-Tools-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0 
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-SRT-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0 
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-SecureStartup-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0 
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-Scripting-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:WinPE-EnhancedStorage-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0
Dism /Remove-Package /Image:"C:\mount\winre" /PackageName:Microsoft-Windows-WinPE-LanguagePack-
Package~31bf3856ad364e35~amd64~en-US~10.0.10120.0
Dism /Get-Packages /Image:"C:\mount\winre"

You can't remove a capability that other packages depend on. For example, if you have the French
handwriting and basic capabilities installed, you can't remove the basic capability. This will fail.

You can use either the DISM /Remove-Package or DISM /Remove-Capability command to remove a
capability, and either /DISM /Get-Packages or DISM /Get-Capabilities to verify that they're no longer in
the image.

It's also OK to just remove the language pack without removing the language capabilities. One week
after the user completes OOBE, if the user hasn't added the language to their input language list,
Windows automatically cleans out the unused language capabilities.

2. Remove the Windows RE optional components. After removing, verify that they're no longer in the
image. Replace build number 10.0.10120.0 with the build you are using.

3. Known issue: If you've removed the English language pack, in Windows 10 Build 10240, you'll need to
boot the image into audit mode, and use the command: sfc.exe /scannow /verify  to repair issues with
Windows 32-bit apps. For an example of how to do this with a script, see Lab 2a: Answer files: Update
settings and run scripts.

Reinstall apps (required whenever adding languages)

Note: In Windows 10, version 1607, it is no longer necessary to remove inbox apps. If you do try to do this, the
DISM command may fail.



Dism /Image:"c:\mount\windows" /Add-ProvisionedAppxPackage /packagepath:<path to 
appxbundle>\2b362ab83144485d9e9629ad2889a680.appxbundle /licensepath:<path to license file> 
\2b362ab83144485d9e9629ad2889a680_License1.xml

1. Re-install the apps. The following example shows you how to reinstall the Get Started inbox app. Repeat
these steps for each of the inbox apps (with the exception of AppConnector) by substituting the
appropriate package.

2. Windows desktop applications: You'll often need to reinstall these too, as they often include language-
specific files that are chosen at installation. You won't be able to update these using offline servicing;
instead you'll need to recapture the image or create a separate provisioning package for the Windows
desktop application.

For installations managed by Windows Setup or distribution shares, update the language list

Dism /Image:C:\mount\windows /gen-langini /distribution:C:\my_distribution

[Available UI Languages]
ca-ES = 2
es-ES = 3

[Fallback Languages]
es-ES = en-us

Dism /Image:C:\mount\windows /get-intl

Reporting offline international settings.

Default system UI language : es-ES
System locale : ca-ES
Default time zone : Romance Standard Time
User locale for default user : ca-ES
Location : Spain (GEOID = 217)
Active keyboard(s) : 0403:0000040a
Keyboard layered driver : PC/AT Enhanced Keyboard (101/102-Key)

Installed language(s): ca-ES
  Type : Partially localized language, LIP type.
Installed language(s): es-ES
  Type : Fully localized language.

Reporting distribution languages.

The default language in the distribution is:
es-ES

1. This is only required if you're distributing multilingual Windows Setup media, or distributing Windows
through a share.

Recreate the lang.ini file.

The lang.ini file in C:\myDistribution\sources should look similar to the following:

2. Review the default international settings in the Windows image by using DISM.

For example, you should see output similar to the following:



The Language-Pack Removal Task

Related topics

Change the default language

Dism /Set-AllIntl:fr-fr /Image:C:\mount\windows

Set the default Windows language to match the preferred language for your customers.

Unmount the images

Dism /Unmount-Image /MountDir:"C:\mount\winre" /Commit
Dism /Unmount-Image /MountDir:"C:\mount\windows" /Commit

Unmount the Windows RE and Windows images.

In Windows 10, the language pack removal task runs on all Windows editions. However, any languages that are
selected by users in the language preferences section of the control panel are not removed. Users can choose to
run multiple languages and any language packs that are not used by the user are removed from the computer.
Also, any language pack that is installed by a user is not removed.

Running the Sysprep tool resets the language-pack removal clock. The clock will not start again until the next
time OOBE runs and the computer is restarted. If you customize your Windows image, consider booting to
audit mode to make your customizations. The language pack removal task will not be started when you boot to
audit mode. For more information about audit mode, see Boot Windows to Audit Mode or OOBE. You can also
update your Windows image offline without booting the image. For more information, see Service a Windows
Image Using DISM

Using the SkipMachineOobe  setting in the Microsoft-Windows-Shell-Setup component does not skip the
language-pack removal task.

Note
The language-pack removal task does not remove LIPs.

Language Packs

Available Language Packs for Windows

Features On Demand V2 (Capabilities)

Windows Language Pack Default Values

Default Input Locales for Windows Language Packs



  

Add and Remove Language Packs Offline Using
DISM
7/13/2017 • 8 minutes to read • Edit Online

Add a Language Pack to a Windows Image

All installations of Windows contain at least one language pack and the language-neutral binaries that make up
the core operating system. This topic includes information about how to use Deployment Image Servicing and
Management (DISM.exe) to add or remove additional language packs, and to configure international settings.
You can use the same procedures to add or remove Language Interface Packs (L IPs). For more information about
the difference between a language pack and a L IP, see Add Language Packs to Windows.

The Windows image must be a recently installed and captured image, or the default retail image. This ensures
that the Windows image does not have any pending package actions. The Windows images can be in any
language. For example, you can start with an English (en-US) image and add support for Japanese ( ja-JP) and
Korean (ko-KR). In addition, you can add LIPs to a Windows image that contains the supported parent language.
For more information about the supported language packs and LIPs, see Language Packs.

For information about how to add a language pack to a Windows Preinstallation Environment (Windows PE)
image, see WinPE: Add packages (Optional Components Reference).

Language packs are available as .cab files and are named with their locale; for example, Microsoft-Windows-
Client-Language-Pack_x64_es-es.cab. Packages provided as .cab files can be added to an offline Windows image
using the DISM command-line tool. You can use the same procedure to add a language pack or a Language
Interface Pack (L IP).

Important

LIPs can be installed only on a Windows image that has the supported parent languages installed. For example,
the Basque (Basque) L IP can be installed only on a Windows image that has the Spanish (Spain) or French
(France) parent language pack installed. Before you install a L IP to an offline Windows image, verify that the
supported parent languages are installed. For more information about the supported language packs and LIPs,
see Language Packs.

You can also add language packs and LIPs to an answer file and then apply the answer file to an offline Windows
image. When you do this, you can install the L IP and the parent language in the same operation.

Important
Do not install a language pack after an update. If you install an update (hotfix, general distribution release [GDR],
or service pack [SP]) that contains language-dependent resources before you install a language pack, the
language-specific changes that are contained in the update are not applied and you will have to reinstall the
update. Always install language packs before you install updates.

To add a language pack using DISM

1. Before you add new language packs to a Windows image, you must remove any language packs from the
Windows image that you do not intend to use. For more information, see Remove a Language Pack from a
Windows Image.

2. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-and-remove-language-packs-offline-using-dism.md


Dism /Get-MountedImageInfo

Dism /Get-ImageInfo /ImageFile:C:\test\images\install.wim

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows 7 HomeBasic" 
/MountDir:C:\test\offline

Dism /Image:C:\test\offline /ScratchDir:C:\Scratch /Add-Package /PackagePath:C:\packages\package1.cab 
/PackagePath:C:\packages\package2.cab ...

Dism /Commit-Image /MountDir:C:\test\offline

3. If your image is already mounted from the previous procedure, you can type the following command to list
the images that are currently mounted and information about the mounted image such as mount location
and mounted image index.

If your image is not mounted, type the following command to retrieve the name or index number for the
image that you want to modify.

An index or name value is required for most operations that specify an image file. Type the following
command to mount the image.

4. Type the following command to add a language pack to the mounted offline image. You can add multiple
packages on one command line.

Note
The scratch directory must be at least 1 GB for adding language packs.

5. Type the following command to commit the changes. The image remains mounted until the /unmount
option is used.

6. The language packs are added to the Windows image. The next step is to Configure International Settings.

To add a language pack using an answer file and DISM

1. Note the location of the language packs you want to add to the Windows image. Language packs are
stored in .cab files.

2. Use Windows SIM to create an answer file that contains only the language packs that you want to add. For
more information about how to create an answer file, see Create or Open an Answer File.

3. In the Package node, under Language Packs, right-click the language pack that you want to add, and
then select Add to Answer File.

4. In the Properties pane, under Settings, select the Install value for the Action setting.

5. You can also configure international settings in the answer file. For more information, see Configure
International Settings in Windows.

6. Validate and save the answer file.

7. Close Windows SIM.

Important
Make sure that the language pack is copied to the location specified in the answer file.

https://msdn.microsoft.com/library/windows/hardware/dn915085


 Remove a Language Pack from a Windows Image

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Index:1 /MountDir:C:\test\offline

DISM /Image:C:\test\offline /Apply-Unattend:C:\test\answerfiles\myunattend.xml

8. If the image is not already mounted, use DISM to mount the Windows image. For example,

9. Use DISM to apply the unattended installation answer file to the mounted Windows image. For example,

For more information about how to apply an unattended answer file by using DISM, see DISM
Unattended Servicing Command-Line Options.

10. The language packs are added to the Windows image, and international settings are configured.

Before you add new language packs to a Windows image, you must remove any language packs that you do not
intend to use. There are two ways to remove language packs offline with DISM. You can either apply an
unattended answer file to the offline image, or you can remove the language pack directly from the offline image,
using the command prompt.

Important
You cannot remove a language pack from an offline Windows image if there are pending online actions. The
Windows image should be a recently installed and captured image. This will guarantee that the Windows image
does not have any pending online actions that require a reboot.

To remove a language pack using DISM

Dism /Get-ImageInfo /ImageFile:C:\test\images\install.wim 

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Name:"Windows 7 HomeBasic" 
/MountDir:C:\test\offline

Dism /Image:C:\test\offline /Get-Intl

1. Locate the Windows image (.wim) file or virtual hard disk (.vhd or .vhdx) that contains the Windows image
that you intend to remove languages from.

2. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

3. At the command prompt, type the following command to retrieve the name or index number for the image
that you want to modify.

An index or name value is required for most operations that specify an image file.

4. Type the following command to mount the offline Windows image.

5. Optional: Type the following command to list the languages in the offline image.

6. Type the following command to remove a language pack from the image. You can remove multiple .cab
files by using one command-line statement.



 Configure International Settings

Dism /Image:C:\test\offline /Remove-Package /PackagePath:C:\packages\package1.cab 
/PackagePath:C:\packages\package2.cab ...

Dism /Commit-Image /MountDir:C:\test\offline

7. Type the following command to commit the changes. The image remains mounted until the /unmount
option is used.

8. The language packs are removed from your image. The next step is to add a language pack to the mounted
offline image. To continue, see Add a Language Pack to a Windows Image.

To remove a language pack using DISM and an unattended answer file

<package action="remove">
   <assemblyIdentity name="Microsoft-Windows-LanguagePack-Package" version="6.0.5714.0" 
processorArchitecture="x86" publicKeyToken="31bf3856ad364e35" language="en-US" />
</package>

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Index:1 /MountDir:C:\test\offline

Dism /Image:C:\test\offline /Apply-Unattend:C:\test\answerfiles\myunattend.xml

Dism /Commit-Image /MountDir:C:\test\offline

1. Use Windows® System Image Manager (Windows SIM) to create an answer file that contains only the
language packs that you want to remove. Open the Windows image by using Windows SIM and create a
new answer file. For more information about how to use Windows SIM, see Create or Open an Answer
File.

2. In the Package node, under Language Packs, right-click the language pack that you want to remove and
select Add to Answer File.

3. In the Properties pane, under Settings, select the Remove value for the Action setting.

4. Save the answer file and close Windows SIM. The answer file must resemble the following example.

5. Use DISM to mount the Windows image. For example,

6. Use DISM to apply the unattended answer file to the mounted Windows image. For example,

For more information about how to use DISM to apply an unattended answer file, see DISM Unattended
Servicing Command-Line Options.

7. Type the following command to commit the changes. The image remains mounted until the /unmount
option is used.

8. The language packs are removed from your image. The next step is to add a language pack to the mounted
offline image. To continue, see Add a Language Pack to a Windows Image.

After you add or remove a language pack in a Windows image, you can set the default user interface (UI)
language, which is also known as the display language. At the same time, you can configure the international

https://msdn.microsoft.com/library/windows/hardware/dn915085


For more information about default values, see [Windows Language Pack Default Values](windows-language-pack-
default-values.md).

Optionally, you can configure different values for different settings, including UI language, system locale, 
user locale, input locale, and others. For more information about how to specify individual values for each 
of these settings, see [DISM Languages and International Servicing Command-Line Options](dism-languages-and-
international-servicing-command-line-options.md).

Related topics

settings in the Windows image using DISM.

You can also configure international settings in an answer file. For more information about how to do this, see
Configure International Settings in Windows.

Note
If you specify a default UI language and locale settings with the DISM tool, and then specify different language
and locale settings in an answer file, the settings in the answer file overwrite the default values specified by the
DISM tool.

To configure international settings using DISM

Dism /Mount-Image /ImageFile:C:\test\images\install.wim /Index:1 /MountDir:C:\test\offline

Dism /Image:C:\test\offline /Set-SKUIntlDefaults:en-us

1. You must first mount the image if it is not already mounted. For example,

2. To change all international language settings in the mounted offline image to match the default values set
by Microsoft for a given language, at the DISM command prompt, type the following command,

Note
The /Set-SKUIntlDefaults option does not change the keyboard driver for Japanese and Korean
keyboards. You must use the /Set-LayeredDriver option to change this. For more information, see DISM
Languages and International Servicing Command-Line Options.

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

1. At a command prompt, type the following command to commit the changes and unmount the image.

The Windows image is ready to be deployed.

Add Language Packs to Windows

Service a Windows Image Using DISM

DISM - Deployment Image Servicing and Management Technical Reference for Windows

DISM Languages and International Servicing Command-Line Options

DISM Unattended Servicing Command-Line Options

Windows System Image Manager Technical Reference

https://msdn.microsoft.com/library/windows/hardware/dn922445


Add and remove language packs on a running
Windows installation
6/5/2018 • 2 minutes to read • Edit Online

Use DISM to add a language pack online

Remove a language pack online

Remove a language with the Settings appRemove a language with the Settings app

Remove a language pack with lpksetup.exeRemove a language pack with lpksetup.exe

You can add support for additional languages on a running operating system, or to an offline image. For
information about how to install languages to an offline image, see Add and Remove Language Packs Offline
Using DISM.

For information about installing Language Interface Packs (L IPs), see Add Language Interface Packs to Windows.

In Windows 10, users can install more languages and features by going to Settings > Time & language >
Region & language > Add a language.

When you add language packs using DISM, the licensing requirements of how many language packs are allowed
to run on the Windows edition are not verified. If you add multiple language packs, all non-default, non-user
selected languages will be removed from the computer after a period of time. For more information, see Add
Language Packs to Windows.

Note
You can also add language packs to Windows Preinstallation and Windows Recovery installations. For more
information, see WinPE: Mount and Customize and Customize Windows RE.

To add a language pack by using DISM

Dism /online /Add-Package /PackagePath:D:\x64\LangPacks\Microsoft-Windows-Client-Language-Pack_x64_el-
gr.cab

1. On the running operating system, open an elevated command prompt.

2. Type the following command to add a language pack (Greek, in this example) to the operating system.

For more information about DISM international servicing commands, see DISM Languages and International
Servicing Command-Line Options

Windows automatically removes non-user selected languages after a period of time. If you remove an installed
language through the Settings app, the language will be removed from the listed languages, but the language pack
will not be immediately deleted. If you want to immediately remove a language pack, use lpksetup.exe. 
Note: Lpksetup will uninstall a language pack, but the language will still appear in the Settings app.

In the Settings app, you can remove a language by going to Settings > Time & language > Region &
language. Click on the language you'd like to remove, and then click on remove. Windows will automatically
delete language pack files the next time it runs its automated cleanup tasks.

1. On the running operating system, open an elevated command prompt.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-and-remove-language-packs-on-a-running-windows-installation.md


Related topics

lpksetup.exe /u el-gr

2. Run lpksetup.exe  with the /u option to uninstall the language pack. Here is how you would remove a
Greek (el-gr) language pack.

See Lpksetup command line options to see all available command line options for lpksetup.

Service a Windows Image Using DISM

Understanding Servicing Strategies

Add Language Packs to Windows

https://technet.microsoft.com/en-us/library/cc766010(v=ws.10).aspx


Add Language Interface Packs to Windows
5/11/2018 • 3 minutes to read • Edit Online

Install LIPs

Language Interface Packs (L IPs) include Windows user interface text for a region. L IPs must be used with a valid
parent language.

For example, the Catalan (ca-ES) L IP can be installed only if one of the following languages is already installed:
English US (en-US), Great Britain (en-GB), Spanish (es-ES), or French (fr-FR).

To add a L IP to an offline Windows image, you must verify that the supported parent language pack is installed to
the Windows image first.

For a list of the L IPs and their parent languages, see Available Language Packs for Windows.

The version of the L IP must match the version of Windows. For example, you can't add a Windows 10 LIP to a
Windows 8 image, or a Windows 8 L IP to a Windows 10 image.

For Windows 10, language packs and LIPs are also available to download from Windows Update. You can add
additional languages by using Control Panel. This process requires internet access and access to Windows
Update. IT Professionals and end-users can use Windows Update to add additional languages to their Windows
installations.

OEMs can view and download LIPs from the Microsoft OEM site.
System Builders can view and download LIPs from the OEM Partner Center.
Users can get languages or L IPs from Windows Update. Go to Settings > Time & language > Region &
language > Add a language. Select the language you want to use from the list, then choose which region's
version you want to use. Your download will begin immediately.

To install a LIP using audit mode (used for manufacturing PCs)

1. Download the appropriate L IP (and if necessary, its base language), and save it to removable media.
2. Boot the destination computer to audit mode. For example at the OOBE screen, press Ctrl+Shift+F3. To learn

more, see Boot Windows to Audit Mode or OOBE.
3. Insert the removable media and copy the LIP (and base language, if necessary) to the destination computer.
4. If the base language isn't already installed, install it: Navigate to the .cab file and double-click it. Follow the

instructions to complete the installation.
5. Install the L IP: Navigate to the .cab file and double-click it. Follow the instructions to complete the installation.

sysprep /oobe /generalize

6. Exit audit mode and prepare the PC for image capture or deployment, for example:

Open a command prompt and run:

To learn more, see Sysprep (Generalize) a Windows installation.

To install a LIP to an offline Windows image

1. Download the appropriate L IP (and if necessary, its base language).
2. Open a command prompt with elevated permissions.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-language-interface-packs-to-windows.md
http://go.microsoft.com/fwlink/?LinkId=131359
http://go.microsoft.com/fwlink/?LinkId=131358


md "C:\mount\windows"

Dism /Mount-Image /ImageFile:C:\images\Win10\sources\install.wim /Index:1 /MountDir:"C:\mount\windows"

Dism /Image:C:\mount\windows /Add-Package /PackagePath:C:\Languages\x64\langpacks\Microsoft-Windows-
Client-Language-Pack_x64_es-es.cab

Dism /Image:C:\mount\windows /Add-Package /PackagePath:C:\Languages\x64\langpacks\Microsoft-Windows-
Client-Language-Interface-Pack_x64_ca-es.cab

Dism /Image:C:\mount\windows /Gen-LangIni /Distribution:C:\images\Win10\

[Available UI Languages]
ca-ES = 2
es-ES = 3

[Fallback Languages]
es-ES = en-us

Dism /image:C:\mount\windows /set-allIntl:ca-es

Dism /image:C:\mount\windows /get-intl

3. Mount the Windows image that you want to install the L IP to.

4. If the base LP isn't in the image already, add it.

5. Add the LIP.

6. If you're creating Windows Setup media or using a distribution share, recreate the lang.ini file.

The lang.ini file in C:\images\Win10\sources should look similar to the following:

7. Optional: Change the default language, locale, and other international settings to the local language.

Optional: Review the default international settings.

For example, you should see output similar to the following:



Related topics

Reporting offline international settings.

Default system UI language : es-ES
System locale : ca-ES
Default time zone : Romance Standard Time
User locale for default user : ca-ES
Location : Spain (GEOID = 217)
Active keyboard(s) : 0403:0000040a
Keyboard layered driver : PC/AT Enhanced Keyboard (101/102-Key)

Installed language(s): ca-ES
  Type : Partially localized language, LIP type.
Installed language(s): es-ES
  Type : Fully localized language.

Reporting distribution languages.

The default language in the distribution is:
es-ES

Dism /Unmount-Image /MountDir:C:\mount\windows /Commit

8. Unmount the image, committing the changes.

Your Windows image is ready to be deployed.

Add Language Packs to Windows

Available Language Packs for Windows

Language Pack Default Values

http://go.microsoft.com/fwlink/?LinkId=206622


Multilingual Windows Image Creation
7/13/2017 • 15 minutes to read • Edit Online

Requirements

Step 1: Add language packs to a Windows image

This walkthrough describes how to use the Windows Assessment and Deployment Kit (Windows ADK) to create
and deploy multilingual versions of Windows 10. It describes how to create a multilingual Windows image to help
reduce the number of Windows images that need to be maintained for different regions. You can deploy images
that are created by using this process from a network share, from a server, or from media.

This walkthrough describes how to add language packs and other update packages to an offline Windows image
and Windows recovery image. You then boot Windows to audit mode and add applications and drivers. You then
capture the installation to an image and use the newly captured master image for testing purposes. After you test
the image, you use it to create regional images by removing unnecessary language resources. You can then deploy
these regional images.

The process described in this walkthrough is primarily intended for OEMs who want to reduce the number of
Windows images that they maintain. By adding language packs to an offline image, you can decrease Windows
installation time and reduce the number of images that you maintain. However, because multiple language packs
are added to a single image, the size of the Windows image is increased.

IT Professionals who want to reduce the size of their overall image should instead use the process described in
Add Multilingual Support to a Windows Distribution. This process describes how to copy the lp.cab file to the
Windows distribution, reducing the overall image size.

To complete this walkthrough, you should have a working knowledge of common desktop deployment
technologies and processes. You should also have a basic understanding of the Windows Imaging (.wim) file
format. The steps in this guide assume that you use a single Windows image within the .wim file. If you want to
reduce the number of images you maintain, you can use the lowest edition of Windows available in your .wim file,
and then use DISM to upgrade to a higher edition of Windows. If you want to maintain multiple images, you can
repeat the steps in this guide for each Windows image in the .wim file, to create multiple editions of the regional
Windows image.

Before you begin, make sure you have the following items:

Windows installation media (DVD or Windows installation files) for multiple languages. This guide uses
EN-US, De-DE and FR-FR media.

One or more language packs.

A technician computer that has the Windows Assessment and Deployment Kit (Windows ADK) installed.

A test computer that you can use to install and test Windows.

A USB drive that will be formatted during this walkthrough.

In this step, you will use Deployment Image Servicing and Management (DISM) to add language packs to a
Windows image. After you add language packs, you can add update packages. The Windows image that you start
with can be in any language. For example, you can start with an English (en-US) image, and add support for
French (fr-FR) and German (de-DE).

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/multilingual-windows-image-creation.md


When you add language packs to the Windows image, the user is presented with a dialog box to choose their
preferred language during Out-Of-Box Experience (OOBE).

By using this method, the sizes of the Windows images are larger ; however, installation time is faster, and you can
ensure that any updates you add to the Windows image apply to the languages installed to that image. Use this
method if you want to install Windows as quickly as possible.

Important
The Windows image must be a recently installed and captured image. This ensures that the Windows image does
not have any pending online actions.

Always install language packs before you install updates. If you install an update (hotfix, general distribution
release [GDR], limited distribution release [LDR], or service pack [SP]) that contains language-dependent
resources before you install a language pack, the language-specific changes contained in the update are not
applied. Packages that have language pack dependencies can be identified by using the Dism /Get-PackageInfo

command. In the “Custom Properties” section of the report, look for the Dependency = “Language Pack”
key/value pair. If language packs are installed after an LDR or GDR package that has this attribute, the update
must be reinstalled.

To add language packs to a Windows image

Mkdir C:\mount\windows
Mkdir C:\mount\winre 
Mkdir C:\mount\boot
Mkdir C:\LanguagePack
Mkdir C:\my_Distribution 

xcopy e:\windows C:\my_distribution /s /e

xcopy H:\LPs\Microsoft-Windows-Client-Language-Pack_x64_fr-fr.cab C:\LanguagePack
xcopy H:\LPs\Microsoft-Windows-Client-Language-Pack_x64_de-de.cab C:\LanguagePack

Dism /Get-ImageInfo /ImageFile:C:\my_distribution\sources\install.wim

Dism /Mount-Image /ImageFile:C:\my_distribution\sources\install.wim /Index:1 /MountDir:C:\mount\windows

1. Open an elevated Deployment and Imaging Tools Environment command prompt.

2. Type the following commands to create the following folders:

3. Copy the entire contents of the en-US Windows DVD to C:\my_Distribution. For example:

4. Copy each language pack to the technician computer. For example:

5. Type the following command to retrieve the name or index number for the image that you want to modify:

Note the index or name value of the image that you want to modify.

6. Use DISM to mount the Windows image. For example:

7. Use DISM to mount the Windows recovery environment image that exists in the Windows image. For
example:



Dism /Mount-Image /ImageFile:C:\mount\windows\Windows\System32\recovery\winre.wim /Index:1 
/MountDir:C:\mount\winre

Dism /Add-Package /image:C:/mount/windows /PackagePath:C:\LanguagePack\Microsoft-Windows-Client-
Language-Pack_x64_de-de.cab /PackagePath:C:\LanguagePack\Microsoft-Windows-Client-Language-Pack_x64_fr-
fr.cab 

Dism /image:C:/mount/winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\de-de\lp.cab"

Dism /image:C:/mount/winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\lp.cab"

Dism /image:C:/mount/winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-WinReCfg.cab"

Dism /image:C:/mount/winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\de-de\WinPE-WinReCfg_de-de.cab" 

Dism /image:C:/mount/winre /Add-Package /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-WinReCfg_fr-fr.cab"

8. Add language packs to the mounted offline Windows image. You can add multiple packages on one
command line.

9. Add language packs to the mounted offline Windows recovery image. The language packs that are used for
the Windows recovery image are the same lp.cab files used with Windows PE. Use the language packs for
Windows PE that are installed with the Windows ADK. For example:

This process can take several minutes.

10. (Optional) Add additional optional components and language packs to the Windows recovery image. If you
want to install additional optional components to the recovery image, you must install the language-neutral
cab file first, and then add the language specific cab files. For example, run the following command to add
the WinPE-WinReCfg.cab optional component:

We recommend adding language packs for the following optional components that are included with
Windows recovery image:

WinPE-WinReCfg

WinPE-Rejuv

WinPE-EnhancedStorage

WinPE-Scripting

WinPE-SecureStartup

WinPE-SRT

WinPE-WDS-Tools

WinPE-WMI

WinPE-HTA

11. Configure the default language settings to use in the Windows image.



Dism /image:C:\mount\windows /set-allIntl:fr-fr

Dism /image:C:\mount\winre /set-allIntl:fr-fr

Dism /image:C:\mount\windows /gen-langini /distribution:C:\my_distribution

Dism /image:C:\mount\windows /get-intl /distribution:C:\my_distribution 
Dism /image:C:\mount\winre /get-intl

Reporting offline international settings.

Default system UI language : fr-FR
System locale : fr-FR
Default time zone : Pacific Standard Time
User locale for default user : fr-FR
Location : France (GEOID = 84)
Active keyboard(s) : 040c:0000040c
Keyboard layered driver : PC/AT Enhanced Keyboard (101/102-Key)

Installed language(s): de-DE
  Type : Fully localized language.
Installed language(s): en-US
  Type : Fully localized language.
Installed language(s): fr-FR
  Type : Fully localized language.

Reporting distribution languages.

The default language in the distribution is:
en-US

The other available languages in the distribution are:
No languages found

The operation completed successfully.

12. Configure the default language settings to use in the Windows recovery image.

13. Recreate the lang.ini file.

14. Verify that the languages are installed and the correct language is configured as the default.

The output for the Windows image should be similar to the following:

The output for the Windows recovery image should be similar to the following:



Step 2 (optional): Add language packs to Windows Setup

Reporting offline international settings.

Default system UI language : fr-FR
System locale : fr-FR
Default time zone : Pacific Standard Time
User locale for default user : fr-FR
Location : France (GEOID = 84)
Active keyboard(s) : 040c:0000040c
Keyboard layered driver : PC/AT Enhanced Keyboard (101/102-Key)

Installed language(s): de-DE
  Type : Fully localized language.
Installed language(s): en-US
  Type : Fully localized language.
Installed language(s): fr-FR
  Type : Fully localized language.

The operation completed successfully.

DISM /unmount-image /mountdir:C:\mount\winre /commit
DISM /unmount-image /mountdir:C:\mount\windows /commit

15. Unmount the images, committing the changes. Note that you must unmount the Windows recovery image
before you unmounts and commit the Windows image.

In this step, you add multiple language support to Windows Setup. This allows an end user to run Windows Setup
and select a specific language that you install. You add language packs to the default boot.wim file, and then copy
language resources into your Windows distribution.

Note
This step is optional. If you complete this step, you can run Windows Setup in a language other than the language
that you choose for the operating system. However, this does not cover adding font support for all languages.

To add language packs to the default boot image

Dism /Mount-Image /ImageFile:C:\my_distribution\sources\boot.wim /Index:2 /MountDir:C:\mount\boot

DISM /add-package /image:C:\mount\boot /packagepath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\lp.cab" 

DISM /add-package /image:C:\mount\boot /packagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\de-de\lp.cab"

1. Open a Deployment Tools command prompt with elevated permissions.

2. Use DISM to mount index 2 of the Boot.wim file. For example,

3. Add Windows PE language packs and Windows Setup optional components to the mounted image for each
language you want to support. For example:

4. Add the Windows PE Setup optional components. For example:



DISM /add-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-Setup.cab" 

DISM /add-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-Setup-client.cab"

DISM /add-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-Setup_fr-fr.cab"

DISM /add-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-Setup-client_fr-
fr.cab"

DISM /add-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\de-de\WinPE-Setup_de-de.cab"

DISM /add-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\de-de\WinPE-Setup-client_de-
de.cab"

Mkdir C:\my_distribution\sources\fr-fr 
Mkdir C:\my_distribution\sources\de-de

xcopy E:\sources\fr-fr C:\my_distribution\sources\fr-fr /cherkyi 
xcopy E:\sources\de-de C:\my_distribution\sources\de-de /cherkyi

Dism /Mount-Image /ImageFile:C:\my_distribution\sources\install.wim /Index:1 /MountDir:C:\mount\windows

Dism /image:C:\mount\windows /Get-Intl
Dism /image:C:\mount\winre /Get-Intl

Dism /image:C:\mount\boot /set-allIntl:fr-fr

Dism /image:C:\mount\windows /Gen-Langini /distribution:C:\my_distribution

Note
These Windows Setup language packs are for the client editions of Windows only. For Windows Server, you
must use winpe-setup-server .cab files.

5. Add the Windows PE language specific optional components. For example:

6. In your Windows distribution, copy the language-specific Setup resources from each language specific
Windows distribution to the Sources folder in your distribution share. For example, insert the Windows
DVD for Fr-FR in your DVD drive (E:) and copy the Fr-FR sources folder to your Windows distribution.

7. Use DISM to mount the Windows image. For example:

8. Get the language settings that are configured in the Windows image by using the /Get-Intl parameter. For
example

9. Change the default language, locale, and other international settings by using the /set-allInlt parameter.

10. Recreate the lang.ini file. The Lang.ini file must be re-created each time you add or remove language
resources from your distribution, and when you add or remove language packs from your Windows image.



Step 3: Test the Windows Installation

Xcopy C:\my_distribution\sources\lang.ini C:\mount\winre\sources\lang.ini

Dism /Unmount-image /MountDir:C:\mount\boot /Commit 
Dism /Unmount-image /MountDir:C:\mount\Windows /Discard

11. Copy the lang.ini file from the Windows distribution to the boot.wim file. The Lang.ini file used in the
Boot.wim file must match the Lang.ini file for the operating-system image.

12. Use DISM to unmount the Windows boot image and commit the changes. You must also unmount the
Windows image. Because none of the files have changed in the Windows image, you can discard the
changes. For example,

In this step, you install Windows, selecting a language during Windows Setup, and verifying that multiple
languages are installed.

To boot a computer without an operating system, you must create bootable Windows PE media. This walkthrough
provides instructions on creating Windows PE on a bootable USB drive. For additional options, see WinPE: Create
USB Bootable drive.

To install Windows

Note: Beginning with Windows 10, Version 1703, you can create a USB drive that has multiple partitions. To
format a USB key so it has one FAT32 and one NTFS partition, see WinPE: Create USB Bootable drive.

Copype amd64 C:\winpe_amd64

Makewinpemedia /ufd C:\winpe_amd64 F:

Xcopy C:\my_distribution G:\my_distribution /cherkyi

1. Create a Windows PE image on your technician computer. For example:

The following directories are created:

C:\winpe_amd64\media

C:\winpe_amd64\mount

If you need to add boot-critical drivers or other optional components to Windows PE, see WinPE: Add
packages (Optional Components Reference).

2. Insert a USB drive into the technician computer and run the following command:

Where F is the drive letter of the USB drive. If you have multiple partitions on the USB drive, choose the
drive letter of the FAT32 partition.

Makewinpemedia will format the selected partition and copy WinPE to it.

3. Copy the contents of the Windows distribution to a USB drive or partition that has sufficient free space. If
your install.wim file is larger than 4GB, you'll need to use an NTFS-formatted partition.

For example,



Step 4: Boot to audit mode, add applications and run sysprep

Diskpart 
List volume 

exit

F:\my_distribution\setup.exe

Where G is the letter of a second USB drive or the NTFS partition on your dual-partitioned USB drive.

4. Insert the Windows PE USB drive into your test computer. Boot the test computer, ensuring that the
Windows PE USB drive is configured to boot first. You might need to change the boot options of the
computer in the firmware.

5. After the Windows PE command line prompt appears, insert the USB drive that contains your Windows
distribution on the test computer.

6. Identify the drives, volumes, and drive letters on the test computer. From the Windows PE command
prompt, type:

Identify the drive letter of the USB drive that contains your Windows distribution. This example uses “F:\”.
Exit diskpart.

7. Install Windows by running Windows Setup.

Windows Setup starts and you are prompted to select your language (French, German, or English). Select
one of the languages and proceed with the installation. Verify that the correct language appears during
installation.

In this step, you install your Windows image on a test computer and boot it to audit mode. While the computer is
running in audit mode, you add applications that must be installed online, and test the operating system. After
applications are added and the computer is tested, you run the sysprep tool to prepare the image to be deployed to
a computer that will ship to an end user.

To boot to audit mode

1. Do one of the following to boot a test computer to audit mode:

For an attended installation, at the OOBE screen, press Ctrl+Shift+F3.

In an unattended installation, use an answer file with the Microsoft-Windows-
Deployment\Reseal\Mode configured to Audit. This setting should appear in the oobeSystem
configuration pass.

Run the sysprep /audit command in a Command Prompt window.

For more information, see Understanding Audit Mode.

2. Install Microsoft Office or other applications, and test the computer. For more information, see Customize
Windows in Audit Mode.

3. Prepare the computer for deployment by doing one of the following:

From audit mode, run the Sysprep command with the /oobe /shutdown /generalize options.

In unattended installations, configure the Microsoft-Windows-Deployment\Reseal\Mode setting to

http://go.microsoft.com/fwlink/?LinkId=148031
http://go.microsoft.com/fwlink/?LinkId=148032


Step 5: Capture the Windows installation

Step 6: Create regional images by removing language packs

oobe. For more information on this setting, see the Windows Unattended Setup Reference
(Unattend.chm).

For more information, see Sysprep Technical Reference.

After Sysprep is finished, the test computer shuts down.

In this step, you capture your Windows image from the test computer and store it for use as your master image.

To capture the image

Diskpart 
List volume 

exit

dism /Capture-Image /CaptureDir:E:\ /ImageFile:E:\MyInstall.wim /Name:"Fabrikam"

xcopy E:\MyInstall.wim G:\MyInstall.wim

1. Start your test computer by booting to Windows PE.

2. Identify the drives, volumes, and drive letters on the test computer. From the Windows PE command
prompt, type:

Identify the drive letter of the USB drive that contains your Windows distribution. Exit diskpart.

3. At the Windows PE command prompt, capture the Windows image. This example uses E:\ as the location of
the Windows installation. For example:

4. Copy the image to a USB drive or to a network share. For example:

Where G is the letter of the USB drive.

In this step, you create a regional Windows image by removing language packs from your image while it is offline.
This image contains only the languages that are necessary for deployment in a certain region.

Important
You should not remove a language pack from an offline Windows image if there are pending online actions. The
Windows image should be a recently installed and captured image. This will ensure that the Windows image does
not have any pending online actions that require a reboot.

To remove a language pack

xcopy F:\sources\MyInstall.wim C:\my_images\MyInstall.wim

1. Locate the Windows image that you intend to remove languages from, and copy it to your technician
computer. For example:

2. Open the Deployment Tools command prompt with elevated permissions.

http://go.microsoft.com/fwlink/?LinkId=148028


Dism /mount-image /ImageFile:C:\my_images\MyInstall.wim /Name:"Fabrikam" /MountDir:C:\mount\windows 
Dism /Mount-Image /ImageFile:C:\mount\windows\Windows\System32\recovery\winre.wim /Index:1 
/MountDir:C:\mount\winre

Dism /Image:C:\mount\windows /Get-Packages 
Dism /Image:C:\mount\winre /Get-Packages

Dism /Image:C:\mount\windows /Remove-Package /PackagePath:C:\LanguagePack\Microsoft-Windows-Client-
Language-Pack_x64_fr-fr.cab 
Dism /Image:C:\mount\winre /Remove-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\lp.cab"

Dism /image:C:/mount/winre /Remove-Package /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
WinReCfg_fr-fr.cab"

Dism /mount-image /ImageFile:C:\my_distribution\boot.wim /index:2 /MountDir:C:\mount\boot  

Dism /remove-package /image:C:\mount\boot /packagepath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\lp.cab" 

Dism /remove-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
Setup_fr-fr.cab"

Dism /remove-package /image:C:\mount\boot /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
Setup-client_fr-fr.cab" 

Dism /image:C:\mount\boot /set-allIntl:de-de

rmdir C:\my_distribution\sources\fr-fr /s

3. Type the following command to mount the Windows image.

4. Optional: Type the following command to list the packages that are installed in the offline image.

You can use > packagelist.txt  to output the list to a text file named PackageList. Note the package identity
of the language pack you want to remove.

5. Remove a language pack from the image. You can remove multiple .cab files using one command-line
statement.

Note
You can specify the package identity using the /PackageName option, or you can point to the original
source of the package using the /PackagePath option. For example:

For more information, see DISM Operating System Package Servicing Command-Line Options.

6. If you added additional optional components to the Recovery image, remove the language-specific optional
components and change the default language settings. For example:

7. Optional. If you added additional language support to the boot.wim file, remove the language specific
resources and optional components from the boot.wim file. For example:

8. Recreate the lang.ini file and change the default language settings by running the following command:



Dism /image:C:\mount\winre /Set-AllIntl:de-de
Dism /image:C:\mount/windows /Gen-LangINI /distribution:C:\my_distribution /Set-AllIntl:de-DE

Dism /unmount-image /MountDir:C:\mount\boot /Commit

Dism /unmount-image /MountDir:C:\mount\winre /Commit 
Dism /unmount-image /MountDir:C:\mount\windows /Commit

9. Optional. If you removed languages from the boot.wim file, copy the updated lang.ini file to the boot image.
After you have updated the lang.ini file in the boot.wim, unmounts the boot.wim file.

10. Type the following command to commit the changes and unmount the images.



Configure International Settings in Windows
5/11/2018 • 8 minutes to read • Edit Online

Configure international settings by using Windows PowerShell

Configure international settings by using Control Panel

You can specify the default language, locale, and keyboard values during deployment or after Windows is
installed. You can configure international settings by using the International module for Windows PowerShell, by
using an answer file with Windows Setup, or by using Deployment Imaging Servicing and Management (DISM).

For information about using DISM to configure international settings in an offline Windows image, see DISM
Languages and International Servicing Command-Line Options.

Important
In Windows 10, the intl.cpl command line tools do not support the new settings available in the Region and
Language section of Control Panel. For Windows 10, we recommend using the International Windows
PowerShell cmdlet settings to automate customizing international settings.

In addition, Deployment Imaging Servicing and Management (DISM) should also only be used against an offline
Windows image. In Windows 10, language settings are dynamically configured based on the user ’s language list.
Individual settings, such as the display language, default input method, and user locale may be reset dynamically
based on user preferences on a running Windows installation. Use the International PowerShell cmdlet settings
to change the international settings of a running Windows installation.

In Windows 10, you can use the International Settings Windows PowerShell cmdlets to change the language on a
running Windows installation.

Get-WinSystemLocale

Set-WinSystemLocale ja-JP

1. Open a Windows PowerShell prompt.

2. Display the locale information on the computer by running the following command:

Set the locale for the region and language that you want. For example, the following command sets the
system locale to Japanese (Japan):

For a full description of these cmdlets, see Get-WinSystemLocale and Set-WinSystemLocale. For more
information about using International PowerShell cmdlets, see International Settings Cmdlets.

On a running Windows installation, you can use Control Panel to select language packs and configure additional
international settings.

1. On the Start page, type language, and select Add a language.

2. Browse or search for the language that you want to install. For example, select Catalan, and then select
Add.

Catalan is now added as one of your languages.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/configure-international-settings-in-windows.md
http://go.microsoft.com/fwlink/p/?linkid=242247
http://go.microsoft.com/fwlink/p/?linkid=242254
http://go.microsoft.com/fwlink/p/?linkid=238265


Configure international settings by using DISM

Configure international settings by using an answer file

3. In the Change your language preferences pane, select Options next to the language that you added.

4. If a language pack is available for your language, select Download and install language pack.

5. When the language pack is installed, the language is displayed as available to use for the Windows display
language.

6. To make this language your display language, move it to the top of your language list.

7. Log off and then log back on to Windows for the change to take effect.

Installing many additional language packs affects disk space and system performance. In particular, disk space
and system performance are affected during servicing operations, such as service pack installations. Therefore,
we recommend that you add a language pack to your computer only if you plan to use the language pack.

Language packs also let multiple users who share a computer select distinct display languages. For example, one
user can select to see the dialog boxes, menus, and other text in Japanese, whereas another user can select to see
the same content in French.

You can use Deployment Imaging Servicing and Management (DISM) to change the international settings
against an offline Windows image

Dism /Mount-Image /ImageFile:C:\my_distribution\sources\install.wim /Index:1 /MountDir:C:\mount\windows

Dism /image:C:\mount\windows /Get-Intl

Dism /image:C:\mount\windows /set-allIntl:fr-fr

1. Mount a Windows image. For example,

2. Get the language settings that are configured in the Windows image by using the /Get-Intl parameter. For
example

3. Change the default language, locale, and other international settings by using the /set-allInlt parameter.

For additional parameters and other options, see DISM Languages and International Servicing Command-Line
Options.

You can configure international settings in an answer file in the following ways:

Language Packs are installed from a distribution share and settings are configured installed during
WindowsPE  configuration pass.

Corporations that deploy a multilingual edition of Windows typically create an answer file that configures
international settings during the WindowsPE  configuration pass. For multilingual deployments, language
packs can exist in both a distribution share and in the image. You can add and configure Language packs
from the distribution share during the WindowsPE  configuration pass, or you can add these Language pa
cks during the WindowsPE  configuration pass and configure the settings in another configuration pass.

The Microsoft-Windows-International-Core-WinPE component includes the settings that you can use to
modify the language and locale settings during the windowsPE  configuration pass. Additionally, you can



change the Setup UI language for Windows Setup by specifying values in this component.

Language packs are installed to the Windows image and settings are configured during specialize and
oobesystem configuration passes.

OEMs and corporations that deploy a single-language edition of Windows to various regions typically
create an answer file for each region and set the locale and keyboard settings in the specialize
configuration pass. In this scenario, the language pack is added to the Windows image before international
settings are configured.

The Microsoft-Windows-International-Core component includes the settings that you can use to modify
the language and locale settings during the specialize and oobeSystem configuration passes.

You can pre-select a language and skip the Windows Welcome language selection UI page for users by
specifying language and locale settings in the oobeSystem configuration pass in the Microsoft-Windows-
International-Core component. In general, a user can choose between the default Setup language and any
additional languages that are installed in the image. The selection of the language will update the other
regional settings to the default values that are associated with that language. The user can then individually
change the default settings.

To configure international settings during the Windows PE configuration pass

1. Verify that the necessary language packs are available in the image or in a Windows distribution share. For
more information about multilingual distribution shares, see Add Multilingual Support to a Windows
Distribution.

2. Open Windows System Image Manager (Windows SIM) and create an answer file. For more information,
see Create or Open an Answer File.

3. Add the Microsoft-Windows-International-Core-WinPE component to the answer file to apply settings
during the windowsPE  configuration pass.

4. Configure international settings in the Microsoft-Windows-International-Core-WinPE component. For
example, if the Spanish language pack is available in the distribution share, you can add es-ES values to the
component settings in the windowsPE  configuration pass.

Most system locales require a restart. When you configure your locale settings during the windowsPE
configuration pass, the computer will automatically restart. Additional restarts are not required.

For more information about these settings, see the Microsoft-Windows-International-Core-WinPE
components in the Windows® Unattended Setup Reference.

5. Save the answer file and close Windows SIM. The language pack in the distribution share will be
automatically added and the international settings will be applied when you run Windows Setup and
specify this answer file.

To configure international settings during the specialize configuration pass

1. Verify that the necessary language packs are available in the image. For more information about how to
add a language pack offline, see Add and Remove Language Packs Offline Using DISM. For more
information about how to add a language pack using an answer file, see Add a Package to an Answer File.

2. Open Windows SIM and create a new answer file. For more information, see Create or Open an Answer
File.

3. Add the Microsoft-Windows-International-Core component to apply settings during the specialize and
oobeSystem configuration passes.

Most system locales require a restart. When you process language settings during the specialize or

https://msdn.microsoft.com/library/windows/hardware/dn915085
https://msdn.microsoft.com/library/windows/hardware/dn915066
https://msdn.microsoft.com/library/windows/hardware/dn915085


Related topics

oobeSystem configuration passes, the computer might require an additional restart.

4. Edit the settings for the Microsoft-Windows-International-Core component to configure international
settings for a specific region. For example, you can add EN-US values to the Microsoft-Windows-
International-Core settings in the specialize configuration pass.

You can also pre-select a language and specify language and locale settings in the oobeSystem
configuration pass in the Microsoft-Windows-International-Core component. When you do this, the
Windows Welcome language selection UI page will be skipped when the users boot to Windows
Welcome. In general the user can select between the default Setup language and any additional languages
that are installed in the image. The selection of the language will update the other regional settings to the
default values associated with that language. The user can then change these default settings individually.

For more information about these settings, see the Microsoft-Windows-International-Core component in
the Windows® Unattended Setup Reference.

5. Save the answer file and close Windows SIM. When you run Windows Setup specifying this answer file,
the regional settings that you specified in the answer file will be applied.

To change international settings in separate configuration passes in the same answer file:

Create multiple sections in an answer file that will process different language settings during different
phases of Windows installation. This enables you to configure multiple language settings in an answer file
by specifying different settings to be processed in different configuration passes. For more information, see
How Configuration Passes Work.

For example, you can create language and locale settings in the windowsPE  configuration pass with the
Microsoft-Windows-International-Core-WinPE component.

You can then change the default settings in either the oobeSystem or the specialize configuration pass
by adding settings to the Microsoft-Windows-International-Core component.

For example, you can specify EN-US as the default language to use on the computer in the windowsPE
configuration pass. Then, if you intend to send the computer to a different region, you can add more
language and locale settings to the oobeSystem configuration pass.

If language settings are processed during the oobeSystem configuration pass, a restart might be required.
Also, the time that is required for the computer to process the language settings might prevent the end
user from starting Windows Welcome quickly.

Windows Setup Technical Reference

Windows System Image Manager Technical Reference

Add Language Packs to Windows

Add and Remove Language Packs Offline Using DISM

https://msdn.microsoft.com/library/windows/hardware/dn922445


Add Multilingual Support to a Windows Distribution
7/18/2018 • 3 minutes to read • Edit Online

You can use Windows Setup to deploy a multilingual edition of Windows. This is a typical scenario for
corporations that deploy Windows in a multilingual environment where the users must be able to switch the
display language between multiple languages on a single computer. This procedure requires the following steps:

1. Copy one or more language packs to the \Langpacks directory in the Windows distribution. The Windows
distribution is the contents of the Windows retail DVD.

2. Update the Lang.ini file.
3. Use Setup to install the language packs that are in the distribution share.

Important
Adding language packs to the \Langpacks directory can extend the Windows Setup installation time. Packages in
the \Langpacks directory are added to the Windows image during the windowsPE  configuration pass, before
Windows is actually installed. If Windows Setup must install several language packs, then installation might be
delayed.

To add language packs to a Windows Distribution

mkdir C:\my_distribution\langpacks 

mkdir C:\my_distribution\Langpacks\fr-fr

xcopy C:\LPs\Microsoft-Windows-Client-Language-Pack_x64_fr-fr.cab C:\my_distribution\Langpacks\fr-
fr\Microsoft-Windows-Client-Language-Pack_x64_fr-fr.cab

ren C:\my_distribution\Langpacks\fr-fr\Microsoft-Windows-Client-Language-Pack_x64_fr-fr.cab lp.cab

xcopy E:\sources\fr-fr C:\my_distribution\sources\fr-fr /cherkyi 
xcopy E:\sources\de-de C:\my_distribution\sources\de-de /cherkyi

1. Copy the Windows distribution to a local directory. For example, copy the contents of the Windows
product DVD to a directory named C:\my_distribution.

2. Locate the language pack .cab files for the languages that you want to add to the Windows distribution and
copy them to a local directory.

3. Create the \Langpacks directory in the distribution share. For example:

4. Create folders in the \Langpacks folder for each language pack you're adding

5. Copy the language packs to the language-specific folders you created in \Langpacks. For example:

6. Rename the language pack in each folder to lp.cab .

7. (Optional) To make additional languages available in Windows Setup, copy the localized Windows Setup
sources to the distribution share. For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-multilingual-support-to-a-windows-distribution.md


DISM.exe /Mount-Image /ImageFile:C:\my_distribution\sources\install.wim /index:1 
/MountDir:C:\mount\windows

DISM.exe /image:c:\mount\windows /distribution:c:\my_distribution /Get-Intl

Default system UI language : en-US
System locale : en-US
Default time zone : Pacific Standard Time
User locale for default user : en-US
Location : United States (GEOID = 244)
Active keyboard(s) : 0409:00000409
Keyboard layered driver : PC/AT Enhanced Keyboard (101/102-Key)

Installed language(s): en-US
Type : Fully localized language.

Reporting distribution languages.

The default language in the distribution is:
en-US

The other available languages in the distribution are:
es-es, fr-fr

DISM.exe /image:c:\mount\windows /Gen-LangINI /distribution:c:\my_distribution

[Available UI Languages]
en-US = 3
de-de = 0
fr-fr = 0

[Fallback Languages]
en-US = en-us

Where E: is the location of the Windows distribution that contains the localized Windows Setup resources.

The /cherkyi parameters for the xcopy command copies all hidden files and subdirectories and
overwrites all files in the target directory.

8. Mount the Windows image that is in the distribution share. This step is required for the Deployment Image
Servicing and Management tool (DISM.exe) to report the list of languages that are installed in the .wim
file, and to recreate the Lang.ini file. Use DISM to mount the Windows image. For example:

9. Report the languages that are available in the distribution share or installed to the Windows image by
using the /Get-Intl option and specifying the distribution share. For example:

Verify that the correct languages are displayed as available languages and that The other available
languages in the distribution display the correct languages. For example:

10. Recreate the Lang.ini file. For example:

When you add or remove language packs from a Windows distribution, you must recreate the Lang.ini file.
The Lang.ini file is located in the sources directory of the Windows distribution and is used during
Windows Setup. The lang.ini file in the sources directory should look similar to the following:



Related topics

NOTENOTE

DISM.exe /Unmount-Image /MountDir:C:\mount\windows /commit 

You can choose a language for Windows Setup from those that are available in the distribution share when you run
Setup from a full operating system only. If you run Windows Setup for bootable media or Windows PE, you must
add optional components to the Boot.wim file for multilingual support. For more information, see Add Multilingual
Support to Windows Setup.

11. Unmount the .wim file and commit the changes. For example:

You can now run Windows Setup. During the installation, you will be prompted to choose one of the
languages you added to the distribution share.

DISM Languages and International Servicing Command-Line Options

Configure International Settings in Windows



Add multilingual support to Windows Setup
5/11/2018 • 4 minutes to read • Edit Online

Prerequisites

Step 1. Prepare your environment

Step 2. Customize languages available for Windows setup

Add Windows PE Setup Language Packs to the Default Boot ImageAdd Windows PE Setup Language Packs to the Default Boot Image

Windows Setup multilingual support allows you to choose different languages for Windows Setup and Windows
installation. This scenario allows for a technician to run Windows setup in one language, and install Windows in a
different language.

This walkthrough provides steps for creating Windows installation media with multilingual support.

To complete this walkthrough, you need the following:

A technician computer that has the Windows Assessment and Deployment Kit (Windows ADK) installed

Windows installation media for all languages that you are creating media

The Windows language pack ISO

To get started, copy Windows installation files from media to a local directory. If you are creating media for use
with a customized image, you must use the Windows media that corresponds to the version of your customized
image. For example, if you are building a custom Windows 10 setup image, you must use the original Windows
10 product media.

md C:\my_distribution
xcopy /E D: C:\my_distribution
md C:\mount\boot 
md C:\mount\windows

On your technician computer, create a new directory for your Windows distribution and copy the Windows
media content to that directory. For example:

Where D: is the location of the Windows product media.

This section shows how to customize the languages that are available for a technician when performing a
Windows installation.

In this step, you add language support and the Windows Setup optional components to the second image (index
2) in the default Boot.wim.

Dism /mount-image /imagefile:C:\my_distribution\sources\boot.wim /index:2 /mountdir:C:\Mount\boot

1. On your technician PC: Click Start, and type deployment. Right-click Deployment and Imaging Tools
Environment and then select Run as administrator.

2. Mount the second image (index 2) in Boot.wim to a local mount directory using Dism /Mount-Image. For
example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-multilingual-support-to-windows-setup.md


Step 3. Customize the languages available in Windows
Add Language Packs to the Windows ImageAdd Language Packs to the Windows Image

Step 4: Add Localized Windows Setup Resources to the Windows
Distribution

Dism /image:C:\mount\boot /add-package /packagepath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\lp.cab"

Dism /image:C:\mount\boot /add-package /packagepath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-Setup_fr-fr.cab"

Dism /image:C:\mount\boot /add-package /packagepath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-Setup-Client_fr-
fr.cab"

Dism /image:C:\mount\boot /add-package /packagepath:"C:\Program Files (x86)\Windows Kits\10\Assessment 
and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-FontSupport-JA-JP.cab"

3. Add Windows PE Setup optional component and language packs into your mounted image using Dism
/Add-Package for each language you want to support. Add lp.cab, WinPE-setup_<language>.cab, and
WinPE-Setup-client_<language>.cab for each language you are adding.

Windows PE language packs are available in the Windows ADK.

For example:

Important
For Windows Server 2016, you must use the WinPE-Setup-Server optional components instead of the
WinPE-Setup-Client optional components.

4. For Japanese ( ja-JP), Korean (ko-KR), and Chinese (zh-HK, zh-CN, zh-TW), you have to add additional font
support to your image. For example, to add Japanese font support:

You must add the same language support to your Windows image file, install.wim, as you did for the
boot.wim file. The setup process requires that both images contain the same set of language packs. For more
information, see Add and Remove Language Packs Offline Using DISM.

Dism /mount-image /imagefile:C:\my_distribution\sources\install.wim /index:1 /mountdir:C:\mount\windows     

Dism /image:C:\mount\windows /add-package /packagepath:F:\x64\langpacks\Microsoft-Windows-Client-
Language-Pack_x64_fr-fr.cab 

1. Mount the Windows image with DISM

Where 1 is the index of the image that you want to mount.

2. Add one or more language packs to the Windows image.

Where F: is the location of the language pack ISO.

The same set of languages must also be added to the Windows Recovery Environment image (winre.wim). For
more information, see Customize Windows RE.



Step 5: Recreate the Lang.ini

Step 6: Commit the Changes to the Windows Images

Step 7: Create a Boot Order File (Optional)

In this step you copy the language-specific Setup resources from each language specific Windows distribution to
the Sources folder in your Windows distribution. For example, insert the Windows DVD for Fr-FR in your DVD
drive (E:) and copy the Fr-FR sources folder to your Windows distribution.

xcopy E:\sources\fr-fr C:\my_distribution\sources\fr-fr /cherkyi 

Copy the localized Windows setup files to your Windows distribution.

Where E: is the location of the Windows installation media that contains the localized Windows Setup
resources.

In this step you recreate the Lang.ini file and specify the default language settings.

Dism /image:C:\mount\windows /gen-langINI /distribution:C:\my_distribution

Dism /image:C:\mount\windows /Set-SetupUILang:fr-FR /distribution:C:\my_distribution

Xcopy C:\my_distribution\sources\lang.ini C:\mount\boot\sources\lang.ini

1. Recreate the Lang.ini file to reflect the additional languages using Dism /Gen-LangINI.

2. Change the Windows Setup default language with DISM. For example:

For more information about specifying different international settings for input locale, and other items see
DISM Languages and International Servicing Command-Line Options.

3. Copy the lang.ini file in the Windows distribution to the boot.wim file.

In this step you commit the changes to all of the images you have updated

Dism /unmount-image /mountdir:C:\mount\boot /commit 
Dism /unmount-image /mountdir:C:\mount\windows /commit

Use DISM to unmount and commit the changes to the Windows and boot images.

In this step, you create a boot order file. Due to the size of the image, you must do so before you create an .iso file.

Oscdimg -m -n -yo C:\temp\bootOrder.txt -bC:\winpe_amd64\Efisys.bin C:\winpe_amd64\winpeamd64.iso

Create a boot order file (bootorder.txt). For example:

where Bootorder.txt contains the following list of files:



Next Steps

Related topics

boot\bcd
boot\boot.sdi
boot\bootfix.bin
boot\bootsect.exe
boot\etfsboot.com
boot\memtest.efi
boot\memtest.exe
boot\en-us\bootsect.exe.mui
boot\fonts\chs_boot.ttf
boot\fonts\cht_boot.ttf
boot\fonts\jpn_boot.ttf
boot\fonts\kor_boot.ttf
boot\fonts\wgl4_boot.ttf
sources\boot.wim

You can now use the multilingual image to create media for distribution. To create bootable media such as a USB
flash drive, see WinPE: Create USB Bootable drive. You can also create a bootable CD or DVD. However, due to
the size of a multilingual image, you must first create a boot order file before you create a bootable image (.iso) file
on CD or DVD. For more information, see Oscdimg Command-Line Options.

Windows Setup Technical Reference

DISM Image Management Command-Line Options

DISM Windows PE Servicing Command-Line Options

Oscdimg Command-Line Options

WinPE: Mount and Customize

WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)



Default Input Profiles (Input Locales) in Windows
7/27/2017 • 13 minutes to read • Edit Online

Dism /image:C:\test\offline /Set-InputLocale:042d:0000040a
Dism /image:C:\test\offline /Set-InputLocale:0411:{03B5835F-F03C-411B-9CE2-AA23E1171E36}{A76C93D9-5523-4E90-
AAFA-4DB112F9AC76}
Dism /image:C:\test\offline /Set-InputLocale:id-ID
Dism /image:C:\test\offline /Set-AllIntl:fr-FR

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

Afrikaans - South Africa af-ZA: United States - English
(0436:00000409)

Albanian - Albania sq-AL: Albanian (041c:0000041c)

Alsatian - France gsw-FR: French (0484:0000040c)

Amharic - Ethiopia am-ET: Amharic Input Method (045e:
{E429B25A-E5D3-4D1F-9BE3-
0C608477E3A1}{8F96574E-C86C-
4bd6-9666-3F7327D4CBE8})

en-US: United States - English
(0409:00000409)

Arabic - Algeria ar-DZ: Arabic (102) AZERTY
(1401:00020401)

fr-FR: French (040c:0000040c)

Arabic - Bahrain ar-BH: Arabic (101) (3c01:00000401) en-US: United States - English
(0409:00000409)

Input profiles (or input locales) describe the language of the input entered, and the keyboard on which it is being
entered. When the first user logs into Windows and identifies their region, Windows sets the input profiles.

The input profiles are made up of a language identifier and a keyboard identifier. For example, the Arabic
(Algerian) input profile is 1401:00020401, where 1401 is the hexadecimal identifier of the language: Arabic
(Algeria) and 00020401 is the hexadecimal identifier of the keyboard: Arabic 101.

When the user first identifies the time and date format (User Locale) as Algeria, Windows sets up both the
primary input profile, and a secondary input profile: French (France) with French keyboard. The secondary input
profile can help the user by providing a keyboard with a Latin character set for tasks that require it, such as filling
out email addresses. Some character sets (like CHS IME) have a Latin character set built in.

Windows uses the language component of the input profile for tasks like spelling, hyphenation, and text
prediction of the intended key press when using the touch-screen keyboard.

When setting up new devices for your users, you can use the DISM commands: /Set-InputLocale or /Set-AllIntl to
identify a default input profile. You can either select the input profile by its language and keyboard pair
(1401:00020401) or you can use a language\region tag to receive the default settings for that language/region.

Examples:

For a list of language/culture names, see Available Language Packs for Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/default-input-locales-for-windows-language-packs.md
http://go.microsoft.com/fwlink/?LinkId=63026


Arabic - Egypt ar-EG: Arabic (101) (0c01:00000401) en-US: United States - English
(0409:00000409)

Arabic - Iraq ar-IQ: Arabic (101) (0801:00000401) en-US: United States - English
(0409:00000409)

Arabic - Jordan ar-JO: Arabic (101) (2c01:00000401) en-US: United States - English
(0409:00000409)

Arabic - Kuwait ar-KW: Arabic (101) (3401:00000401) en-US: United States - English
(0409:00000409)

Arabic - Lebanon ar-LB: Arabic (101) (3001:00000401) en-US: United States - English
(0409:00000409)

Arabic - Libya ar-LY: Arabic (101) (1001:00000401) en-US: United States - English
(0409:00000409)

Arabic - Morocco ar-MA: Arabic (102) AZERTY
(1801:00020401)

fr-FR: French (040c:0000040c)

Arabic - Oman ar-OM: Arabic (101) (2001:00000401) en-US: United States - English
(0409:00000409)

Arabic - Qatar ar-QA: Arabic (101) (4001:00000401) en-US: United States - English
(0409:00000409)

Arabic - Saudi Arabia ar-SA: Arabic (101) (0401:00000401) en-US: United States - English
(0409:00000409)

Arabic - Syria ar-SY: Arabic (101) (2801:00000401) en-US: United States - English
(0409:00000409)

Arabic - Tunisia ar-TN: Arabic (102) AZERTY
(1c01:00020401)

fr-FR: French (040c:0000040c)

Arabic - U.A.E. ar-AE: Arabic (101) (3801:00000401) en-US: United States - English
(0409:00000409)

Arabic - Yemen ar-YE: Arabic (101) (2401:00000401) en-US: United States - English
(0409:00000409)

Armenian - Armenia hy-AM: Armenian Phonetic
(042b:0002042b)

Assamese - India as-IN: Assamese - Inscript
(044d:0000044d)

en-US: United States - English
(0409:00000409)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

hy-AM: Armenian Typewriter
(042b:0003042b)

ru-RU: Russian (0419:00000419)



Azerbaijani - Azerbaijan (Cyrillic) az-Cyrl-AZ: Azerbaijani Cyrillic
(082c:0000082c)

Azerbaijani - Azerbaijan (Latin) az-Latn-AZ: Azerbaijani Latin
(042c:0000042c)

Bangla (Bangladesh) bn-BD: Bangla - Bangladesh
(0845:00000445)

en-US: United States - English
(0409:00000409)

Bangla - India (Bengali Script) bn-IN: Bangla India-INSCRIPT
(0445:00020445)

en-US: United States - English
(0409:00000409)

Bashkir - Russia ba-RU: Bashkir (046d:0000046d)

Basque - Basque eu-ES: Spanish (042d:0000040a)

Belarusian - Belarus be-BY: Belarusian (0423:00000423)

Bosnian - Bosnia and Herzegovina
(Cyrillic)

bs-Cyrl-BA: Bosnian (Cyrillic)
(201a:0000201a)

bs-Latn-BA: Croatian (141a:0000041a)

Bosnian - Bosnia and Herzegovina
(Latin)

bs-Latn-BA: Croatian (141a:0000041a)

Breton - France br-FR: French (047e:0000040c)

Bulgarian - Bulgaria bg-BG: Bulgarian (0402:00030402) en-US: United States - International
(0409:00020409)

Burmese - Myanmar my-MM: Myanmar (0455:00010c00) en-US: United States - English
(0409:00000409)

Catalan - Catalan ca-ES: Spanish (0403:0000040a)

Central Atlas Tamazight (Latin) - Algeria fr-FR: French (040c:0000040c) en-US: United States - English
(0409:00000409)

Central Atlas Tamazight (Latin) - Algeria tzm-Latn-DZ: Central Atlas Tamazight
(085f:0000085f)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

en-US: United States - English
(0409:00000409)

az-Latn-AZ: Azeri Latin
(042c:0000042c)

en-US: United States - English
(0409:00000409)

az-Cyrl-AZ: Azeri Cyrillic
(082c:0000082c)

ru-RU Russian (0419:00000419)

en-US: United States - English
(0409:00000409)

ru-RU: Russian (0419:00000419)

en-US: United States - English
(0409:00000409)



Central Atlas Tamazight (Tifinagh) -
Morocco

tzm-Tfng-MA: (105f:0000105f) fr-FR: French (040c:0000040c)

Central Kurdish (Iraq) ku-Arab-IQ: (0492:00000492) en-US: United States - English
(0409:00000409)

Cherokee (Cherokee, United States) chr-Cher-US: Cherokee Nation
(045c:0000045c)

Chinese - PRC zh-CN: Microsoft Pinyin - Simple Fast
(0804:{81D4E9C9-1D3B-41BC-9E6C-
4B40BF79E35E}{FA550B04-5AD7-
411f-A5AC-CA038EC515D7})

Chinese - Taiwan zh-TW: Chinese (Traditional) - New
Phonetic (0404:{B115690A-EA02-
48D5-A231-E3578D2FDF80}
{B2F9C502-1742-11D4-9790-
0080C882687E})

Corsican - France co-FR: French (0483:0000040c)

Croatian - Bosnia and Herzegovina hr-BA: Croatian (101a:0000041a)

Croatian - Croatia hr-HR: Croatian (041a:0000041a)

Czech - Czech Republic cs-CZ: Czech (0405:00000405)

Danish - Denmark da-DK: Danish (0406:00000406) en-US: Danish (0409:00000406)

Dari - Afghanistan prs-AF: Persian (Standard)
(048c:00050429)

en-US: United States - English
(0409:00000409)

Divehi - Maldives dv-MV: Divehi Phonetic
(0465:00000465)

en-US: United States - English
(0409:00000409)

Dutch - Belgium nl-BE: Belgian (Period)
(0813:00000813)

Dutch - Netherlands nl-NL: United States - International
(0413:00020409)

Dzongkha dz-BT:
0C51:00000C51;0409:00000409

en-US: United States - English
(0409:00000409)

English - Australia en-AU: United States - English
(0c09:00000409)

English - Belize en-BZ: United States - English
(2809:00000409)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

Cherokee Nation Phonetic
(045c:0001045c)

en-US: United States - English
(0409:00000409)



English - Canada en-CA: United States - English
(1009:00000409)

en-CA: Canadian Multilingual Standard
(1009:00011009)

English - Caribbean en-029: United States - English
(2409:00000409)

English - India en-IN: India (4009:00004009)

English - Ireland en-IE: Irish (1809:00001809)

English - Jamaica en-JM: United States - English
(2009:00000409)

English - Malaysia en-MY: United States - English
(4409:00000409)

English - New Zealand en-NZ: United States - English
(1409:00000409)

English - Philippines en-PH: United States - English
(3409:00000409)

English - Singapore en-SG: United States - English
(4809:00000409)

English - South Africa en-ZA: United States - English
(1c09:00000409)

English - Trinidad en-TT: United States - English
(2c09:00000409)

English - Great Britain en-GB: Great Britain (0809:00000809)

English - United States en-US: United States - English
(0409:00000409)

English - Zimbabwe en-ZW: United States - English
(3009:00000409)

Estonian - Estonia et-EE: Estonian (0425:00000425)

Faroese - Faroe Islands fo-FO: Danish (0438:00000406)

Filipino - Philippines fil-PH: United States - English
(0464:00000409)

Finnish - Finland fi-FI: Finnish (040b:0000040b)

French - Belgium fr-BE: Belgian French (080c:0000080c)

French - Canada fr-CA: Canadian Multilingual Standard
(0c0c:00011009)

en-CA: Canadian Multilingual Standard
(1009:00011009)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE



French - France fr-FR: French (040c:0000040c)

French - Luxembourg fr-LU: Swiss French (140c:0000100C) fr-LU: French (140c:0000040c)

French - Monaco fr-MC: French (180c:0000040c)

French - Switzerland fr-CH: Swiss French (100c:0000100c) de-CH: Swiss German (0807:00000807)

Frisian - Netherlands fy-NL: United States - International
(0462:00020409)

Fulah (Latin, Senegal) ff-Latn-SN: Wolof (0867:00000488)

Galician - Galician gl-ES: Spanish (0456:0000040a)

Georgian - Georgia ka-GE: Georgian (QWERTY)
(0437:00010437)

en-US: United States - English
(0409:00000409)

German - Austria de-AT: German (0c07:00000407) de-AT: German ()

German - Germany de-DE: German (0407:00000407) de-DE: German ()

German - Liechtenstein de-LI: Swiss German (1407:00000807)

German - Luxembourg de-LU: German (1007:00000407)

German - Switzerland de-CH: Swiss German
(0807:00000807)

fr-CH: Swiss French (100C:0000100C)

Greek - Greece el-GR: Greek (0408:00000408) en-US: United States - English
(0409:00000409)

Greenlandic - Greenland kl-GL: Danish (046f:00000406)

Guarani - Paraguay gn-PY: Guarani (0474:00000474)

Gujarati - India (Gujarati Script) gu-IN: Gujarati (0447:00000447) en-US: United States - English
(0409:00000409)

Hausa (Latin) - Nigeria ha-Latn-NG: Hausa (0468:00000468)

Hawaiian - United States haw-US: (0475:00000475) en-US: United States - English
(0409:00000409)

Hebrew - Israel he-IL: (040d:0002040d) en-US: United States - English
(0409:00000409)

Hindi - India hi-IN: Hindi Traditional
(0439:00010439)

en-US: United States - English
(0409:00000409)

Hungarian - Hungary hu-HU: Hungarian (040e:0000040e)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE



Icelandic - Iceland is-IS: Icelandic (040f:0000040f)

Igbo - Nigeria ig-NG: Igbo (0470:00000470)

Inari Sami - Finland smn-FI: Finnish with Sami
(243b:0001083b)

Indonesian - Indonesia id-ID: United States - English
(0421:00000409)

Inuktitut (Latin) - Canada iu-Latn-CA: Inuktitut - Latin
(085d:0000085d)

en-CA: United States - English
(1009:00000409)

Inuktitut (Syllabics) - Canada iu-Cans-CA: Inuktitut - Naqittaut
(045d:0001045d)

en-CA: United States - English
(1009:00000409)

Irish - Ireland ga-IE: Irish (083c:00001809)

isiXhosa / Xhosa - South Africa xh-ZA: United States - English
(0434:00000409)

isiZulu / Zulu - South Africa zu-ZA: United States - English
(0435:00000409)

Italian - Italy it-IT: Italian (0410:00000410)

Italian - Switzerland it-CH: Swiss French (0810:0000100c) it-CH: Italian (0810:00000410)

Japanese - Japan ja-JP: Microsoft IME (0411:{03B5835F-
F03C-411B-9CE2-AA23E1171E36}
{A76C93D9-5523-4E90-AAFA-
4DB112F9AC76})

Javanese (Latin) - Indonesia jv-Latn-ID: US (0c00:00000409)

Kannada - India (Kannada Script) kn-IN: Kannada (044b:0000044b) en-US: United States - English
(0409:00000409)

Kazakh - Kazakhstan kk-KZ: Kazakh (043f:0000043f) en-US: United States - English
(0409:00000409)

Khmer - Cambodia km-KH: Khmer (0453:00000453) en-US: United States - English
(0409:00000409)

K'iche - Guatemala qut-GT: Latin American
(0486:0000080a)

Kinyarwanda - Rwanda rw-RW: United States - English
(0487:00000409)

Konkani - India kok-IN: Devanagari-INSCRIPT
(0457:00000439)

en-US: United States - English
(0409:00000409)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE



Korean(Extended Wansung) - Korea ko-KR: Microsoft IME (0412:
{A028AE76-01B1-46C2-99C4-
ACD9858AE02F}{B5FE1F02-D5F2-
4445-9C03-C568F23C99A1})

Kyrgyz - Kyrgyzstan ky-KG: Kyrgyz Cyrillic (0440:00000440) en-US: United States - English
(0409:00000409)

Lao - Lao PDR lo-LA: Lao (0454:00000454) en-US: United States - English
(0409:00000409)

Latvian - Legacy lv-LV: Latvian (QWERTY)
(0426:00010426)

Latvian - Standard lv-LV: Latvian (Standard)
(0426:00020426)

Lithuanian - Lithuania lt-LT: Lithuanian (0427:00010427)

Lower Sorbian - Germany dsb-DE: Sorbian Standard
(082e:0002042e)

Lule Sami - Norway smj-NO: Norwegian with Sami
(103b:0000043b)

Lule Sami - Sweden smj-SE: Swedish with Sami
(143b:0000083b)

Luxembourgish - Luxembourg lb-LU: Luxembourgish
(046e:0000046e)

Macedonian - F.Y.R.O.M mk-MK: Macedonia (FYROM) -
Standard (042f:0001042f)

en-US: United States - English
(0409:00000409)

Malay - Brunei ms-BN: United States - English
(083e:00000409)

Malay - Malaysia ms-MY: United States - English
(043e:00000409)

Malayalam - India (Malayalam Script) ml-IN: Malayalam (044c:0000044c) en-US: United States - English
(0409:00000409)

Maltese - Malta mt-MT: Maltese 47-Key
(043a:0000043a)

Maori - New Zealand mi-NZ: Maori (0481:00000481) en-NZ: United States - English
(1409:00000409)

Mapudungun - Chile arn-CL: Latin American
(047a:0000080a)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE



Marathi - India mr-IN: Marathi (044e:0000044e) en-US: United States - English
(0409:00000409)

Mohawk - Mohawk moh-CA: United States - English
(047c:00000409)

Mongolian (Cyrillic) - Mongolia mn-MN: Mongolian Cyrillic
(0450:00000450)

en-US: United States - English
(0409:00000409)

Mongolian (Mongolian) - Mongolia mn-Mong-MN: Traditional Mongolian
(Standard) (0c50:00010850)

en-US: United States - English
(0409:00000409)

Mongolian (Mongolian – PRC – Legacy) mn-Mong-CN: Mongolian (Mongolian
Script) (0850:00000850)

en-US: United States - English
(0409:00000409)

Mongolian (Mongolian– PRC –
Standard)

mn-Mong-CN: Mongolian (Mongolian
Script) (0850:00010850)

en-US: United States - English
(0409:00000409)

N'ko – Guinea nqo-GN: N’Ko (0c00:00090C00) en-US: United States - English
(0409:00000409)

Nepali - Federal Democratic Republic of
Nepal

ne-NP: Nepali (0461:00000461) en-US: United States - English
(0409:00000409)

Northern Sami - Finland se-FI: Finnish with Sami
(0c3b:0001083b)

Northern Sami - Norway se-NO: Norwegian with Sami
(043b:0000043b)

Northern Sami - Sweden se-SE: Swedish with Sami
(083b:0000083b)

Norwegian - Norway (Bokmål) nb-NO: Norwegian (0414:00000414)

Norwegian - Norway (Nynorsk) nn-NO: Norwegian (0814:00000414)

Occitan - France oc-FR: French (0482:0000040c)

Odia - India (Odia Script) or-IN: Odia (0448:00000448) en-US: United States - English
(0409:00000409)

Pashto - Afghanistan ps-AF: Pashto (Afghanistan)
(0463:00000463)

en-US: United States - English
(0409:00000409)

Persian fa-IR: Central Kurdish (0429:00000429)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

Fa-IR: Persian (Standard)
(0429:00050429)

en-US: United States - English
(0409:00000409)



Polish - Poland pl-PL: Polish (Programmers)
(0415:00000415)

Portuguese - Brazil pt-BR: Portuguese (Brazilian ABNT)
(0416:00000416)

Portuguese - Portugal pt-PT: Portuguese (0816:00000816)

Punjabi - India (Gurmukhi Script) pa-IN: Punjabi (0446:00000446) en-US: United States - English
(0409:00000409)

Punjabi (Islamic Republic of Pakistan) pa-Arab-PK: Urdu (0846:00000420) en-US: United States - English
(0409:00000409)

Quechua - Bolivia quz-BO: Latin American
(046b:0000080a)

Quechua - Ecuador quz-EC: Latin American
(086b:0000080a)

Quechua - Peru quz-PE: Latin American
(0c6b:0000080a)

Romanian - Romania ro-RO: Romanian (Standard)
(0418:00010418)

Romansh - Switzerland rm-CH: Swiss German
(0417:00000807)

Russian - Russia ru-RU: Russian (0419:00000419) en-US: United States - English
(0409:00000409)

Sakha - Russia sah-RU: Sakha (0485:00000485)

Sanskrit - India sa-IN: Devanagari-INSCRIPT
(044f:00000439)

en-US: United States - English
(0409:00000409)

Scottish Gaelic - Great Britain gd-GB: Gaelic (0491:00011809)

Serbian - Bosnia and Herzegovina
(Cyrillic)

sr-Cyrl-BA: Serbian (Cyrillic)
(1c1a:00000c1a)

en-US: United States - English
(0409:00000409)

Serbian - Bosnia and Herzegovina
(Latin)

sr-Latn-BA: Serbian (Latin)
(181a:0000081a)

Serbian - Montenegro (Cyrillic) sr-Cyrl-ME: Serbian (Cyrillic)
(301a:00000c1a)

en-US: United States - International
(0409:00020409)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

ru-RU Russian (0419:00000419)

en-US: United States - English
(0409:00000409)



Serbian - Montenegro (Latin) sr-Latn-ME: Serbian (Latin)
(2c1a:0000081a)

Serbian - Serbia (Cyrillic) sr-Cyrl-RS: Serbian (Cyrillic)
(281a:00000c1a)

en-US: United States - International
(0409:00020409)

Serbian - Serbia (Latin) sr-Latn-RS: Serbian (Latin)
(241a:0000081a)

Serbian - Serbia and Montenegro
(Former) (Cyrillic)

sr-Cyrl-CS: Serbian (Cyrillic)
(0c1a:00000c1a)

en-US: United States - English
(0409:00000409)

Serbian - Serbia and Montenegro
(Former) (Latin)

sr-Latn-CS: Serbian (Latin)
(081a:0000081a)

Sesotho sa Leboa / Northern Sotho -
South Africa

nso-ZA: Sesotho sa Leboa
(046c:0000046c)

Setswana / Tswana - Botswana tn-BW: Setswana (0832:00000432)

Setswana / Tswana - South Africa tn-ZA: Setswana (0432:00000432)

Shona – Zimbabwe sn-Latn-ZW: US (0c00:00000409)

Sindhi (Islamic Republic of Pakistan) sd-Arab-PK: Urdu (0859:00000420) en-US: United States - English
(0409:00000409)

Sinhala - Sri Lanka si-LK: Sinhala (045b:0000045b) en-US: United States - English
(0409:00000409)

Skolt Sami - Finland sms-FI: Finnish with Sami
(203b:0001083b)

Slovak - Slovakia sk-SK: Slovak (041b:0000041b)

Slovenian - Slovenia sl-SI: Slovenian (0424:00000424)

Southern Sami - Norway sma-NO: Norwegian with Sami
(183b:0000043b)

Southern Sami - Sweden sma-SE: Swedish with Sami
(1c3b:0000083b)

Spanish - Argentina es-AR: Latin American (2c0a:0000080a)

Spanish - Bolivarian Republic of
Venezuela

es-VE: Latin American (200a:0000080a)

Spanish - Bolivia es-BO: Latin American
(400a:0000080a)

Spanish - Chile es-CL: Latin American (340a:0000080a)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE



Spanish - Colombia es-CO: Latin American
(240a:0000080a)

Spanish - Costa Rica es-CR: Latin American
(140a:0000080a)

Spanish - Dominican Republic es-DO: Latin American
(1c0a:0000080a)

Spanish - Ecuador es-EC: Latin American (300a:0000080a)

Spanish - El Salvador es-SV: Latin American (440a:0000080a)

Spanish - Guatemala es-GT: Latin American
(100a:0000080a)

Spanish - Honduras es-HN: Latin American
(480a:0000080a)

Spanish - Latin America es-419: Latin American
(580a:0000080a)

Spanish - Mexico es-MX: Latin American
(080a:0000080a)

Spanish - Nicaragua es-NI: Latin American (4c0a:0000080a)

Spanish - Panama es-PA: Latin American (180a:0000080a)

Spanish - Paraguay es-PY: Latin American (3c0a:0000080a)

Spanish - Peru es-PE: Latin American (280a:0000080a)

Spanish - Commonwealth of Puerto
Rico

es-PR: Latin American (500a:0000080a)

Spanish - Spain (International Sort) es-ES: Spanish (0c0a:0000040a) en-US: United States - English
(0409:00000409)

Spanish - Spain (Traditional Sort) es-ES_tradnl: Spanish (040a:0000040a)

Spanish - United States es-US: Latin American
(540a:0000080a)

en-US: United States - English
(0409:00000409)

Spanish - Uruguay es-UY: Latin American
(380a:0000080a)

Standard Moroccan Tamazight -
Morocco

zgh-Tfng-MA: Tifinagh (Basic)
(0c00:0000105F)

en-US: United States - English
(0409:00000409)

Swahili - Kenya sw-KE: United States - English
(0441:00000409)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE



Swedish - Finland sv-FI: Swedish (081d:0000041d)

Swedish - Sweden sv-SE: Swedish (041d:0000041d)

Syriac - Syria syr-SY: Syriac (045a:0000045a) en-US: United States - English
(0409:00000409)

Tajik - Tajikistan tg-Cyrl-TJ: Tajik (0428:00000428) en-US: United States - English
(0409:00000409)

Tamil - India ta-IN: Tamil (0449:00000449) en-US: United States - English
(0409:00000409)

Tamil - Sri Lanka ta-LK: Tamil (0849:00000449) en-US: United States - English
(0409:00000409)

Tatar – Russia (Legacy) tt-RU: Tatar (0444:00000444)

Tatar – Russia (Standard) tt-RU: Tatar (0444:00010444)

Telugu - India (Telugu Script) te-IN: Telugu (044a:0000044a) en-US: United States - English
(0409:00000409)

Thai - Thailand th-TH: Thai Kedmanee
(041e:0000041e)

en-US: United States - English
(0409:00000409)

Tibetan - PRC bo-CN: Tibetan (PRC) (0451:00010451) en-US: United States - English
(0409:00000409)

Tigrinya (Eritrea) ti-ET: Tigrinya Input Method (0473:
{E429B25A-E5D3-4D1F-9BE3-
0C608477E3A1}{3CAB88B7-CC3E-
46A6-9765-B772AD7761FF})

en-US: United States - English
(0409:00000409)

Tigrinya (Ethiopia) ti-ET: Tigrinya Input Method (0473:
{E429B25A-E5D3-4D1F-9BE3-
0C608477E3A1}{3CAB88B7-CC3E-
46A6-9765-B772AD7761FF})

en-US: United States - English
(0409:00000409)

Turkish - Turkey tr-TR: Turkish Q (041f:0000041f)

Turkmen - Turkmenistan tk-TM: Turkmen (0442:00000442) en-US: United States - English
(0409:00000409)

Ukrainian - Ukraine uk-UA: Ukrainian (Enhanced)
(0422:00020422)

en-US: United States - English
(0409:00000409)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

ru-RU: Russian (0419:00000419)

en-US: United States - English
(0409:00000409)

ru-RU: Russian (0419:00000419)

en-US: United States - English
(0409:00000409)



Upper Sorbian - Germany hsb-DE: Sorbian Standard
(042e:0002042e)

Urdu – India ur-IN: Urdu (0820:00000420) en-US: United States - English
(0409:00000409)

Urdu (Islamic Republic of Pakistan) ur-PK: Urdu (0420:00000420) en-US: United States - English
(0409:00000409)

Uyghur - PRC ug-CN: Uyghur (0480:00010480) en-US: United States - English
(0409:00000409)

Uzbek - Uzbekistan (Cyrillic) uz-Cyrl-UZ: Uzbek Cyrillic
(0843:00000843)

uz-Latn-UZ: United States - English
(0443:00000409)

Uzbek - Uzbekistan (Latin) uz-Latn-UZ: United States - English
(0443:00000409)

Valencian - Valencia ca-ES-valencia: Spanish
(0803:0000040a)

Vietnamese - Vietnam vi-VN: Vietnamese (042a:0000042a) en-US: United States - English
(0409:00000409)

Welsh - Great Britain cy-GB: Great Britain Extended
(0452:00000452)

en-GB: Great Britain (0809:00000809)

Wolof - Senegal wo-SN: Wolof (0488:00000488)

Yi - PRC ii-CN: Yi Input Method(0478:
{E429B25A-E5D3-4D1F-9BE3-
0C608477E3A1}{409C8376-007B-
4357-AE8E-26316EE3FB0D})

zh-CN: Microsoft Pinyin - Simple Fast
(0804:{81D4E9C9-1D3B-41BC-9E6C-
4B40BF79E35E}{FA550B04-5AD7-
411f-A5AC-CA038EC515D7})

Yoruba - Nigeria yo-NG: Yoruba (046a:0000046a)

LANGUAGE/REGION
PRIMARY INPUT PROFILE (LANGUAGE AND
KEYBOARD PAIR) SECONDARY INPUT PROFILE

Related topics
Default Time Zones

Add Language Packs to Windows

Available Language Packs for Windows

Keyboard identifiers for Windows

DISM Languages and International Servicing Command-Line Options



Default Time Zones
5/11/2018 • 13 minutes to read • Edit Online

Country ISO3166 Timezone UTC Timezone description

Afghanistan AF Afghanistan Standard
Time

(UTC+04:30) Kabul

Åland Islands AX FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

Albania AL Central Europe
Standard Time

(UTC+01:00) Belgrade, Bratislava,
Budapest, Ljubljana,
Prague

Algeria DZ W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

American Samoa AS UTC-11 (UTC-11:00) Coordinated
Universal Time-11

Andorra AD W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Angola AO W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Anguilla AI SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Antarctica AQ Pacific SA Standard
Time

(UTC-03:00) Santiago

Antigua and Barbuda AG SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Argentina AR Argentina Standard
Time

(UTC-03:00) City of Buenos Aires

Armenia AM Caucasus Standard
Time

(UTC+04:00) Yerevan

Default time zones by region in Windows 10. When the first user logs into Windows and identifies their region,
Windows sets the time zone. The user can change the time zone at any time.

Important Windows updates the time zones in the registry when time zones are available and updates are
downloaded. Because time zones can change, use the tzutil command-line tool in Windows to verify the time
zone.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/default-time-zones.md
http://go.microsoft.com/fwlink/?LinkId=620389


Aruba AW SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Australia AU AUS Eastern Standard
Time

(UTC+10:00) Canberra, Melbourne,
Sydney

Austria AT W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Azerbaijan AZ Azerbaijan Standard
Time

(UTC+04:00) Baku

Bahamas, The BS Eastern Standard
Time

(UTC-05:00) Eastern Time (US &
Canada)

Bahrain BH Arab Standard Time (UTC+03:00) Kuwait, Riyadh

Bangladesh BD Bangladesh Standard
Time

(UTC+06:00) Dhaka

Barbados BB SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Belarus BY Belarus Standard Time (UTC+03:00) Minsk

Belgium BE Romance Standard
Time

(UTC+01:00) Brussels,
Copenhagen, Madrid,
Paris

Belize BZ Central America
Standard Time

(UTC-06:00) Central America

Benin BJ W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Bermuda BM Atlantic Standard
Time

(UTC-04:00) Atlantic Time
(Canada)

Bhutan BT Bangladesh Standard
Time

(UTC+06:00) Dhaka

Bolivarian Republic of
Venezuela

VE Venezuela Standard
Time

(UTC-04:30) Caracas

Bolivia BO SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Bonaire, Sint
Eustatius and Saba

BQ SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Bosnia and
Herzegovina

BA Central European
Standard Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb



Botswana BW South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Bouvet Island BV UTC (UTC) Coordinated
Universal Time

Brazil BR E. South America
Standard Time

(UTC-03:00) Brasilia

British Indian Ocean
Territory

IO Central Asia Standard
Time

(UTC+06:00) Astana

Brunei BN Singapore Standard
Time

(UTC+08:00) Kuala Lumpur,
Singapore

Bulgaria BG FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

Burkina Faso BF Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Burundi BI South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Cabo Verde CV Cape Verde Standard
Time

(UTC-01:00) Cabo Verde Is.

Cambodia KH SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

Cameroon CM W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Canada CA Eastern Standard
Time

(UTC-05:00) Eastern Time (US &
Canada)

Cayman Islands KY SA Pacific Standard
Time

(UTC-05:00) Bogota, Lima, Quito,
Rio Branco

Central African
Republic

CF W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Chad TD W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Chile CL Pacific SA Standard
Time

(UTC-03:00) Santiago

China CN China Standard Time (UTC+08:00) Beijing, Chongqing,
Hong Kong, Urumqi

Christmas Island CX SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta



Cocos (Keeling)
Islands

CC Myanmar Standard
Time

(UTC+06:30) Yangon (Rangoon)

Colombia CO SA Pacific Standard
Time

(UTC-05:00) Bogota, Lima, Quito,
Rio Branco

Comoros KM E. Africa Standard
Time

(UTC+03:00) Nairobi

Congo CG W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Congo (DRC) CD W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Cook Islands CK Hawaiian Standard
Time

(UTC-10:00) Hawaii

Costa Rica CR Central America
Standard Time

(UTC-06:00) Central America

Côte d'Ivoire CI Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Croatia HR Central European
Standard Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb

Cuba CU Eastern Standard
Time

(UTC-05:00) Eastern Time (US &
Canada)

Curaçao CW SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Cyprus CY E. Europe Standard
Time

(UTC+02:00) E. Europe

Czech Republic CZ Central Europe
Standard Time

(UTC+01:00) Belgrade, Bratislava,
Budapest, Ljubljana,
Prague

Democratic Republic
of Timor-Leste

TL Tokyo Standard Time (UTC+09:00) Osaka, Sapporo,
Tokyo

Denmark DK Romance Standard
Time

(UTC+01:00) Brussels,
Copenhagen, Madrid,
Paris

Djibouti DJ E. Africa Standard
Time

(UTC+03:00) Nairobi

Dominica DM SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan



Dominican Republic DO SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Ecuador EC SA Pacific Standard
Time

(UTC-05:00) Bogota, Lima, Quito,
Rio Branco

Egypt EG Egypt Standard Time (UTC+02:00) Cairo

El Salvador SV Central America
Standard Time

(UTC-06:00) Central America

Equatorial Guinea GQ W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Eritrea ER E. Africa Standard
Time

(UTC+03:00) Nairobi

Estonia EE FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

Ethiopia ET E. Africa Standard
Time

(UTC+03:00) Nairobi

Falkland Islands (Islas
Malvinas)

FK SA Eastern Standard
Time

(UTC-03:00) Cayenne, Fortaleza

Faroe Islands FO GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

Fiji Islands FJ Fiji Standard Time (UTC+12:00) Fiji

Finland FI FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

France FR Romance Standard
Time

(UTC+01:00) Brussels,
Copenhagen, Madrid,
Paris

French Guiana GF SA Eastern Standard
Time

(UTC-03:00) Cayenne, Fortaleza

French Polynesia PF Hawaiian Standard
Time

(UTC-10:00) Hawaii

French Southern and
Antarctic Lands

TF West Asia Standard
Time

(UTC+05:00) Ashgabat, Tashkent

Gabon GA W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Gambia, The GM Greenwich Standard
Time

(UTC) Monrovia, Reykjavik



Georgia GE Georgian Standard
Time

(UTC+04:00) Tbilisi

Germany DE W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Ghana GH Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Gibraltar GI W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Greece GR GTB Standard Time (UTC+02:00) Athens, Bucharest

Greenland GL Greenland Standard
Time

(UTC-03:00) Greenland

Grenada GD SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Guadeloupe GP SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Guam GU West Pacific Standard
Time

(UTC+10:00) Guam, Port Moresby

Guatemala GT Central America
Standard Time

(UTC-06:00) Central America

Guernsey GG GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

Guinea GN Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Guinea-Bissau GW Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Guyana GY SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Haiti HT Eastern Standard
Time

(UTC-05:00) Eastern Time (US &
Canada)

Heard Island and
McDonald Islands

HM Mauritius Standard
Time

(UTC+04:00) Port Louis

Honduras HN Central America
Standard Time

(UTC-06:00) Central America

Hong Kong SAR HK China Standard Time (UTC+08:00) Beijing, Chongqing,
Hong Kong, Urumqi



Hungary HU Central Europe
Standard Time

(UTC+01:00) Belgrade, Bratislava,
Budapest, Ljubljana,
Prague

Iceland IS Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

India IN India Standard Time (UTC+05:30) Chennai, Kolkata,
Mumbai, New Delhi

Indonesia ID SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

Iran IR Iran Standard Time (UTC+03:30) Tehran

Iraq IQ Arabic Standard Time (UTC+03:00) Baghdad

Ireland IE GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

Israel IL Israel Standard Time (UTC+02:00) Jerusalem

Italy IT W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Jamaica JM SA Pacific Standard
Time

(UTC-05:00) Bogota, Lima, Quito,
Rio Branco

Jan Mayen SJ W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Japan JP Tokyo Standard Time (UTC+09:00) Osaka, Sapporo,
Tokyo

Jersey JE GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

Jordan JO Jordan Standard Time (UTC+02:00) Amman

Kazakhstan KZ Central Asia Standard
Time

(UTC+06:00) Astana

Kenya KE E. Africa Standard
Time

(UTC+03:00) Nairobi

Kiribati KI UTC+12 (UTC+12:00) Coordinated
Universal Time+12

Korea KR Korea Standard Time (UTC+09:00) Seoul

Kosovo XK Central European
Standard Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb



Kuwait KW Arab Standard Time (UTC+03:00) Kuwait, Riyadh

Kyrgyzstan KG Central Asia Standard
Time

(UTC+06:00) Astana

Laos LA SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

Latvia LV FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

Lebanon LB Middle East Standard
Time

(UTC+02:00) Beirut

Lesotho LS South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Liberia LR Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Libya LY E. Europe Standard
Time

(UTC+02:00) E. Europe

Liechtenstein LI W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Lithuania LT FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

Luxembourg LU W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Macao SAR MO China Standard Time (UTC+08:00) Beijing, Chongqing,
Hong Kong, Urumqi

Macedonia, Former
Yugoslav Republic of

MK Central European
Standard Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb

Madagascar MG E. Africa Standard
Time

(UTC+03:00) Nairobi

Malawi MW South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Malaysia MY Singapore Standard
Time

(UTC+08:00) Kuala Lumpur,
Singapore

Maldives MV West Asia Standard
Time

(UTC+05:00) Ashgabat, Tashkent

Mali ML Greenwich Standard
Time

(UTC) Monrovia, Reykjavik



Malta MT W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Man, Isle of IM GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

Marshall Islands MH UTC+12 (UTC+12:00) Coordinated
Universal Time+12

Martinique MQ SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Mauritania MR Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Mauritius MU Mauritius Standard
Time

(UTC+04:00) Port Louis

Mayotte YT E. Africa Standard
Time

(UTC+03:00) Nairobi

Mexico MX Central Standard Time
(Mexico)

(UTC-06:00) Guadalajara, Mexico
City, Monterrey

Micronesia FM West Pacific Standard
Time

(UTC+10:00) Guam, Port Moresby

Moldova MD GTB Standard Time (UTC+02:00) Athens, Bucharest

Monaco MC W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Mongolia MN Ulaanbaatar Standard
Time

(UTC+08:00) Ulaanbaatar

Montenegro ME Central European
Standard Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb

Montserrat MS SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Morocco MA Morocco Standard
Time

(UTC) Casablanca

Mozambique MZ South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Myanmar MM Myanmar Standard
Time

(UTC+06:30) Yangon (Rangoon)

Namibia NA Namibia Standard
Time

(UTC+01:00) Windhoek



Nauru NR UTC+12 (UTC+12:00) Coordinated
Universal Time+12

Nepal NP Nepal Standard Time (UTC+05:45) Kathmandu

Netherlands NL W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

New Caledonia NC Central Pacific
Standard Time

(UTC+11:00) Solomon Is., New
Caledonia

New Zealand NZ New Zealand
Standard Time

(UTC+12:00) Auckland, Wellington

Nicaragua NI Central America
Standard Time

(UTC-06:00) Central America

Niger NE W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Nigeria NG W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Niue NU UTC-11 (UTC-11:00) Coordinated
Universal Time-11

Norfolk Island NF Central Pacific
Standard Time

(UTC+11:00) Solomon Is., New
Caledonia

North Korea KP Korea Standard Time (UTC+09:00) Seoul

Northern Mariana
Islands

MP West Pacific Standard
Time

(UTC+10:00) Guam, Port Moresby

Norway NO W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Oman OM Arabian Standard
Time

(UTC+04:00) Abu Dhabi, Muscat

Pakistan PK Pakistan Standard
Time

(UTC+05:00) Islamabad, Karachi

Palau PW Tokyo Standard Time (UTC+09:00) Osaka, Sapporo,
Tokyo

Palestinian Authority PS Egypt Standard Time (UTC+02:00) Cairo

Panama PA SA Pacific Standard
Time

(UTC-05:00) Bogota, Lima, Quito,
Rio Branco



Papua New Guinea PG West Pacific Standard
Time

(UTC+10:00) Guam, Port Moresby

Paraguay PY Paraguay Standard
Time

(UTC-04:00) Asuncion

Peru PE SA Pacific Standard
Time

(UTC-05:00) Bogota, Lima, Quito,
Rio Branco

Philippines PH Singapore Standard
Time

(UTC+08:00) Kuala Lumpur,
Singapore

Pitcairn Islands PN Pacific Standard Time (UTC-08:00) Pacific Time (US &
Canada)

Poland PL Central European
Standard Time

(UTC+01:00) Sarajevo, Skopje,
Warsaw, Zagreb

Portugal PT GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

Puerto Rico PR SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Qatar QA Arab Standard Time (UTC+03:00) Kuwait, Riyadh

Reunion RE Mauritius Standard
Time

(UTC+04:00) Port Louis

Romania RO GTB Standard Time (UTC+02:00) Athens, Bucharest

Russia RU Russian Standard
Time

(UTC+03:00) Moscow, St.
Petersburg,
Volgograd (RTZ 2)

Rwanda RW South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Saint Barthélemy BL SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Saint Helena,
Ascension and Tristan
da Cunha

SH Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Saint Kitts and Nevis KN SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Saint Lucia LC SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Saint Martin (French
part)

MF SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan



Saint Pierre and
Miquelon

PM Greenland Standard
Time

(UTC-03:00) Greenland

Saint Vincent and the
Grenadines

VC SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Samoa WS Samoa Standard Time (UTC+13:00) Samoa

San Marino SM W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

São Tomé and
Príncipe

ST Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Saudi Arabia SA Arab Standard Time (UTC+03:00) Kuwait, Riyadh

Senegal SN Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Serbia RS Central Europe
Standard Time

(UTC+01:00) Belgrade, Bratislava,
Budapest, Ljubljana,
Prague

Seychelles SC Mauritius Standard
Time

(UTC+04:00) Port Louis

Sierra Leone SL Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Singapore SG Singapore Standard
Time

(UTC+08:00) Kuala Lumpur,
Singapore

Sint Maarten (Dutch
part)

SX SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Slovakia SK Central Europe
Standard Time

(UTC+01:00) Belgrade, Bratislava,
Budapest, Ljubljana,
Prague

Slovenia SI Central Europe
Standard Time

(UTC+01:00) Belgrade, Bratislava,
Budapest, Ljubljana,
Prague

Solomon Islands SB Central Pacific
Standard Time

(UTC+11:00) Solomon Is., New
Caledonia

Somalia SO E. Africa Standard
Time

(UTC+03:00) Nairobi

South Africa ZA South Africa Standard
Time

(UTC+02:00) Harare, Pretoria



South Georgia and
the South Sandwich
Islands

GS UTC-02 (UTC-02:00) Coordinated
Universal Time-02

South Sudan SS E. Africa Standard
Time

(UTC+03:00) Nairobi

Spain ES Romance Standard
Time

(UTC+01:00) Brussels,
Copenhagen, Madrid,
Paris

Sri Lanka LK Sri Lanka Standard
Time

(UTC+05:30) Sri Jayawardenepura

Sudan SD E. Africa Standard
Time

(UTC+03:00) Nairobi

Suriname SR SA Eastern Standard
Time

(UTC-03:00) Cayenne, Fortaleza

Svalbard SJ W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Swaziland SZ South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Sweden SE W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Switzerland CH W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Syria SY Syria Standard Time (UTC+02:00) Damascus

Taiwan TW Taipei Standard Time (UTC+08:00) Taipei

Tajikistan TJ West Asia Standard
Time

(UTC+05:00) Ashgabat, Tashkent

Tanzania TZ E. Africa Standard
Time

(UTC+03:00) Nairobi

Thailand TH SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

Togo TG Greenwich Standard
Time

(UTC) Monrovia, Reykjavik

Tokelau TK Tonga Standard Time (UTC+13:00) Nuku'alofa

Tonga TO Tonga Standard Time (UTC+13:00) Nuku'alofa



Trinidad and Tobago TT SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Tunisia TN W. Central Africa
Standard Time

(UTC+01:00) West Central Africa

Turkey TR Turkey Standard Time (UTC+02:00) Istanbul

Turkmenistan TM West Asia Standard
Time

(UTC+05:00) Ashgabat, Tashkent

Turks and Caicos
Islands

TC Eastern Standard
Time

(UTC-05:00) Eastern Time (US &
Canada)

Tuvalu TV UTC+12 (UTC+12:00) Coordinated
Universal Time+12

U.S. Minor Outlying
Islands

UM UTC-11 (UTC-11:00) Coordinated
Universal Time-11

Uganda UG E. Africa Standard
Time

(UTC+03:00) Nairobi

Ukraine UA FLE Standard Time (UTC+02:00) Helsinki, Kyiv, Riga,
Sofia, Tallinn, Vilnius

United Arab Emirates AE Arabian Standard
Time

(UTC+04:00) Abu Dhabi, Muscat

United Kingdom GB GMT Standard Time (UTC) Dublin, Edinburgh,
Lisbon, London

United States US Pacific Standard Time (UTC-08:00) Pacific Time (US &
Canada)

Uruguay UY Montevideo Standard
Time

(UTC-03:00) Montevideo

Uzbekistan UZ West Asia Standard
Time

(UTC+05:00) Ashgabat, Tashkent

Vanuatu VU Central Pacific
Standard Time

(UTC+11:00) Solomon Is., New
Caledonia

Vatican City VA W. Europe Standard
Time

(UTC+01:00) Amsterdam, Berlin,
Bern, Rome,
Stockholm, Vienna

Vietnam VN SE Asia Standard Time (UTC+07:00) Bangkok, Hanoi,
Jakarta

Virgin Islands, U.S. VI SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan



Virgin Islands, British VG SA Western Standard
Time

(UTC-04:00) Georgetown, La Paz,
Manaus, San Juan

Wallis and Futuna WF UTC+12 (UTC+12:00) Coordinated
Universal Time+12

Yemen YE Arab Standard Time (UTC+03:00) Kuwait, Riyadh

Zambia ZM South Africa Standard
Time

(UTC+02:00) Harare, Pretoria

Zimbabwe ZW South Africa Standard
Time

(UTC+02:00) Harare, Pretoria



Keyboard Identifiers and Input Method Editors for
Windows
5/11/2018 • 3 minutes to read • Edit Online

Keyboard identifiers

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)

Albanian 0x0000041c

Arabic (101) 0x00000401

Arabic (102) 0x00010401

Arabic (102) AZERTY 0x00020401

Armenian Eastern 0x0000042b

Armenian Phonetic 0x0002042b

Armenian Typewriter 0x0003042b

Armenian Western 0x0001042b

Assamese - Inscript 0x0000044d

Azerbaijani (Standard) 0x0001042c

Azerbaijani Cyrillic 0x0000082c

Azerbaijani Latin 0x0000042c

Bashkir 0x0000046d

Belarusian 0x00000423

Belgian (Comma) 0x0001080c

Belgian (Period) 0x00000813

Belgian French 0x0000080c

Use keyboard identifiers and Input Method Editors (IMEs) identify the keyboard type.

The following table lists keyboard identifiers that are available for Windows. You can also install support for
additional keyboard types. The valid keyboards that can be configured for your device are listed in the registry
key: HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Keyboard Layouts

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-language-pack-default-values.md


Bangla (Bangladesh) 0x00000445

Bangla (India) 0x00020445

Bangla (India - Legacy) 0x00010445

Bosnian (Cyrillic) 0x0000201a

Buginese 0x000b0c00

Bulgarian 0x0030402

Bulgarian (Latin) 0x00010402

Bulgarian (phonetic layout) 0x00020402

Bulgarian (phonetic traditional) 0x00040402

Bulgarian (Typewriter) 0x00000402

Canadian French 0x00001009

Canadian French (Legacy) 0x00000c0c

Canadian Multilingual Standard 0x00011009

Central Atlas Tamazight 0x0000085f

Central Kurdish 0x00000429

Cherokee Nation 0x0000045c

Cherokee Nation Phonetic 0x0001045c

Chinese (Simplified) - US Keyboard 0x00000804

Chinese (Traditional) - US Keyboard 0x00000404

Chinese (Traditional, Hong Kong S.A.R.) 0x00000c04

Chinese (Traditional Macao S.A.R.) US Keyboard 0x00001404

Chinese (Simplified, Singapore) - US keyboard 0x00001004

Croatian 0x0000041a

Czech 0x00000405

Czech (QWERTY) 0x00010405

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



Czech Programmers 0x00020405

Danish 0x00000406

Devanagari-INSCRIPT 0x00000439

Divehi Phonetic 0x00000465

Divehi Typewriter 0x00010465

Dutch 0x00000413

Dzongkha 0x00000C51

Estonian 0x00000425

Faeroese 0x00000438

Finnish 0x0000040b

Finnish with Sami 0x0001083b

French 0x0000040c

Futhark 0x00120c00

Georgian 0x00000437

Georgian (Ergonomic) 0x00020437

Georgian (QWERTY) 0x00010437

Georgian Ministry of Education and Science Schools 0x00030437

Georgian (Old Alphabets) 0x00040437

German 0x00000407

German (IBM) 0x00010407

Gothic 0x000c0c00

Greek 0x00000408

Greek (220) 0x00010408

Greek (220) Latin 0x00030408

Greek (319) 0x00020408

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



Greek (319) Latin 0x00040408

Greek Latin 0x00050408

Greek Polytonic 0x00060408

Greenlandic 0x0000046f

Guarani 0x00000474

Gujarati 0x00000447

Hausa 0x00000468

Hebrew 0x0000040d

Hindi Traditional 0x00010439

Hungarian 0x0000040e

Hungarian 101-key 0x0001040e

Icelandic 0x0000040f

Igbo 0x00000470

India 0x000004009

Inuktitut - Latin 0x0000085d

Inuktitut - Naqittaut 0x0001045d

Irish 0x00001809

Italian 0x00000410

Italian (142) 0x00010410

Japanese 0x00000411

Javanese 0x00110c00

Kannada 0x0000044b

Kazakh 0x0000043f

Khmer 0x00000453

Khmer (NIDA) 0x00010453

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



Korean 0x00000412

Kyrgyz Cyrillic 0x00000440

Lao 0x00000454

Latin American 0x0000080a

Latvian (Standard) 0x00020426

Latvian (Legacy) 0x00010426

Lisu (Basic) 0x00070c00

Lisu (Standard) 0x00080c00

Lithuanian 0x00010427

Lithuanian IBM 0x00000427

Lithuanian Standard 0x00020427

Luxembourgish 0x0000046e

Macedonia (FYROM) 0x0000042f

Macedonia (FYROM) - Standard 0x0001042f

Malayalam 0x0000044c

Maltese 47-Key 0x0000043a

Maltese 48-key 0x0001043a

Maori 0x00000481

Marathi 0x0000044e

Mongolian (Mongolian Script - Legacy) 0x00000850

Mongolian (Mongolian Script - Standard) 0x00020850

Mongolian Cyrillic 0x00000450

Myanmar 0x00010c00

N'ko 0x00090c00

Nepali 0x00000461

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



New Tai Lue 0x00020c00

Norwegian 0x00000414

Norwegian with Sami 0x0000043b

Odia 0x00000448

Ol Chiki 0x000d0c00

Old Italic 0x000f0c00

Osmanya 0x000e0c00

Pashto (Afghanistan) 0x00000463

Persian 0x00000429

Persian (Standard) 0x00050429

Phags-pa 0x000a0c00

Polish (214) 0x00010415

Polish (Programmers) 0x00000415

Portuguese 0x00000816

Portuguese (Brazilian ABNT) 0x00000416

Portuguese (Brazilian ABNT2) 0x00010416

Punjabi 0x00000446

Romanian (Legacy) 0x00000418

Romanian (Programmers) 0x00020418

Romanian (Standard) 0x00010418

Russian 0x00000419

Russian - Mnemonic 0x00020419

Russian (Typewriter) 0x00010419

Sakha 0x00000485

Sami Extended Finland-Sweden 0x0002083b

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



Sami Extended Norway 0x0001043b

Scottish Gaelic 0x00011809

Serbian (Cyrillic) 0x00000c1a

Serbian (Latin) 0x0000081a

Sesotho sa Leboa 0x0000046c

Setswana 0x00000432

Sinhala 0x0000045b

Sinhala - wij 9 0x0001045b

Slovak 0x0000041b

Slovak (QWERTY) 0x0001041b

Slovenian 0x00000424

Sora 0x00100c00

Sorbian Extended 0x0001042e

Sorbian Standard 0x0002042e

Sorbian Standard (Legacy) 0x0000042e

Spanish 0x0000040a

Spanish Variation 0x0001040a

Swedish 0x0000041d

Swedish with Sami 0x0000083b

Swiss French 0x0000100c

Swiss German 0x00000807

Syriac 0x0000045a

Syriac Phonetic 0x0001045a

Tai Le 0x00030c00

Tajik 0x00000428

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



Tamil 0x00000449

Tatar 0x00010444

Tatar (Legacy) 0x00000444

Telugu 0x0000044a

Thai Kedmanee 0x0000041e

Thai Kedmanee (non-ShiftLock) 0x0002041e

Thai Pattachote 0x0001041e

Thai Pattachote (non-ShiftLock) 0x0003041e

Tibetan (PRC - Standard) 0x00010451

Tibetan (PRC - Legacy) 0x00000451

Tifinagh (Basic) 0x00050c00

Tifinagh (Full) 0x00060c00

Turkish F 0x0001041f

Turkish Q 0x0000041f

Turkmen 0x00000442

Uyghur 0x00010408

Uyghur (Legacy) 0x00000480

Ukrainian 0x00000422

Ukrainian (Enhanced) 0x00020422

United Kingdom 0x00000809

United Kingdom Extended 0x00000452

United States - Dvorak 0x00010409

United States - International 0x00020409

United States-Dvorak for left hand 0x00030409

United States-Dvorak for right hand 0x00040409

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)



United States - English 0x00000409

Urdu 0x00000420

Uyghur 0x00010480

Uzbek Cyrillic 0x00000843

Vietnamese 0x0000042a

Wolof 0x00000488

Yakut 0x00000485

Yoruba 0x0000046a

KEYBOARD KEYBOARD IDENTIFIER (HEXADECIMAL)

Input Method Editors
LANGUAGE/REGION INPUT PROFILE (LANGUAGE AND KEYBOARD PAIR)

Amharic - (Ethiopia) am-ET: Amharic Input Method (045e:{E429B25A-E5D3-
4D1F-9BE3-0C608477E3A1}{8F96574E-C86C-4bd6-9666-
3F7327D4CBE8})

Chinese (PRC) zh-CN: Microsoft Pinyin - Simple Fast (0804:{81D4E9C9-
1D3B-41BC-9E6C-4B40BF79E35E}{FA550B04-5AD7-411f-
A5AC-CA038EC515D7})

Chinese (Taiwan) zh-TW: Chinese (Traditional) - New Phonetic (0404:
{B115690A-EA02-48D5-A231-E3578D2FDF80}{B2F9C502-
1742-11D4-9790-0080C882687E})

Chinese (Traditional DaYi) 0404:{E429B25A-E5D3-4D1F-9BE3-0C608477E3A1}
{037B2C25-480C-4D7F-B027-D6CA6B69788A}

Chinese (Wubi) 0804:{6a498709-e00b-4c45-a018-8f9e4081ae40}
{82590C13-F4DD-44f4-BA1D-8667246FDF8E}

Chinese (Yi) ii-CN: Yi Input Method(0478:{E429B25A-E5D3-4D1F-9BE3-
0C608477E3A1}{409C8376-007B-4357-AE8E-
26316EE3FB0D})

Japanese (Japan) ja-JP: Microsoft IME (0411:{03B5835F-F03C-411B-9CE2-
AA23E1171E36}{A76C93D9-5523-4E90-AAFA-
4DB112F9AC76})

Korean (Hangul) ko-KR: Microsoft IME (0412:{A028AE76-01B1-46C2-99C4-
ACD9858AE02F}{B5FE1F02-D5F2-4445-9C03-
C568F23C99A1})

Korean (Old Hangul) 0412:{a1e2b86b-924a-4d43-80f6-8a820df7190f}
{b60af051-257a-46bc-b9d3-84dad819bafb}



Tigrinya (Ethiopia) ti-ET: Tigrinya Input Method (0473:{E429B25A-E5D3-4D1F-
9BE3-0C608477E3A1}{3CAB88B7-CC3E-46A6-9765-
B772AD7761FF})

LANGUAGE/REGION INPUT PROFILE (LANGUAGE AND KEYBOARD PAIR)

Related topics
Available Language Packs for Windows

Default Input Profiles (Input Locales) in Windows



Where is lp.cab?
5/11/2018 • 2 minutes to read • Edit Online

PACKAGE NAME FORMAT EXAMPLE

Language pack Microsoft-Windows-SKU-Language-
Pack__arch__locale.cab

Microsoft-Windows-Client-Language-
Pack_x64_es-es.cab

Language interface pack Microsoft-Windows-SKU-Language-
Interface-Pack__arch__locale.cab

Microsoft-Windows-Client-Language-
Interface-Pack_x64_ca-es-valencia.cab

Related topics

Language packs and language interface packs have been renamed in Windows 10 version 1607.

Note: This change doesn't apply to WinPE, where language packs still use the name lp.cab.

Language Packs

Available Language Packs for Windows

Features On Demand V2 (Capabilities)

Windows Language Pack Default Values

Default Input Locales for Windows Language Packs

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/where-is-lpcab.md


Optimize
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Compact OS, single-instancing, and image optimization Learn how to reduce the size of your Windows image

Manage the Component Store Reduce the size of a Windows installation

Battery Life Configure power plans to improve battery life or performance

You can optimize a Windows installation in several ways. This section covers how to reduce the size of a Windows
image, a Windows installation, and how to create power plans.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/optimize-windows.md


Compact OS, single-instancing, and image
optimization
12/22/2017 • 8 minutes to read • Edit Online

Deployment tools that help save space
Compact OSCompact OS

To deploy Compact OS using a WIM fileTo deploy Compact OS using a WIM file

To deploy Compact OS from Windows SetupTo deploy Compact OS from Windows Setup

To deploy Compact OS with a USB bootable driveTo deploy Compact OS with a USB bootable drive

Windows 10 includes tools to help you use less drive space. You can now compress the files for the entire
operating system, including your preloaded desktop applications. Compact OS lets you run the operating
system from compressed files (similar to WIMBoot in Windows 8.1 Update 1), and single-instancing helps you
run your pre-loaded Windows desktop applications in compressed files. The new processes helps maintain a
small footprint over time by using individual files, rather than combining them in a WIM file.

Here's some ways to shrink the image, optimize the image, and some considerations when deploying to low-cost
devices.

Compact OS installs the operating system files as compressed files. Compact OS is supported on both UEFI-
based and BIOS-based devices. See the size comparison table below.

Unlike WIMBoot, because the files are no longer combined into a single WIM file, Windows update can replace
or remove individual files as needed to help maintain the drive footprint size over time.

Wpeutil createpagefile C:\pagefile /size=256

DISM /Apply-Image /ImageFile:install.wim /Index:1 /ApplyDir:D:\ /compact

1. Boot your destination device with the Windows 10 version of Windows PE. (To use a previous version of
Windows PE, make sure you use the Windows 10 version of DISM. To learn more, see Copy DISM to
Another Computer.)

2. Create a pagefile equal to 256 MB.

Where "C" is the Windows partition.

3. Format and prepare the partitions, and then apply the image to a partition using the DISM /Apply-Image
/Compact option:

This is usually done by running a deployment script. To learn more, see Apply Images Using DISM.

Note: If you're applying an image in compact mode and using the /ScratchDir option, make sure your
ScratchDir folder is not on a FAT32-formatted partition. Using a FAT32 partition could result in
unexpected reboots during OOBE.

Use an unattend.xml file with the setting: Microsoft-Windows-Setup\ImageInstall\OSImage\Compact.

For Windows 10, Version 1607 and earlier

1. On your technician PC, open Windows ICD and create your project.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/compact-os.md
https://msdn.microsoft.com/library/windows/hardware/dn949267


To deploy Compact OS from an FFU imageTo deploy Compact OS from an FFU image

Command-line supportCommand-line support

Compact.exe /CompactOS:Query /WinDir:E:\Windows

Compact.exe /CompactOS:always

Single-instancing of provisioning packagesSingle-instancing of provisioning packages

DISM /Apply-CustomDataImage /CustomDataImage:C:\Recovery\Customizations\USMT.ppkg /ImagePath:C:\ 
/SingleInstance

2. Plug in a USB flash drive and note the drive letter (example: D:).
3. Click Create > Production Media > WIM > Enable OS File Compression: Yes > Next > USB Bootable

drive > drive letter (D:) > Next > Build.
4. Boot the destination PC using the USB flash drive. Windows installs automatically.

Note When running Windows Imaging and Configuration Designer (ICD) on a PC running a previous version
of Windows, such as Windows 8.1, you'll need to install the Windows Assessment and Deployment Kit (ADK)
with both the Windows ICD and Deployment Tools features. This installs the latest versions of the drivers
required by DISM (wimmount.sys and adkwof.sys) used to create Compact OS images.

For Windows 10, Version 1607 and earlier

1. To deploy an FFU image as compressed, the original FFU image must be created as a compressed image.

From Windows ICD, click Create > Production Media > FFU  > Enable OS File Compression: Yes >
name the file, for example, D:\flash.ffu > Build.

2. You can deploy the FFU image directly to a drive from Windows ICD or from Windows Preinstallation
Environment (WinPE). To learn more, see Deploy Windows using Full Flash Update (FFU).

Note When running Windows Imaging and Configuration Designer (ICD) on a PC running a previous version
of Windows, such as Windows 8.1, you'll need to install the Windows Assessment and Deployment Kit (ADK)
with both the Windows ICD and Deployment Tools features. This installs the latest versions of the drivers
required by DISM (wimmount.sys and adkwof.sys) used to create Compact OS images.

You can query whether the operating system is running Compact OS, and change it at any time, using the
Compact.exe command.

From Windows PE, determine if the OS is compacted:

Where E:\Windows is the folder where Windows has been installed.

From an online installation, change from non-compacted to compacted OS:

For Windows 10, when you add new Windows desktop applications to a device, you'll capture these changes
into a compressed provisioning package for use by the automatic recovery tools. Rather than maintaining both
the original files and the provisioning package, you can use DISM to remove the original files, and run from
directly from the compressed provisioning package instead. This is known as single-instancing the image. See
the size comparison table below.

While single-instancing is supported on both solid-state drives and rotational drives, for performance reasons,
we recommend that single-instancing is only used on devices with solid-state drives.

Example:

http://go.microsoft.com/fwlink/?LinkId=526803
http://go.microsoft.com/fwlink/?LinkId=526803
http://go.microsoft.com/fwlink/?LinkId=623487


fsutil.exe wim enumwims C:

Image optimizationImage optimization

md c:\mount\Windows
md C:\mount\temp

Dism /Mount-Image /ImageFile:"C:\Images\install.wim" /Index:1 /MountDir:C:\mount\Windows

Dism /Cleanup-Image /Image=C:\mount\Windows /StartComponentCleanup /ResetBase /ScratchDir:C:\mount\temp

Dism /Unmount-Image /MountDir:C:\mount\Windows /Commit

Dism /Export-Image /SourceImageFile:C:\Images\install.wim /SourceIndex:1 
/DestinationImageFile:C:\Images\install_cleaned.wim

Size requirements and considerations

Hard DriveHard Drive

where C is the drive letter of the Windows partition.

Warning Do not put quotes with the /ImagePath:C:\ option.

You can determine whether a provisioning package (.ppkg) is single-instanced by using fsutil.exe:

where C is the drive that contains the provisioning package. Any single-instanced provisioning package on the
drive will be listed in the command output. If there are none, the command will return "Error : The system cannot
find the file specified."

After applying updates to a Windows image, cleanup the image and then export it to a new file:

where C:\Images\install.wim is a Windows image file that you want to update. Beginning with Windows 10,
version 1607, you can optionally specify the /Defer parameter with /ResetBase to defer any long-running
cleanup operations to the next automatic maintenance, but we highly recommend that only use /Defer as an
option in the factory where DISM /ResetBase requires more than 30 minutes to complete.

You'll still need to meet minimum size requirements for the hard drive, RAM, application resource usage, and
data storage.

Windows 10 requires a minimum of 16 gigabytes (GB) of space on 32-bit devices, and 20 GB on 64-bit devices.

Although some configurations of Windows may appear to fit on smaller drives when Windows is first installed,
8 GB SSDs are not large enough. Even if a user pairs an 8 GB hard drive with a second drive that is 4 GB or
larger for application and data file storage, 8 GB hard drives do not allow for the increase in the Windows
memory footprint that is expected to occur as users work on their computer.

Some of the primary reasons for the increase over time in the memory footprint include the following:

Servicing. Hard disk space must be reserved for software patches to the operating system and for service
pack releases.
System Restore Points. Windows automatically generate restore points. The amount of space that is
required by default is relative to the size of the hard drive. For more information about restore points, see
the Restore Points topic on MSDN. Note Users can adjust the amount of space used on the computer for
System Restore by using the System Protection user interface in the System Properties dialog box
(Sysdm.cpl). Users can also use system image backups that are stored on an external hard disk to restore
a system.

Logs and Caches. The operating system stores files such as event logs and error logs on the drive.

http://go.microsoft.com/fwlink/?LinkId=142170


    

   

RAM, Pagefile.sys, and Hiberfil.sysRAM, Pagefile.sys, and Hiberfil.sys

Language packs and features on demandLanguage packs and features on demand

ApplicationsApplications

User DataUser Data

Size comparisons

IMAGE WINDOWS 10 HOME X86, 2GB MEMORY WINDOWS 10 HOME X64, 4GB MEMORY

Base Footprint 11.68GB 15.06GB

Compact OS, with no single instancing 8.85GB (>2.75GB savings) 11.3GB (>3.7GB)

Compact OS, single instanced 7.66GB (>4GB) 10.09GB (>4.75GB)

Hiberfile off, no compact OS 10.87GB (>825MB) 13.48GB (>1.5GB)

Hiberfile reduced, no compact OS 11.27GB (>400MB) 14.15GB (>930MB)

The Pagefile.sys and Hiberfil.sys files increase in size in direct proportion to the amount of RAM on the
computer. Windows installations on 16 GB drives have a smaller memory footprint when the computer is
limited to 1 GB of RAM. An increase of RAM to a size that is greater than 1 GB will result in increased size of the
system files and less space on the hard drive for other applications and files. Increasing the size of the hard drive,
however, does not affect the size of these system files. Learn more about On/Off Transition Performance

To save space on the drive, you can remove or reduce the size of the hiberfil.sys. See the size comparison table
below. To learn more, see Lab 7: Change settings, enter product keys, and run scripts with an answer file
(unattend.xml).

powercfg /h /type reduced  : Reduces the file by 30%
powercfg /h off  : Removes the file.

Installed language packs (LPs) can take more space than just the size of the LP itself. When you preinstall FODs
and UWP apps on a Windows installation that contains multiple LPs, resource files based on preinstalled LPs
are also installed. When unused languages are automatically removed after OOBE, corresponding UWP and
feature on demand (FOD) resource files are not removed. Preinstalling fewer LPs saves disk space by limiting
the number of resource files that remain on a system after removing unused language packs.

Features on demand are distributed in compressed CAB files so the size of an installed FOD is larger than the
size of the original CAB. You can use /Get-CapabilityInfo  in DISM to view an FOD's download and install sizes.
See Features on demand for how to get information about FODs.

Software applications that are installed on the computer may require additional space for caches, logs, and
updates. Disk space must also be available on the drive to account for temporary increases in resource usage
during installation of applications, patches, and updates.

On computers that support removable media such as an SD card or USB flash drive, users can easily expand
personal data file storage for user documents by using this removable media. However, we recommend that
users reserve some space on the hard drive for these types of files.

The table below shows the additional space saved by using compact OS, Single instancing, and reducing or
turning Off Hiberfile on 2GB (x86 processor architecture) and 4GB (x64 processor architecture), on Windows 10,
version 1607:

https://msdn.microsoft.com/windows/hardware/commercialize/test/assessments/onoff-transition-performance


Related topics
Windows Imaging and Configuration Designer

Capture and Apply Windows, System, and Recovery Partitions

DISM Image Management Command-Line Options

https://msdn.microsoft.com/library/windows/hardware/dn916113


Manage the Component Store
5/11/2018 • 3 minutes to read • Edit Online

The Windows component store and WinSxS folder

Hard links

“Why is WinSxS so large?” has been asked by many Windows users. While this question has been discussed in
blog posts, this topic goes into a little more details about the concepts behind the component store (specifically the
WinSxS folder) and then provides links to topics that highlight ways to better manage the size of the WinSxS
folder.

The short answer is that the WinSxS folder isn’t as large as it may appear at first glance because size calculations
can include Windows binaries located elsewhere which makes the WinSxS folder seem larger than it really is.

The WinSxS folder is located in the Windows folder, for example c:\Windows\WinSxS. It’s the location for
Windows Component Store files. The Windows Component Store is used to support the functions needed for the
customization and updating of Windows. Here are some examples of how the Windows Component Store files
are used:

Using Windows Update to install new component versions. This keeps systems secure and up-to-date.

Enabling or disabling Windows features.

Adding roles or features using Server Manager.

Moving systems between different Windows Editions.

System recovery from corruption or boot failures

Uninstalling problematic updates

Running programs using side-by-side assemblies

The Windows Component Store was first introduced in Windows XP to support side by side assemblies.
Beginning in Windows Vista, the component store was enhanced to track and service all of the components that
make up the operating system. Those different operating system components track objects such as files,
directories, registry keys, and services. Specific versions of components are then collected together into packages.
Packages are used by Windows Update and DISM to update Windows. The components and packages used in a
Windows installation are processed by the Windows Component Store. Determining the size of the Windows
Component Store is complicated by the fact that many of the files are used by Windows from directories outside
the Windows Component Store using a technique known as hard linking. In such cases, the files from a
component version appear both inside and outside the Windows Component Store. By using hard linking
Windows is able to appear to keep multiple copies of the same file without actually taking the added space for
multiple copies.

A hard link is a file system object which allows two files to refer to the same location on disk. This means that
more than one file can refer to the same data and changes to that data in one file are reflected in the other files.
This complicates notions of directory size as can be seen using the following example:

1. Directory A has three files: 1.txt, 2.txt, and 3.txt

2. Directory B has one file: 4.txt

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/manage-the-component-store.md


Managing the Windows Component Store

Related topics

3. Files 1.txt and 2.txt are hard linked together and contain 1MB of data.

4. Files 3.txt and 4.txt are also hard linked together and contain 2MB of data.

In this example, you can see that the hard links enable multiple files to refer to the same set of data.

Now what is the size of directory A?

The answer depends on what you plan to do with directory A:

1. If you read the files in the directory A then the size of all the files that are read is the sum of each file size. In
this example, that would be 4 MB.

2. If you copy all the files from directory A to a new location, then the amount of data copied is the sum of all
data hard linked from the files. In this example, that would be 3 MB.

3. If you are trying to free up space by deleting the directory A, you will only see a reduction in size for the
files that are hard linked only by directory A. In this example, this amounts to a savings of 1 MB.

Back to the question of how much space is used by the Windows Component Store, and specifically the WinSxS
folder. The third answer in the directory A example, most closely matches how much extra space is used. Files hard
linked to the rest of the system are required for system operations, so they should not be counted, and files hard
linked to multiple locations within the component store should only have the size stored on disk counted.

You can use new features in Windows 8.1 and Windows Server 2012 R2 to manage the Windows Component
Store:

Determine the Actual Size of the WinSxS Folder

Clean Up the WinSxS Folder

Reduce the Size of the Component Store in an Offline Windows Image

Where Did My Space Go? (blog post)

More on hard links

NTFS Metafiles blog post

How to create and manipulate NTFS junction points

http://blogs.technet.com/b/askcore/archive/2013/03/01/where-did-my-space-go.aspx
http://blogs.technet.com/b/joscon/archive/2011/08/26/more-on-hard-links.aspx
http://blogs.technet.com/b/askcore/archive/2009/12/30/ntfs-metafiles.aspx
http://support.microsoft.com/kb/205524


Determine the Actual Size of the WinSxS Folder
5/11/2018 • 4 minutes to read • Edit Online

WARNINGWARNING

Why is the WinSxS folder so big? The short answer to this commonly asked question is that the component store
(WinSxS folder) contains all the components that make-up Windows to allow you operate your system. These
components are kept to rollback any problematic change or to repair a file that becomes corrupted. For more
information about the component store, see Manage the Component Store. For information on how to delete files
in the WinSxS folder, see Clean Up the WinSxS Folder.

For operating system files, it can appear that more than one copy of the same version of a file is stored in more
than one place on the operating system, but there’s usually only one real copy of the file. The rest of the copies are
just “projected” by hard linking from the component store. A hard link is a file system object that lets two files
refer to the same location on disk. Some tools, such as the File Explorer, determine the size of directories without
taking into account that the contained files might be hard linked. This might lead you to think that the WinSxS
folder takes up more disk space than it really does.

Some important system files are located only in the WinSxS folder. Deleting files from the WinSxS folder or deleting the entire
WinSxS folder might severely damage your system, so that your PC might not boot, and make it impossible to update.

A new option has been added to the DISM tool for Windows 8.1 to help determine how much disk space the
WinSxS folder really uses.

Analyze the size of the component store (WinSxS folder)

Dism.exe /Online /Cleanup-Image /AnalyzeComponentStore

NOTENOTE

TITLE DESCRIPTION

Windows Explorer Reported Size of Component Store This value the size of the WinSxS folder if computed by
Windows Explorer. This value doesn’t factor in the use of
hard links within the WinSxS folder.

Actual Size of Component Store This value factors in hard links within the WinSxS folder. It
doesn’t exclude files that are shared with Windows by
using hard links.

Open an elevated command window and type:

The /AnalyzeComponentStore option isn’t recognized on Windows 8 and earlier.

The information returned is:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/determine-the-actual-size-of-the-winsxs-folder.md


Shared with Windows This value provides the size of files that are hard linked so
that they appear both in the component store and in
other locations (for the normal operation of Windows).
This is included in the actual size, but shouldn’t be
considered part of the component store overhead.

Backups and Disabled Features This is the size of the components that are being kept to
respond to failures in newer components or to provide
the option of enabling more functionality. It also includes
the size of component store metadata and side-by-side
components. 

This is included in the actual size and is part of the
component store overhead.

Cache and Temporary Data This is the size of files that are used internally by the
component store to make component servicing
operations faster. This is included in the actual size and is
part of the component store overhead.

Date of Last Cleanup This is the date of the most recently completed
component store cleanup.

Number of Reclaimable Packages This is the number of superseded packages on the system
that component cleanup can remove.

Component Store Cleanup Recommended This is a component store cleanup recommendation.
Cleanup is recommended when performing a cleanup
process may reduce the size of the component store
overhead.

TITLE DESCRIPTION

Based on this analysis you can determine the overhead of the WinSxS folder by taking the sum of the
backups and disabled features size with the cache and temporary data size.

Example output:



Related topics

C:\>dism /online /cleanup-image /analyzecomponentstore

Deployment Image Servicing and Management tool
Version: 6.3.XXXX.0

Image Version: 6.3.XXXX.0

[==========================100.0%==========================]

Component Store (WinSxS) information:

Windows Explorer Reported Size of Component Store : 4.98 GB

Actual Size of Component Store : 4.88 GB

    Shared with Windows : 4.38 GB
    Backups and Disabled Features : 506.90 MB
    Cache and Temporary Data : 279.52 KB

Date of Last Cleanup : 2013-06-10 23:32:22

Number of Reclaimable Packages : 0
Component Store Cleanup Recommended : No

The operation completed successfully.

In this example, the WinSxS folder appears to be 4.98 GB, but the actual overhead (the sum of the size of
backups and disabled features and the size of cache and temporary data) is 507.18 MB.

Determine if you should clean up the component store (WinSxS folder) based on the analysis results

Dism.exe /Online /Cleanup-Image /AnalyzeComponentStore

1. Open an elevated command window and type:

2. If cleanup is recommended then follow steps in the related topic, Clean Up the WinSxS Folder.

Manage the Component Store

Clean Up the WinSxS Folder

Where Did My Space Go? (blog post)

Servicing changes in Windows 8.1/Server 2012 R2

NTFS Metafiles blog post

How to create and manipulate NTFS junction points

DISM Operating System Package Servicing Command-Line Options

http://blogs.technet.com/b/askcore/archive/2013/03/01/where-did-my-space-go.aspx
http://blogs.technet.com/b/joscon/archive/2013/07/29/servicing-changes-in-windows-8-1-server-2012r2.aspx
http://blogs.technet.com/b/askcore/archive/2009/12/30/ntfs-metafiles.aspx
http://support.microsoft.com/kb/205524


Clean Up the WinSxS Folder
10/13/2017 • 4 minutes to read • Edit Online

WARNINGWARNING

Task Scheduler

This topic is about the different ways to reduce the size of the WinSxS folder on a running version of Windows 10.

One commonly asked question is, "Can I delete the WinSxS folder to regain some disk space?" The short answer
is no. You can, however, reduce the size of the WinSxS folder using tools built into Windows. For more
information about the WinSxS folder, see Manage the Component Store.

Windows 10 and Windows Server 2016 automatically reduce the size of the WinSxS folder by using methods
similar to the ones described in this topic, in addition to internal processes, such as uninstalling and deleting
packages with components that have been replaced by other components with newer versions. Previous versions
of some components are kept on the system for a period of time, allowing you to rollback if necessary. After a
period of time, these older components are automatically removed from the installation.

You can also reduce the size of a Windows image using some of the same techniques, as discussed in Reduce the
Size of the Component Store in an Offline Windows Image.

To learn about finding the size of your WinSxS folder, see Determine the actual size of the WinSxS folder.

Deleting files from the WinSxS folder or deleting the entire WinSxS folder may severely damage your system so that your PC
might not boot and make it impossible to update.

In Windows 10 and Windows Server 2016, you have a number of ways to start the cleanup of the component
store, which use a combination of package deletion and component compression to clean up the WinSxS folder :

The StartComponentCleanup task was created in Windows 8 to regularly clean up components automatically
when the system is not in use. This task is set to run automatically when triggered by the operating system. When
run automatically, the task will wait at least 30 days after an updated component has been installed before
uninstalling the previous versions of the component.

If you choose to run this task, the task will have a 1 hour timeout and may not completely clean up all files.

Run the StartComponentCleanup task in Task Scheduler to clean up and compress components

schtasks.exe /Run /TN "\Microsoft\Windows\Servicing\StartComponentCleanup"

NOTENOTE

1. If Task Scheduler is not open, start the Task Scheduler. For more information, see Start Task Scheduler.

2. Expand the console tree and navigate to Task Scheduler
Library\Microsoft\Windows\Servicing\StartComponentCleanup.

3. Under Selected Item, click Run

The StartComponentCleanup task can also be started from the command line.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/clean-up-the-winsxs-folder.md
http://technet.microsoft.com/library/cc721931.aspx


Dism.exe

Disk Cleanup

The /Cleanup-Image parameter of Dism.exe provides advanced users more options to further reduce the size
of the WinSxS folder. For more information, see DISM Operating System Package Servicing Command-Line
Options.

Use the /StartComponentCleanup parameter

Dism.exe /online /Cleanup-Image /StartComponentCleanup

Using the /StartComponentCleanup parameter of Dism.exe on a running version of Windows 10 gives
you similar results to running the StartComponentCleanup task in Task Scheduler, except previous
versions of updated components will be immediately deleted (without a 30 day grace period) and you will
not have a 1-hour timeout limitation.

From an elevated command prompt, type the following:

Use the /ResetBase switch with the /StartComponentCleanup parameter

Dism.exe /online /Cleanup-Image /StartComponentCleanup /ResetBase

WARNINGWARNING

Using the /ResetBase switch with the /StartComponentCleanup parameter of DISM.exe on a running
version of Windows 10 removes all superseded versions of every component in the component store.

From an elevated command prompt, type the following:

All existing service packs and updates cannot be uninstalled after this command is completed. This will not block the
uninstallation of future service packs or updates.

Use the /SPSuperseded parameter

Dism.exe /online /Cleanup-Image /SPSuperseded

To reduce the amount of space used by a Service Pack, use the /SPSuperseded parameter of Dism.exe on
a running version of Windows 10 to remove any backup components needed for uninstallation of the
service pack. A service pack is a collection of cumulative updates for a particular release of Windows.

From an elevated command prompt, type the following:

Warning
The service pack cannot be uninstalled after this command is completed.

You can use Disk Cleanup to reduce the number of unnecessary files on your drives, which can help your PC run
faster. It can delete temporary files and system files, empty the Recycle Bin, and remove a variety of other items
that you might no longer need. The option to cleanup updates helps reduce the size of the component store.

Run Disk Cleanup to delete system files

To delete system files run the steps as provided in Delete files using Disk Cleanup.

http://go.microsoft.com/fwlink/p/?LinkId=698648


Related topics
Manage the Component Store

Determine the Actual Size of the WinSxS Folder

Reduce the Size of the Component Store in an Offline Windows Image

Uninstall-WindowsFeature

How to Reduce the Size of the Winsxs directory and Free Up Disk Space on Windows Server 2012 Using
Features on Demand

How to address disk space issues that are caused by a large Windows component store (WinSxS) directory

http://technet.microsoft.com/library/jj205471.aspx
http://blogs.technet.com/b/askpfeplat/archive/2013/02/24/how-to-reduce-the-size-of-the-winsxs-directory-and-free-up-disk-space-on-windows-server-2012-using-features-on-demand.aspx
http://support.microsoft.com/kb/2795190


Reduce the Size of the Component Store in an
Offline Windows Image
5/11/2018 • 2 minutes to read • Edit Online

Analyze and clean up the Component Store (WinSxS folder) in an
offline Windows image

You can use the Deployment Image Servicing and Management (DISM) tool to mount a Windows image from a
WIM, VHD, or VHDX file and modify it.

To complete the walkthrough, you need the following:

A computer running Windows 10, Windows 8.1, Windows 8, Windows 7, Windows Server 2016 Technical
Preview, Windows Server 2012 R2, Windows Server 2012, or Windows Server 2008 R2 with the Windows
8.1 version of the Windows ADK tools installed on it.

A .wim, .vhd, or .vhdx file of a Windows 10 or Windows Server 2016 Technical Preview image.

Analyze the size of the Component Store in an offline Windows image

Dism /Get-ImageInfo /ImageFile:C:\test\images\MyImage.wim

Dism /Mount-Image /ImageFile:C:\test\images\MyImage.wim /Index:1 /MountDir:C:\test\offline

Dism /Image:C:\test\offline /Cleanup-Image /AnalyzeComponentStore

1. Copy a .wim file, a .vhd, or a .vhdx that contains a Windows image, to the local drive. For example,
C:\test\images.

2. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

3. Create a folder for your mounted image. For example, C:\test\offline.

4. Run the DISM /Get-ImageInfo command to retrieve the name or index number for the image that you
want to update. For example:

5. Mount the Windows image. For example:

Since WIM files can contain one or more images, you must specify an index or name value. To mount an
image from a VHD, you must specify /Index:1 .

6. Analyze the size of the component store. For example:

To understand the different values provided in the display, see Determine the Actual Size of the WinSxS
Folder.

7. If the component store cleanup was recommended in the displayed report, then you can start cleanup of
the image. For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/reduce-the-size-of-the-component-store-in-an-offline-windows-image.md


Related topics

Dism /Image:C:\test\offline /Cleanup-Image /StartComponentCleanup

Dism /Image:C:\test\offline /Cleanup-Image /StartComponentCleanup /ResetBase

Schtasks.exe /Run /I /TN \Microsoft\Windows\Servicing\StartComponentCleanup

Dism /Unmount-Image /MountDir:C:\test\offline /Commit

8. You can reduce the size of the component store further by adding the /ResetBase parameter. For example:

Beginning with Windows 10, version 1607, you can specify the /Defer parameter with /Resetbase to defer
any long-running cleanup operations to the next automatic maintenance. But we highly recommend you
only use /Defer as an option in the factory where DISM /Resetbase requires more than 30 minutes to
complete.

The maintenance task is scheduled to run weekly, with a two-week deadline. In the first week, the
maintenance task will only run during system idle maintenance windows. If it is unable to complete (for
example, the computer is turned off when not in use) then the task scheduler runs more often, and the task
may run while the system is not idle.

To see the performance effects while the task is running, click Start > Run and type the following command:

9. Commit the changes and unmounts the image in order to save the changes that you’ve made. For example:

Manage the Component Store

Clean Up the WinSxS Folder

Determine the Actual Size of the WinSxS Folder

Where Did My Space Go? (blog post)

NTFS Metafiles blog post

How to create and manipulate NTFS junction points

DISM Operating System Package Servicing Command-Line Options

http://blogs.technet.com/b/askcore/archive/2013/03/01/where-did-my-space-go.aspx
http://blogs.technet.com/b/askcore/archive/2009/12/30/ntfs-metafiles.aspx
http://support.microsoft.com/kb/205524


 

Take Inventory of an Image or Component Using
DISM
5/11/2018 • 23 minutes to read • Edit Online

Get Windows Image Information

You can take an inventory of what drivers, packages, and other files and settings are included in a Windows image.
To do so, use Deployment Image Servicing and Management (DISM) servicing commands.

You must mount an offline image from a WIM or VHD file before you can take inventory of or service a specific
Windows image. For more information, see Mount and Modify a Windows Image Using DISM.

In this section:

Get Windows Image Information

Get Windows PE Information

Get Driver Information

Get Package and Feature Information

Get App Package (.appx) Servicing Information

Get International Settings and Languages

Get Windows Edition Information

Get Application Patch Information

You can use image commands to list the information about a specific Windows image in a (WIM) file or virtual
hard disk (VHD) file, about the images contained in a specific WIM or VHD file, and about mounted WIM or VHD
files. This information can help you identify mount locations, image names, or verify the architecture of the image
that you are mounting.

You can gather information about all of the images in a WIM or VHD file by using the /Get-ImageInfo servicing
command in DISM. You can also gather information about a specific image in a WIM or VHD file, such as
operating system, architecture, and settings, by specifying the name or index number of the image. To specify the
image in a VHD file, you must use /Index:1 .

You can identify the images that are currently mounted on your computer, and you can list information about the
mounted image such as read/write permissions, mount location, mounted file path, and mounted image index by
using the /Get-MountedImageInfo servicing command.

For more information about image commands available in DISM, see DISM - Deployment Image Servicing and
Management Technical Reference for Windows.

To list images that are contained in a WIM or VHD file

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about all of the images in a WIM or VHD file, at the elevated command prompt, type:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/take-inventory-of-an-image-or-component-using-dism.md


FIELD DESCRIPTION EXAMPLE

FIELD DESCRIPTION EXAMPLE

Dism /Get-ImageInfo /imagefile:C:\test\images\install.wim

When used with the /Index or /Name options, more detailed information about the specified image is
displayed. To specify the image in a VHD file, you must use /Index:1 .

The report that is generated includes the following information.

Index The index value of the image in the
WIM or VHD file.

1

Name The Windows edition name of the
image in the WIM or VHD file.

Windows 8 Pro

Description The description of the image in the
WIM or VHD file.

Windows 8 Pro

Size The size of the image. 8,045,951,502 bytes

To list mounted images

Dism /Get-MountedImageInfo 

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. At the elevated command prompt, type:

The report generated includes the following information:

Mount Dir The location where the image is
mounted.

C:\Test\Mount

Image File The full path to the WIM or VHD
file.

C:\Test\Images\install.wim

Image Index The index number of the mounted
image that is enclosed in WIM or
VHD file.

1

Mounted Read/Write Yes if the mounted image allows
for both read and write access or
No if the mounted image allows for
read-only access only.

Yes



 

 

FIELD DESCRIPTION EXAMPLE

Get Windows PE Information

FIELD DESCRIPTION EXAMPLE

Get Driver Information

Status The mount status of the image. The
possible values include the
following:

OK. The image is mounted. There
are no problems.

Needs Remount. The image must
be remounted. This can be caused
by rebooting the host system when
the image is mounted.

Invalid.: the image is in an invalid
state. You might have to use
/Cleanup-Mountpoints on the
image.

OK

You can mount a Windows Preinstallation Environment (Windows PE) image for servicing in the same way you
would any Windows image. There are also Windows PE servicing commands that are specific to a Windows PE
image. These commands can be used to list Windows PE settings such as scratchspace, targetpath, and profiling
information. For more information about Windows PE servicing commands available in DISM, see DISM
Windows PE Servicing Command-Line Options.

To list all settings in the mounted Windows PE image.

Dism /image:C:\test\offline /Get-PESettings

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about all of the Windows PE settings in the mounted Windows PE image, at the elevated
command prompt, type:

The report generated includes the following information:

Profiling Reports whether Windows PE
profiling is enabled or disabled.

Disabled

Scratch Space The amount of writeable space
available on the Windows PE
system volume when booted in
ramdisk mode.

32MB

TargetPath The path to the root of the
Windows PE image at boot time.

X:</p>

The driver-servicing commands can be used to enumerate driver packages in the driver store based on their .inf



FIELD DESCRIPTION EXAMPLE

files. You can use the /Get commands to display basic information about third-party driver packages or all driver
packages in the offline image. When you point to an offline image or a running operating system, you can
determine what driver packages are in the image, and get information about the drivers.

You can display detailed information about a specific installed .inf file, or one that is not yet installed. Installed
drivers in the driver store will be named Oem0.inf, Oem1.inf, and so on.

For more information about driver-servicing commands available in DISM, see DISM Driver Servicing
Command-Line Options.

To list driver packages in the offline image

Dism /image:C:\test\offline /Get-Drivers

Dism /image:C:\test\offline /Get-Drivers /all

Dism /online /Get-Drivers

Dism /online /Get-Drivers /all

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. Use one of the following commands to list information about all of the driver packages in a mounted offline
Windows image:

For a running operating system, type one of the following commands:

The report generated includes the following information:

Published Name The name of the driver package
after it is added to the driver store.

Oem0.inf

Original File Name The original .inf file name of the
driver package.

Toaster.inf

Inbox Yes for a default driver (inbox
driver) or No for third-party driver
packages.

No

Class Name The friendly name of the device
class the driver is a member of.

Printer

Provider Name The provider or digital signature for
the driver package.

Microsoft



FIELD DESCRIPTION EXAMPLE

FIELD DESCRIPTION EXAMPLE

Date The date associated with the driver,
as it is specified in the .inf file. The
date will be formatted appropriately
for your locale.

10/31/2006

Version The version number that is
specified in the INF driverVer
directive.

6.1.6801.0

To get information about a specific driver

Dism /image:C:\test\offline /Get-DriverInfo /driver:oem1.inf

Dism /online /Get-DriverInfo /driver:oem1.inf

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. List information about a specific driver package in the offline Windows image. For example, type:

For a running operating system, type:

The report generated includes the following information:

Published Name The name of the driver package
after it is added to the driver store.

Oem0.inf

Driver Store Path The path to the driver location. If
the driver is installed, the path to
the driver store is listed. If the
driver is not installed yet, the path
to the driver on the servicing host
is listed.

E:\Images\Mount_depset\Windo
ws\System32\DriverStore\FileRe
pository\Fasttx2k.inf_x86_neutra
l_0328f62e\Fasttx2k.inf

Class Name The friendly name of the device
class the driver is a member of.

Printer

Class Description The description of the device class
the driver is a member of.

Printers

Class GUID The GUID of the device class that
the driver is a member of.

{4D36E97B-E325-11CE-BFC1-
08002BE10318}



 

FIELD DESCRIPTION EXAMPLE

Get Package and Feature Information

Date The date associated with the driver,
as it is specified in the .inf file. The
date will be formatted appropriately
for your locale.

8/6/2003

Version The driver version number that is
specified in the INF driverVer
directive.

1.0.1.37

Boot Critical Yes if the driver is boot critical or
No if it is not.

No

Drivers for architecture The architecture of the image that
it is installed on. If the driver is not
installed yet, the field is reported
repeatedly for each supported
operating system architecture.

x86

Manufacturer The manufacturer of the supported
device.

Adventure Works

Description A description of the supported
device.

Windows XP Adventure Works
376 Controller

Architecture The architecture of the driver. x86

Hardware ID The hardware ID of the supported
device.

ABC_3376

Service Name The service name of the driver. C1232k

Compatible IDs Alternate Plug and Play (PnP) IDs
for the device, if any apply.

12ABC

Exclude IDs PnP IDs that will not match the
device, any apply.

A_123

Note
If you point to a driver that is not yet installed, the report will be slightly different.

You can use operating system package-servicing commands to obtain information about Windows packages. You
can also use DISM and package-servicing commands to obtain information about Windows features, either
offline or on a running Windows installation.

You can use the /PackagePath option to specify a .cab file or a folder where the .cab file is extracted. You cannot



FIELD DESCRIPTION EXAMPLE

use this command to obtain package information for .msu files. Alternately, you can use /Get-Packages to find
the name of a package, and then use /PackageName to specify the name of the package.

You can display detailed information about a feature. You must use the /FeatureName option with the /Get
command. Use the /Get-Features option to find the name of the feature in the image. Feature names are case
sensitive if you are servicing a Windows image other than Windows 8.

For more information about operating system package-servicing commands available in DISM, see DISM
Operating System Package Servicing Command-Line Options.

To list all packages in the image

Dism /image:C:\test\offline /Get-Packages

Dism /online /Get-Packages

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about all of the packages in the offline Windows image, type the following command:

For a running operating system, type the following command:

The report generated includes the following information:

Package Identity The name of the package as it
appears in the image.

Microsoft-Windows-NetFx3-OC-
Package~31bf3856ad364e35~x
86~en-US~6.1.6772.0

State The current state of the package.
Such as:

Installed. The package is installed.

Install Pending. The package is
installed but requires a reboot to
complete the pending online
actions.

Staged. The package is staged for
installation.

Installed

Release Type The type of package that it is. Such
as:

Feature Pack. A Windows
operating system feature.

Language Pack. A Windows
operating system Language pack or
Language Interface Pack (LIP).

Foundation. Core operating
system components including
optional features.

Feature Pack



FIELD DESCRIPTION EXAMPLE

FIELD DESCRIPTION EXAMPLE

Install Time The UTC date and time when the
installation occurred. If the package
is not installed yet, the Install Time
field is left blank.

8/18/2008 7:58:00 PM

To list information about a specific package

Dism /image:C:\test\offline /Get-PackageInfo /PackagePath:C:\packages\package.cab

Dism /image:C:\test\offline /Get-PackageInfo 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

Dism /online /Get-PackageInfo /PackagePath:C:\packages\package.cab

Dism /online /Get-PackageInfo /PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about a specific package in the offline Windows image, type one of the following
commands:

For a running operating system, type one of the following commands:

The report generated includes the following information:

Package Identity The name of the package as it
appears in the image.

Microsoft-Windows-NetFx3-OC-
Package~31bf3856ad364e35~x
86~en-US~6.1.6772.0

Applicable Indicates if the package applies to
the image.

No

Copyright Copyright information for the
package.

Copyright© Microsoft Corporation.
All Rights Reserved.

Company The company that provided the
package, if available.

Microsoft Corporation

Creation Time The date and time the package was
created, if available.

8/18/2008 7:58:00 PM

Description A brief description of the package. Fix for KB300106



FIELD DESCRIPTION EXAMPLE

Install Client The client tool that installed the
package.

DISM Package Manager Provider

Install Package Name The installed package.mum file
name.

Microsoft-Windows-NetFx3-OC-
Package~31bf3856ad364e35~x
86~en-US~6.1.6772.0.mum

Install Time The date and time the package was
installed. If the package is not
installed yet, the Install Time field
is left blank.

8/18/2008 7:58:00 PM

Last Update Time The date the package was last
updated, if available.

8/18/2008 7:58:00 PM

Name The display name of the package,
localized if available.

Generally, "default" will be displayed
for all servicing packages.

ActiveX® Installer Service

Product Name The name of the product that the
package belongs to, if available.

Microsoft-Windows-NetFx3-OC-
Package

Product Version The version of the product that the
package belongs to, if available.

123.01.0000

Release Type The type of package that it is. Such
as:

Feature Pack. A Windows
operating system feature.

Language Pack. A Windows
operating system Language pack or
Language Interface Pack (LIP).

Foundation. Core operating
system components including
optional features.

Feature Pack

Restart Required Indicates if a reboot is required
when you install or uninstall the
package online.

Possible

Support Information Where to find support information,
if available.

http://support.microsoft.com/?
kbid=300106

http://support.microsoft.com/?kbid=300106


FIELD DESCRIPTION EXAMPLE

State Indicates if the package is installed
in the operating system. Possible
values include the following:

Not Present. The package is not
installed.

Installed. The package is installed.

Install Pending. The package will
be installed but requires a reboot
to complete pending online actions.

Staged. The package is staged for
installation.

Installed

Completely offline capable Yes. The package can be installed
offline without booting the image.

No. You must boot into the image
in order to complete installation of
this package.

Undetermined. You may have to
boot into the image in order to
complete the installation of this
package. Many packages can be
installed offline entirely. If you
attempt to install a package offline
and a reboot is required, it will be
reported in the log file. You can
check the status of a package using
the Get-PackageInfo command.

This field is only applicable to
Windows 8, Windows Server®
2012, and Windows Preinstallation
Environment (Windows PE) 4.0
target images.

Custom Properties A list of custom properties defined
in the package manifest file. If there
are no custom properties, (No
custom properties found) will be
displayed.

Dependency: Language Pack

Features listing for package A list of the features found in the
package.

If there is no feature in the
package, the package identity will
be displayed followed by (No
features found for this package).

Microsoft-Windows-NetFx3-OC-
Package~31bf3856ad364e35~x
86~en-US~6.1.6772.0 (No
features found for this package)

To list all features in the image

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.



FIELD DESCRIPTION EXAMPLE

Dism /image:C:\test\offline /Get-Features

Dism /image:C:\test\offline /Get-Features 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

Dism /image:C:\test\offline /Get-Features /PackagePath:C:\packages\package.cab

Dism /online /Get-Features

Dism /online /Get-Features /PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

Dism /online /Get-Features /PackagePath:C:\packages\package.cab

2. To list information about the features in the offline Windows image, type one of the following commands:

For a running operating system, type one of the following commands:

The report generated includes the following information:

Feature Name The name of the feature as it
appears in the image.

InboxGames



FIELD DESCRIPTION EXAMPLE

State The current state of the feature.
Possible values include the
following:

Enabled. The feature is
enabled.

Disabled. The feature is
disabled.

Enable Pending. The
feature will be enabled but
requires a reboot to
complete pending online
actions.

Disable Pending. The
feature will be disabled but
requires a reboot to
complete pending online
actions.

Disabled with Payload
Removed. The feature is
disabled and its payload has
been removed. Only the
package metadata is
present in the image. The
payload can be restored and
the feature can be enabled
on demand after the image
is deployed. For more
information about features
on demand, see Configure a
Windows Repair Source.

Disabled

To list information about a specific feature

Dism /image:C:\test\offline /Get-FeatureInfo /FeatureName:Hearts

Dism /image:C:\test\offline /Get-FeatureInfo /FeatureName:LocalPack-GB /PackageName:Microsoft-Windows-
LocalPack-GB-Package~6595b6144ccf1df~x86~~1.0.0.0

Dism /online /Get-FeatureInfo /FeatureName:Hearts 

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about a specific feature in the offline Windows image, type one of the following
commands:

For a running operating system, type the following command:

The report generated includes the following information:



 

FIELD DESCRIPTION EXAMPLE

Get App Package (.appx) Servicing Information

Feature Name Name of the feature. InboxGames

Display Name The name of the feature as it
appears in the user interface.

Games

Description A brief description of the feature. Standard inbox games.

Restart Required Indicates if a restart is required
when you enable or disable this
feature.

Yes

State The current state of the feature.
Possible values include the
following:

Enabled. The feature is enabled.

Disabled. The feature is disabled.

Enable Pending. The feature will
be enabled but requires a reboot to
complete pending online actions.

Disable Pending. The feature will
be disabled but requires a reboot
to complete pending online actions.

Disabled with Payload
Removed. The feature is disabled
and its payload has been removed.
Only the package metadata is
present in the image. The payload
can be restored and the feature can
be enabled on demand after the
image is deployed. For more
information about features on
demand, see Configure a Windows
Repair Source.

Disabled

Custom Properties A list of custom properties defined
in the package manifest file. If there
are no custom properties, (No
custom properties found) will be
displayed.

Dependency: Language Pack

You can use the app package (.appx) servicing commands to list the provisioned apps in a Windows image.
Provisioned apps will be registered for every user profile that is created for the Windows image.

For more information about app package servicing commands available in DISM, see DISM App Package (.appx
or .appxbundle) Servicing Command-Line Options.

To list provisioned apps in the Windows image



 

FIELD DESCRIPTION EXAMPLE

Get International Settings and Languages

Dism /image:c:\test\offline /Get-ProvisionedAppxPackages

Dism /online /Get-ProvisionedAppxPackages

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list provisioned apps in a mounted offline Windows image, type:

For a running operating system, type:

The report generated includes the following information:

DisplayName The name of the app. Fabrikam.Sample.CS

Version The version number of the app
package.

1.0.0.0

Architecture The architecture of the app. neutral

ResourceID For more information, see App
packaging glossary.

PackageName The full name of the app package. Fabrikam.Sample.CS_1.0.0.0_neutral
_s9y1p3hwd5qda

The international servicing commands can be used to query existing international settings in Windows and
Windows PE images. For more information about operating system package-servicing commands available in
DISM, see DISM Languages and International Servicing Command-Line Options.

Important
International servicing commands cannot be used on a Windows Vista or Windows Server 2008 image.

Use the /online option to display information about international settings and languages in the running operating
system. Use /image: <path_to_offline_image_directory> to display information about international settings and
languages in the offline image. When used with the /image and /distribution options, information about
international settings and languages in the distribution is displayed.

To list all international settings and languages

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about all of the international settings in the offline Windows image, type one of the
following commands:

http://go.microsoft.com/fwlink/p/?linkid=252145


FIELD DESCRIPTION EXAMPLE

Dism /image:C:\test\offline /Get-Intl

Dism /image:C:\test\offline /distribution:C:\windows_distribution\langpacks /Get-Intl

Dism /online /Get-Intl

For a running operating system, type the following command:

The report generated includes the following information:

Default system UI language The language that is currently set
as the default system UI language.

en-US

System locale The language for non-Unicode
programs (also referred to as
system locale) and font settings.

en-US

Default timezone The time zone that is currently set
as the default.

Pacific Standard Time

User locale for default user The "standards and formats"
language (also referred to as user
locale) that is set for the default
user.

en-US

Location The geographical location that is
currently set for the operating
system. For more information
about geographical locations, see
Table of Geographical Locations.

United States

Active keyboards The value pair for the active
keyboard. In the example provided,
0409 is the language identifier and
00000409 is the keyboard
identifier.

0409:00000409

Default keyboards The value pair for the default
keyboard. In the example provided,
0409 is the language identifier and
00000409 is the keyboard
identifier.

0409:00000409

Installed language(s) A list of all installed language packs. en-US

http://go.microsoft.com/fwlink/?LinkId=131360


 

Note

FIELD DESCRIPTION EXAMPLE

Get Windows Edition Information

Type The type of each installed language
pack. For more information, see
Add Language Packs to Windows.

en-US

Type: Fully localized language

ar-SA

Type: Partially localized language,
MUI type

Fallback Languages en-US, fr-FR

Distribution languages A list of the languages that are
available in the distribution share.

This list includes the name of the
folder in the distribution share.
The language of the actual LP.cab
file in the folder is not validated.
For example, if the path to the
distribution is …\Langpacks\bg-
BG\Lp.cab, the value of bg-BG
will be reported as the language
in the distribution share even if
the LP.cab file is not the correct
.cab file for bg-BG.

The default language in the
distribution is: ja-JP

The other available languages in
the distribution are: bg-BG, nl-NL

Keyboard layered driver A list of the keyboard drivers for
Japanese or Korean keyboards, if
any are installed.

Japanese Keyboard (106/109 Key)

You can use the edition-servicing commands to obtain information about which editions of Windows are available
for upgrade.

Target editions are the editions of Windows that you can upgrade to. You can display information about the
current edition or the target edition of an offline Windows image or a running operating system.

For more information about Windows edition servicing commands available in DISM, see DISM Windows
Edition-Servicing Command-Line Options.

To get information about the current Windows editions

Dism /image:C:\test\offline /Get-CurrentEdition

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about the current edition of the offline Windows image, type the following command:

For a running operating system, type the following command:



 Get Application Patch Information

Dism /online /Get-CurrentEdition

To get information about target editions of Windows

Dism /image:C:\test\offline /Get-TargetEditions

Dism /online /Get-TargetEditions

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about the target edition of the offline Windows image, type the following command:

For a running operating system, type the following command:

Application servicing command-line options can be used on a offline image to check the applicability of
Microsoft® Windows® Installer application patches (.msp files) and to query your offline image for information
about installed Windows Installer applications (.msi files) and application patches (.msp files).

You can display detailed information about installed MSP patches filtered by patch and application. If the
/PatchCode option is specified, detailed information is displayed for all Windows Installer applications that the
patch is applied to. If the /ProductCode option is specified, information about all MSP patches in the specified
application is displayed.

If the /PatchCode and /ProductCode options are both specified, information is displayed only if that specific
patch is applied to the specified Windows Installer application. If the /PatchCode and /ProductCode options are
not specified, all installed Windows Installer packages and MSP patches are displayed.

For more information about application servicing commands available in DISM, see DISM Application Servicing
Command-Line Options.

To list information about installed MSP patches

Dism /image:C:\test\offline /Get-AppPatchInfo

Dism /image:C:\test\offline /Get-AppPatchInfo /PatchCode:{B0B9997C-GUID-GUID-GUID-74D866BBDFFF}

Dism /image:C:\test\offline /Get-AppPatchInfo /ProductCode:{B0F9497C-GUID-GUID-GUID-74D866BBDF59}

Dism /image:C:\test\offline /Get-AppPatchInfo /PatchCode:{B0B9997C-GUID-GUID-GUID-74D866BBDFFF} 
/ProductCode:{B0F9497C-GUID-GUID-GUID-74D866BBDF59}

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about the MSP patches, type one of the following commands:

The report generated includes the following information:



FIELD DESCRIPTION EXAMPLE

Patch Code A GUID identifying a specific
Windows Installer package. The
package code associates an .msi file
together with an application or
product and can also be used for
the verification of sources.

{8ACD2816-595D-48AA-A43B-
3523CAA4F692}

Product Code A GUID that is the principal
identification of an application or
product.

{7764DEFC-C5D1-413C-8428-
2AA903BF6DAA}

Patch Name The registered display name for the
patch. For patches that do not
include the DisplayName property
in the MsiPatchMetadata table, the
returned display name is an empty
string.

QFE9 - Non Removable

Patch State 1 if this patch is currently applied to
the product.

2 if this patch has been superseded
by another patch.

4 if this patch has been made
obsolete by another patch.

1 (Applied)

Patch Uninstallable 1 if the patch is marked as possible
to uninstall from the product. In
this case, the installer can still block
the uninstallation if this patch is
required by another patch that
cannot be uninstalled. Otherwise 0
is reported.

0

Help Link Where to find support information,
if available.

http://www.microsoft.com

Transforms The set of patch transforms applied
to the product by the last patch
installation. This value may not be
available for per-user unmanaged
applications if the user is not
logged on to the computer.

:App1RTMToApp1QFE9;:#App1R
TMToApp1QFE9

Local Package The location of the local cached
patch file that is used by the
product.

C:\Windows\Installer\132f5c.ms
p

Install Date The date when the patch was
applied to the product.

20080912

http://www.microsoft.com


FIELD DESCRIPTION EXAMPLE

To list information about MSP patches applied to an application

Dism /image:C:\test\offline /Get-AppPatches

Dism /image:C:\test\offline /Get-AppPatches /ProductCode:{B0F9497C-GUID-GUID-GUID-74D866BBDF59}

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about the MSP patches, type one of the following commands:

The report generated includes the following information:

Patch Code A GUID identifying a particular
Windows Installer package. The
package code associates an .msi file
together with an application or
product and can also be used for
the verification of sources.

{8ACD2816-595D-48AA-A43B-
3523CAA4F692}

Product Code A GUID that is the principal
identification of an application or
product.

{7764DEFC-C5D1-413C-8428-
2AA903BF6DAA}

Patch Name The registered display name for the
patch. For patches that do not
include the DisplayName property
in the MsiPatchMetadata table, the
returned display name is an empty
string.

QFE9 - Non Removable

To list information about all Windows Installer applications

Dism /image:C:\test\offline /Get-Apps

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about the MSP patches, type the following command:

The report generated lists the product code and product name for applications that are installed in the offline
image. For example:

Product Code : {DB935363-5A68-47AF-A55A-CFC90F2E83BC}

Product Name : MsiTestApplication2

To list information about a specific Windows Installer application

1. Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and then
select Run as administrator.

2. To list information about the MSP patches, type the following command:



FIELD DESCRIPTION EXAMPLE

Dism /image:C:\test\offline /Get-AppInfo /ProductCode:{B0F9497C-GUID-GUID-GUID-74D866BBDF59}

The report generated includes the following information:

Product Code A GUID that is the principal
identification of an application or
product.

{DB935363-5A68-47AF-A55A-
CFC90F2E83BC}

Product Name The name of the application. MsiTestApplication2

Product State The installation state for the
product at initialization.

-1 if the product is neither
advertised nor installed.

1 if the product is advertised but
not installed.

2 if the product is installed for a
different user.

5 if the product is installed for the
current user.

5 (Installed)

Package Code A GUID identifying a particular
Windows Installer package. The
package code associates an .msi file
together with an application or
product and can also be used for
the verification of sources.

{C67CA1AE-6074-4810-BD74-
F6BBB609744A}

Product Version The version of the product in string
format.

1.0.0

Assignment Type 0 if the product is advertised or
installed per-user.

1 if the product is advertised or
installed per-computer for all users.

1 (Per-Machine)

Publisher The name of the manufacturer for
the product.

Microsoft MSI Test

Language The decimal identifier for the
product language.

1033

Install Source The directory that contains the
source .cab file or the source file
tree of the installation package.

E:\Testpkg\App2_RTM</strong>



FIELD DESCRIPTION EXAMPLE

Related topics

Package Name The name of the original installation
package.

MsiTestApplication2.msi

Help Link Where to find support information,
if available.

http://www.microsoft.com/manage
ment

Transforms The set of patch transforms applied
to the product by the last patch
installation. This value may not be
available for per-user unmanaged
applications if the user is not
logged on to the computer.

C:\Windows\Installer{BDB20E90-
3ACD-450B-BBDE-
61E39687C6B1}\ACBlueT02.mst

Local Package The location of the local cached
package.

C:\Windows\Installer\132f3b.msi

Install Date The date the application was
installed.

20080912

Service a Windows Image Using DISM

Service a Windows PE Image with DISM

Deployment Image Servicing and Management (DISM) Best Practices

http://www.microsoft.com/management
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-a-windows-pe-image-with-dism


Battery Life
5/11/2018 • 2 minutes to read • Edit Online

In This Section

Related topics

In this section, you will learn about managing battery life when you deploy Windows 8 and Windows Server®
2012 on different hardware and software platforms.

Managing Battery Life and Power Consumption Overview Describes considerations that can help you to meet
battery life goals, and lists common Windows® power
policy settings that can affect battery life.

Set the Default Power Plan Describes how to import a power plan and how to set a
power plan to the active power plan.

Create a Custom Power Plan Describes how to create a power plan by using Control
Panel, how to export the power plan, and how to import
the power plan on a destination computer.

Fine-Tune a Custom Power Plan Describes how to configure a customized Windows power
plan by using powercfg command-line options.

Test Battery Life and Power Consumption Describes how to test power consumption.

Mobile Battery Life Solutions: A Guide for Mobile Platform Professionals

Windows Performance Toolkit

Power Policy Configuration and Deployment in Windows

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/battery-life.md
http://go.microsoft.com/fwlink/?LinkId=209929
http://go.microsoft.com/fwlink/p/?linkid=210214
http://go.microsoft.com/fwlink/p/?linkid=129584


 

Managing Battery Life and Power Consumption
Overview
5/11/2018 • 4 minutes to read • Edit Online

Hardware

Software

Windows Power Policy Settings

Windows®-based laptops must meet energy-efficiency regulatory requirements, such as the United States
Environmental Protection Agency (EPA) Energy Star program. Furthermore, surveys have shown that longer
battery life for laptops continues to be a leading request from consumers.

Hardware and software factors such as a low-capacity battery, a processor-intensive driver, or a poorly configured
power setting can cause a significant reduction in battery life. When you design your system, you should
experiment with multiple configurations of each of these factors to find the best balance of battery life and
performance.

This section lists a few of the common hardware design considerations that can affect battery life.

Battery capacity. Check with your battery manufacturer to determine the battery capacity.

Other hardware components. Ask your hardware component manufacturers for power-consumption test
results for each hardware component.

For information on each of these battery-life factors, see Mobile Battery Life Solutions: A Guide for Mobile
Platform Professionals.

This section lists a few of the common software design considerations that can affect battery life.

Drivers. As you add each new driver to the system, observe the driver's impact on power consumption. A
single poorly performing driver can greatly affect system performance.

Applications, services, and other software. As you add each new software application to the system,
observe the application's impact on power consumption. A single poorly performing application can greatly
affect system performance.

Windows power policy settings. Optimize Windows power policy settings to balance performance needs
and battery life. For more information, see the section: Windows Power Policy Settings.

For more information about each of these battery life factors, see Mobile Battery Life Solutions: A Guide for
Mobile Platform Professionals.

This section lists a few of the common configurable settings that can affect battery life. Test these and other
settings to create an optimal power plan for your system.

Settings can be specific to whether the computer is plugged in (AC) or on battery power (DC). You can configure
the following settings:

Display brightness

The most effective way to reduce the power consumption on a mobile computer when the display is in use

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/managing-battery-life-and-power-consumption-overview-technicalreference.md
http://go.microsoft.com/fwlink/?LinkId=209929
http://go.microsoft.com/fwlink/?LinkId=209929


Related topics

is to reduce the display brightness. The attached display is the largest power consumer. The display uses up
to 40 percent of the overall system power consumption.

By default, Windows significantly reduces the display brightness when a mobile computer is on battery
power. Depending on your hardware and the needs of your users, you can adjust the default display
brightness setting lower to increase battery life, or higher to make the display easier to read.

Display timeout

Mobile PC battery life can be significantly extended by using a short display idle timeout.

Note
Display dimming: Mobile computers that run Windows 8.1 and Windows Server 2012 R2 will dim the
display 15 seconds before the Display timeout. This value is no longer configurable.

Hard disk timeout

Although the hard disk drive is not the primary power consumer in the typical mobile computer, you may
be able to save power by increasing the hard drive timeout.

When the hard drive is idle for a period of time, the hard drive's motor stops. The next time that the
computer needs to access the hard drive, the system response may be slow while the hard drive begins to
spin again.

Depending on your hardware and the needs of your users, you can adjust the default hard disk timeout
lower to increase battery life, or higher to increase the availability of the hard disk.

Sleep mode

By default, if the processor is idle, and the end user is not using the computer, Windows enters low-power
sleep mode or hibernate mode. The next time that the computer needs processor power, system response
may be slow while the processor recovers.

Depending on your hardware and the needs of your users, you can adjust the default sleep timer lower to
increase battery life, or higher to increase the availability of the processor.

Wireless adapter power-save modes

By default, Windows configures the 802.11 power-save mode to Maximum Performance for both AC and
battery power. This configuration keeps the wireless adapter active, even when data is not being transferred.
This alleviates compatibility problems between some wireless adapters and access points that are not
compatible with 802.11 power-save modes.

If you create custom power policies to save more power and help extend battery life, consult with the
manufacturer of the wireless adapter about the effects of changing the power policy value to Maximum
Power Saving or Medium Power Saving.

You can manually modify the power settings for each built-in power configuration. To learn more about these
settings and other common configurable power settings, see Mobile Battery Life Solutions: A Guide for Mobile
Platform Professionals and Power Policy Configuration and Deployment in Windows.

Mobile Battery Life Solutions: A Guide for Mobile Platform Professionals

Set the Default Power Plan

Create a Custom Power Plan

Windows Performance Toolkit

http://go.microsoft.com/fwlink/?LinkId=209929
http://go.microsoft.com/fwlink/p/?linkid=129584
http://go.microsoft.com/fwlink/?LinkId=209929
http://go.microsoft.com/fwlink/p/?linkid=210214


Power Policy Configuration and Deployment in Windows

http://go.microsoft.com/fwlink/p/?linkid=129584


Set the Default Power Plan
5/11/2018 • 2 minutes to read • Edit Online

Use these instructions to set a default power plan when deploying Windows 8 or Windows Server® 2012 PCs. A
power plan is also known as a power scheme.

Note
This page gives information about manufacturing PCs.

To modify a power plans on your own PC, see Power Plans: Frequently asked questions.

To set the default power plan

powercfg -IMPORT C:\OutdoorPlan.pow

powercfg -LIST

Existing Power Schemes (* Active)
-----------------------------------
Power Scheme GUID: {guidPlan1}  (Balanced) *
Power Scheme GUID: {guidPlan2}  (Power saver)

powercfg -SETACTIVE {guidPlan2}

1. On your technician computer, open an elevated command prompt.

2. If you want to use a power plan from another computer, import the power plan.

For example, to import a power plan that is named OutdoorPlan, type the following at a command prompt:

3. Type the following to find the GUID for all the power plans on the computer :

The computer returns the list of available power plans. The following examples refer to these plans as
guidPlan1 and guidPlan2.

4. Note the GUIDs that are listed next to the power plans that you want to change.

5. Set the power plan that you want to set as the default as the active power plan. For example, you can use
the following command:

where guidPlan2 is the name of the power plan.

This command can be run by using a custom command in an answer file, or by opening an elevated
command prompt in audit mode.

To confirm that the default power plan

1. Click Start, and then select Control Panel.

2. Click Hardware and Sound, and then select Power Options.

The Power Options Control Panel opens, and the power plans appear.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/set-the-default-power-plan-technicalreference.md
http://go.microsoft.com/fwlink/p/?linkid=278892


Related topics

3. Review each power plan.

4. Verify that the correct plan is set as the active power plan. The computer shows an asterisk (*) next to the
active power plan.

Add a Custom Command to an Answer File

Boot Windows to Audit Mode or OOBE

Create a Custom Power Plan

Power Policy Configuration and Deployment in Windows

https://msdn.microsoft.com/library/windows/hardware/dn915058
http://go.microsoft.com/fwlink/p/?linkid=129584


 

 

Create a Custom Power Plan
5/11/2018 • 2 minutes to read • Edit Online

In this topic

A power plan is a collection of hardware and system settings that manages how computers use and conserve
power. A power plan is also known as a power scheme. You can create custom power plans that are optimized for
specific computers.

By default, Windows 8 and Windows Server® 2012 include three power plans: Balanced, Power Saver, and
High Performance. You can customize these existing plans for your systems, create new plans that are based on
the existing plans, or create a new power plan from scratch.

Optimizing Windows power plans can help improve battery life. However, a single poorly performing application,
device, or system feature can significantly reduce battery life. For information about factors that influence battery
life, see Managing Battery Life and Power Consumption Overview.

Creating a customized power plan

Listing the available power plans

Deploying a power plan

Creating a customized power plan

1. Click Start, and then select Control Panel.

2. Click Hardware and Sound, and then select Power Options.

3. The Power Options Control Panel opens, and the power plans appear.

4. Click Create a power plan.

5. Follow the on-screen instructions to create and customize a power plan file that is based on an existing
plan. Name your power plan "OutdoorPlan".

Note
You can manage most common power plan settings through Control Panel. To fine-tune settings that do
not appear in Control Panel, see Fine-Tune a Custom Power Plan.

Listing the available power plans

powercfg -LIST

On your technician computer, at an elevated command prompt, type the following:

The computer will return the list of available power plans. In the following example, these plans are
Balanced, Power saver, and OutdoorPlan.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/create-a-custom-power-plan-technicalreference.md


 

powercfg -EXPORT C:\OutdoorPlan.pow {guidPlan-New}

Related topics

Existing Power Schemes (* Active)
-----------------------------------
Power Scheme GUID: {guidPlan1}  (Balanced) *
Power Scheme GUID: {guidPlan2}  (Power saver)
Power Scheme GUID: {guidPlan3}  (OutdoorPlan)

Note the GUIDs that are listed next to the power plans that you want to capture.

Deploying a power plan

After you have created power plans that work for your system, you can deploy the power plans to your
destination computers.

To export the OutdoorPlan power plan that you created on your technician computer, open an elevated command
prompt, and then type the following

This creates a new power plan file.

To learn more, see Set the Default Power Plan.

Managing Battery Life and Power Consumption Overview

Test Battery Life and Power Consumption

Set the Default Power Plan



Fine-Tune a Custom Power Plan
5/11/2018 • 3 minutes to read • Edit Online

Manually Modifying a Power Plan

A power plan is a collection of hardware and system settings that manages how computers use and conserve
power. You can create custom power plans that are optimized for specific computers.

You can manage most common power plan settings through Control Panel. For more information, see Create a
Custom Power Plan. To fine-tune hardware-specific configurations that are not configurable through Control
Panel, use the PowerCfg tool.

You can customize all configurable Windows power options by using the powercfg  command from an elevated
command prompt. This includes hardware-specific configurations that are not configurable through Control Panel.

To list the available power plans

powercfg -LIST

Existing Power Schemes (* Active)
-----------------------------------
Power Scheme GUID: {guidPlan1}  (Balanced) *
Power Scheme GUID: {guidPlan2}  (Power saver)

On your technician computer, at an elevated command prompt, type the following:

The computer will return the list of available power plans. In the following examples, these plans are
Balanced and Power saver.

Note the GUIDs that are listed next to the power plans that you want to change. You will need these GUIDs
to manually update settings and capture the power plans.

To set the power plan to be modified as active

powercfg -SETACTIVE {guidPlan2}

To modify a plan, use the GUID of the power plan that you want to change to set that power plan as the
active power plan. For example:

To adjust the settings

1. This section describes how to manually configure other power configuration settings by using the powercfg

command. Test these settings to create an optimal power plan for your system.

Find information about the existing power setting.

powercfg -QUERY

a. At an elevated command prompt, type the following:

The computer displays information for all of the power settings for this plan.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/fine-tune-a-custom-power-plan-technicalreference.md


powercfg -SETACVALUEINDEX {guidPlan-New} {guidSubgroup-Display}  {guidPowerSetting-Brightness} 100

powercfg -SETDCVALUEINDEX {guidPlan-New} {guidSubgroup-Display}  {guidPowerSetting-Brightness} 75

powercfg -QUERY

Power Setting GUID: {guidPowerSetting-Brightness}  (Display brightness)
      Minimum Possible Setting: 0x00000000
      Maximum Possible Setting: 0x00000064
      Possible Settings increment: 0x00000001
      Possible Settings units: %
    Current AC Power Setting Index: 0x00000064
    Current DC Power Setting Index: 0x0000004b

Subgroup GUID: {guidSubgroup-Display}  (Display)

Power Setting GUID: {guidPowerSetting-Brightness}  (Display brightness)

Power Setting GUID: {guidPowerSetting-Brightness}  (Display brightness)
  Minimum Possible Setting: 0x00000000
  Maximum Possible Setting: 0x00000064
  Possible Settings increment: 0x00000001
  Possible Settings units: %
 Current AC Power Setting Index: 0x00000064
 Current DC Power Setting Index: 0x00000032

b. Find the GUID for the subgroup of the setting that you want to change. For example, to modify a
display setting, find the GUID for the Display subgroup:

c. Find the GUID for the setting that you want to change. For example, to modify the Display
Brightness setting, find the GUID for the (Display brightness) setting:

d. Review the information from the query command, review the possible settings, and determine a
value that works for your computer.

Note
You must enter these values by using decimal integers. However, the values appear on the screen as
hexadecimal values that are specific to the setting.

For example, to set the maximum display brightness to 50 percent brightness, enter the value as 50.
When you use the powercfg -QUERY  command to confirm the setting, the value appears as
0x00000032.

2. Adjust the value for the power setting for times when the computer is plugged in. For example, to set the
display brightness level to 100 percent when the computer is plugged in, type the following:

3. Adjust the value for the power setting for times when the computer is on battery power. For example, to set
the display brightness level to 75 percent when the computer is on battery power, type the following:

4. Use the Query command to verify the setting. For example:

The computer shows the new power setting index in hexadecimal notation. For example:



Related topics

The hexadecimal value 0x00000064 represents 100 percent display brightness when the computer is
plugged in. The hexadecimal value 0x0000004b represents 75 percent display brightness when the
computer is using battery power.

Create a Custom Power Plan

Set the Default Power Plan



Test Battery Life and Power Consumption
5/11/2018 • 2 minutes to read • Edit Online

Determining the causes of heavy battery use

Related topics

Compare the overall system power to the power that the system consumes when you use a clean installation. With
preinstalled applications and power policies, some computers have shown a 40 percent decrease in battery
performance compared with a clean Windows® installation. However, through careful engineering, computers can
achieve equal or improved performance over a clean Windows installation.

You can determine the causes of heavy battery use by looking at the way that the system uses resources. You can
find many system problems by looking at processor idle time. Use a performance tool, such as Windows
Assessments or the Windows Performance Toolkit, to investigate when the system has spikes in power use.
Performance tools can help you target the applications that are causing increased processor use.

For more information, see Windows Assessment Toolkit and Windows Performance Toolkit.

Set the Default Power Plan

Create a Custom Power Plan

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/test-battery-life-and-power-consumption-technicalreference.md
http://go.microsoft.com/fwlink/?LinkId=214554
http://go.microsoft.com/fwlink/?LinkId=228914


Windows Recovery Environment (Windows RE)
5/11/2018 • 5 minutes to read • Edit Online

What's new with WinRE for Windows 10?

Tools

Windows Recovery Environment (WinRE) is a recovery environment that can repair common causes of
unbootable operating systems. WinRE is based on Windows Preinstallation Environment (Windows PE), and can
be customized with additional drivers, languages, Windows PE Optional Components, and other troubleshooting
and diagnostic tools. By default, WinRE is preloaded into the Windows 10 for desktop editions (Home, Pro,
Enterprise, and Education) and Windows Server 2016 installations.

By default, if you install Windows using media created from Windows Imaging and Configuration Designer
(ICD), you'll get a dedicated WinRE tools partition on both UEFI and BIOS-based devices, located immediately
after the Windows partition. This allows Windows to replace and resize the partition as needed. (If you install
Windows by using Windows Setup, you'll get the same partition layout that you did in Windows 8.1.)
If you add a custom tool to the WinRE boot options menu, it can only use optional components that are
already in the default WinRE tools. For example, if you have a app from Windows 8 that depended on the .NET
optional components, you'll need to rewrite the app for Windows 10.
If you add a custom tool to the WinRE boot options menu, it must be placed in the \Sources\Recovery\Tools
folder so that it can continue to work after future WinRE upgrades.
When adding languages to the push-button reset tools, you'll now need to add the WinPE-HTA optional
component.

WinRE includes these tools:

Automatic repair and other troubleshooting tools. For more info, see Windows RE Troubleshooting
Features.
Push-button reset (Windows 10 for desktop editions , Windows 8.1 and Windows 8 only). This tool enables
your users to repair their own PCs quickly while preserving their data and important customizations, without
having to back up data in advance. For more info, see Push-Button Reset Overview.
System image recovery (Windows Server 2016, Windows Server 2012 R2 and Windows Server 2012 only).

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference.md


Entry points into WinRE

Boot options menuBoot options menu

Security considerations

Customizing WinRE

This tool restores the entire hard drive. For more info, see Recover the Operating System or Full Server.

In addition, you can create your own custom recovery solution by using the Windows Imaging API, or by using
the Deployment Image Servicing and Management (DISM) API.

Your users can access WinRE features through the Boot Options menu, which can be launched from Windows in
a few different ways:

From the login screen, click Shutdown, then hold down the Shift key while selecting Restart.
In Windows 10, select Start > Settings > Update & security > Recovery > under Advanced Startup, click
Restart now.
Boot to recovery media.
Use a hardware recovery button (or button combination) configured by the OEM.

After any of these actions is performed, all user sessions are signed off and the Boot Options menu is displayed.
If your users select a WinRE feature from this menu, the PC restarts into WinRE and the selected feature is
launched.

WinRE starts automatically after detecting the following issues:

Two consecutive failed attempts to start Windows.
Two consecutive unexpected shutdowns that occur within two minutes of boot completion.
A Secure Boot error (except for issues related to Bootmgr.efi).
A BitLocker error on touch-only devices.

This menu enables your users to perform these actions:

Start recovery, troubleshooting, and diagnostic tools.
Boot from a device (UEFI only).
Access the Firmware menu (UEFI only).
Choose which operating system to boot, if multiple operating systems are installed on the PC.

Note
You can add one custom tool to the Boot options menu. Otherwise, these menus can't be further customized.
For more info, see Add a Custom Tool to the Windows RE Boot Options Menu.

When working with WinRE, be aware of these security considerations:

If users open the Boot options menu from Windows and select a WinRE tool, they must provide the user
name and password of a local user account with administrator rights.
By default, networking is disabled in WinRE. You can turn on networking when you need it. However, we
recommend that you disable networking when you don't need connectivity.

You can customize WinRE by adding packages (Windows PE Optional Components), languages, drivers, and
custom diagnostic or troubleshooting tools. The base WinRE image includes these Windows PE Optional
Components:

Microsoft-Windows-Foundation-Package

http://go.microsoft.com/fwlink/p/?LinkID=225039
http://go.microsoft.com/fwlink/p/?LinkId=245837
http://go.microsoft.com/fwlink/p/?LinkID=245836


Hard drive partitions

Memory requirements

See also

WinPE-EnhancedStorage
WinPE-Rejuv
WinPE-Scripting
WinPE-SecureStartup
WinPE-Setup
WinPE-SRT
WinPE-WDS-Tools
WinPE-WMI
WinPE-StorageWMI-Package (added to the base image in Windows 8.1 and Windows Server 2012 R2)
WinPE-HTA (added to the base image in Windows 10)

Note
The number of packages, languages, and drivers is limited by the amount of memory available on the PC. For
performance reasons, we recommend that you minimize the number of languages, drivers, and tools that you add
to the image.

When you install Windows by using Windows Setup, WinRE is configured like this:

1. During Windows Setup, Windows prepares the hard drive partitions to support WinRE.
2. Windows initially places the WinRE image file (winre.wim) in the Windows partition, in the

\Windows\System32\Recovery folder.

Before delivering the PC to your customer, you can modify or replace the WinRE image file to include
additional languages, drivers, or packages.

3. During the specialize configuration pass, the WinRE image file is copied into the recovery tools partition,
so that the device can boot to the recovery tools even if there's a problem with the Windows partition.

When you deploy Windows by applying images, you must manually configure the hard drive partitions. When
WinRE is installed on a hard drive, the partition must be formatted as NTFS.

Add the baseline WinRE tools image (winre.wim) to a separate partition from the Windows and data partitions.
This enables your users to use WinRE even if the Windows partition is encrypted with Windows BitLocker Drive
Encryption. It also prevents your users from accidentally modifying or removing the WinRE tools.

We recommend that you store the recovery tools in a dedicated partition, directly after the Windows partition.

For more info about configuring hard drive partitions, see Configure UEFI/GPT-Based Hard Drive Partitions or
Configure BIOS/MBR-Based Hard Drive Partitions.

In order to boot Windows RE directly from memory (also known as RAM disk boot), a contiguous portion of
physical memory (RAM) which can hold the entire Windows RE image (winre.wim) must be available. To optimize
memory use, manufacturers should ensure that their firmware reserves memory locations either at the beginning
or at the end of the physical memory address space.



CONTENT TYPE REFERENCES

Deployment Customize Windows RE | Deploy Windows RE

Operations REAgentC Command-Line Options

Troubleshooting Windows RE Troubleshooting Features

Add-on tools Add a Custom Tool to the Windows RE Boot Options
Menu | Add a Hardware Recovery Button to Start
Windows RE | Push-Button Reset Overview



Customize Windows RE
5/11/2018 • 5 minutes to read • Edit Online

Prerequisites

Step 1: Mount the Windows and Windows RE image

You can customize Windows Recovery Environment (Windows RE) by adding languages, packages drivers, and
custom diagnostic or troubleshooting tools.

The WinRE image is included inside the Windows 10 and Windows Server 2016 images, and is eventually
copied to the Windows RE tools partition on the destination PC or device. To modify it, you'll mount the
Windows image, then mount the WinRE image inside it. Make your changes, unmount the WinRE image, then
unmount the Windows image.

We recommend that when you update your Windows images with languages and boot-critical drivers, update
the Windows RE image at the same time.

This topic also gives optional steps to optimize the Windows RE image after updating it.

To complete this walkthrough, you need the following:

A technician computer with the Windows Assessment and Deployment Kit (ADK) installed.
The Windows image (install.wim). This can be from the Windows installation media or from a reference
image.

Mount the images

md C:\mount\windows

Dism /Mount-Image /ImageFile:C:\mount\install.wim /Index:1 /MountDir:C:\mount\windows

1. Open the Deployment and Imaging Tools Environment command prompt as an administrator :

Click Start, and type deployment. Right-click Deployment and Imaging Tools Environment and
then select Run as administrator > Yes.

2. Mount the Windows base image for editing.

3. Mount the Windows RE image for editing.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/customize-windows-re.md


Step 2: Adding languages

md C:\mount\winre 

Dism /Mount-Image /ImageFile:c:\mount\windows\windows\system32\recovery\winre.wim /Index:1 
/MountDir:C:\mount\winre

Note The Windows RE image should always be index number 1.

When you add languages to Windows RE, you need to add the base language pack and the corresponding
language packs for each of the Windows PE optional components in the Windows RE tools image.

Starting with Windows 10, Version 1607 and Windows Server 2016, the base language pack and optional
component language packs required to customize Windows RE are included in the Language Pack DVDs for
Windows 10 and Windows Server 2016. The Windows PE language packs in the Windows 10 ADK should not
be used to customize Windows RE.

Note
To ensure a consistent language experience in recovery scenarios, add the same set of languages to the
Windows RE image that you add to the Windows image.

We recommend adding no more than ten language packs to a Windows or Windows RE image. Multiple
language packs increase the size of the Windows image and also affect the overall performance of a system
during deployment and servicing.

To add language packs

Dism /Get-Packages /Image:C:\mount\winre

1. List the Windows PE optional components in the Windows RE tools image:

2. Review the resulting list of packages, and then add the corresponding language packs for each package in
the image, including the base Windows PE language pack, but not including WinPE-WiFi-Package.

The following code shows how to add the French (fr-fr) language pack to the base Windows PE image,
and then to each of the optional components that are present in the default Windows RE image:



Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\lp.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-Rejuv_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-EnhancedStorage_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-Scripting_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-SecureStartup_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-SRT_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-WDS-Tools_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-WMI_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-StorageWMI_fr-fr.cab"

Dism /Add-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\WinPE-HTA_fr-fr.cab"

Dism /image:C:\mount\winre /add-package /packagepath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-Font 
Support-JA-JP.cab"

The WinPE-WiFi-Package is not language-specific and does not need to be added when adding other
languages.

3. If you're adding language packs for Japan, Korea, or China, add the font packages for these languages.
Here's an example for Japan:

To learn more, see WinPE: Add packages (Optional Components Reference).

4. To save space and speed up the recovery process, remove unneeded languages. Reverse the order to
avoid problems with dependencies.

Note, the WinPE-WiFi-Package is not language specific and should not be removed.



Step 3: Adding boot-critical drivers

Step 4: Adding a custom tool

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-HTA_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-StorageWMI_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-WMI_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-WDS-Tools_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-SRT_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-SecureStartup_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-Scripting_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-EnhancedStorage_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-Rejuv_en-us.cab"

Dism /Remove-Package /Image:C:\mount\winre /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\lp.cab"

Make sure that you add any third-party drivers that your reference device requires to boot, such as storage or
video drivers. If you add boot-critical drivers to a Windows image using Windows Imaging and Configuration
Designer (ICD), they'll be added to the Windows RE image inside that Windows image.

Add a boot-critical driver

1. If necessary, unzip or unpack the driver file from your device manufacturer.

Dism /Image:C:\mount\winre /Add-Driver /Driver:"C:\SampleDriver\driver.inf" 

2. Identify the driver setup (.inf) file, and add it.

where C:\SampleDriver\driver.inf is the location of the .inf file.

You can add a custom troubleshooting or diagnostic tool to your Windows RE image. To learn more, see Add a
Custom Tool to the Windows RE Boot Options Menu.



Step 5: Adding Windows updates

Step 6: Optimizing the image, part 1 (optional)

Step 7: Unmount the WinRE image

Step 8: Optimizing the image, part 2 (optional)

Step 9: Unmount the Windows image

Next Steps

Occasionally, a Windows update may require you to update the Windows RE image.

Dism /Add-Package /PackagePath:C:\MSU\Windows8.1-KB123456-x64.msu /Image:C:\mount\winre 
/LogPath:AddPackage.log

Add the Windows update package, for example, C:\MSU\Windows8.1-KB123456-x64.msu.

After adding a language or Windows update package, you can reduce the size of the final Windows RE package
by checking for duplicate files and marking the older versions as superseded.

Dism /Image:c:\mount\winre /Cleanup-Image /StartComponentCleanup /ResetBase

1. Optimize the image:

2. Later, you'll export the image to remove the superseded files.

Dism /Unmount-Image /MountDir:C:\mount\winre /Commit

Unmount and save the image:

If you've optimized the image, you'll need to export the image in order to see a change in the file size. During the
export process, DISM removes files that were superseded.

Dism /Export-Image /SourceImageFile:c:\mount\windows\windows\system32\recovery\winre.wim 
/SourceIndex:1 /DestinationImageFile:c:\mount\winre-optimized.wim

del c:\mount\windows\windows\system32\recovery\winre.wim

copy c:\mount\winre-optimized.wim c:\mount\windows\windows\system32\recovery\winre.wim

1. Export the Windows RE image into a new Windows image file.

2. Replace the old Windows RE image with the newly-optimized image.

Save your changes back into the Windows base image.

Dism /Unmount-Image /MountDir:C:\mount\windows /Commit

Unmount the base Windows image:



Related topics

If you’re deploying Windows using Windows Setup, update the other Windows images inside the base
Windows file (Install.wim).

If you’re deploying your reference image by using Windows PE , Diskpart, and DISM, then continue to Deploy
Windows RE.

Add a Custom Tool to the Windows RE Boot Options Menu

Deploy Windows RE

Deploy Push-Button Reset Features

REAgentC Command-Line Options



Add a custom tool to the Windows RE boot options
menu
5/11/2018 • 3 minutes to read • Edit Online

You can add a custom troubleshooting or diagnostic tool to the Windows Recovery Environment (WinRE) image.
This tool is displayed in the Boot Options menu.

By developing your custom tool to run in WinRE, you can leverage the touch and on-screen keyboard support
available in WinRE.

New for Windows 10: You won't be able to add WinRE optional components that aren't already in the default
WinRE tools. For example, if you have a app from Windows 8 that depended on the .NET optional components,
you'll need to rewrite the app for Windows 10.

To add a custom tool

md c:\mount
xcopy D:\sources\install.wim C:\mount 
md C:\mount\windows
Dism /mount-image /imagefile:C:\mount\install.wim /index:1 /mountdir:C:\mount\windows 
md C:\mount\winre 
Dism /mount-image /imagefile:c:\mount\windows\windows\system32\recovery\winre.wim /index:1 
/mountdir:C:\mount\winre

<?xml version="1.0" encoding="utf-8"?>
<!-- WinREConfig.xml -->
<Recovery>
   <RecoveryTools>
      <RelativeFilePath>OEMDiagnostics.exe</RelativeFilePath>
      <CommandLineParam>/param1 /param2</CommandLineParam>
   </RecoveryTools>
</Recovery>

1. Extract and mount a Windows image (install.wim) and its corresponding WinRE image (winre.wim):

For more information about these steps, see the topic: Customize Windows RE.

2. In Notepad, create a configuration file that specifies the custom tool’s filename and parameters (if any):

Where C:\Tools\OEMDiagnostics.exe is the custom troubleshooting or diagnostics tool, and where
/param1 and /param2 are optional parameters used when running this custom tool.

Note
You can only add one custom tool to the WinRE boot options menus.

Save the file using UTF-8 coding. Do not use ANSI:

Click File, and then click Save As. In the Encoding box, select UTF-8, and save this file as 
C:\mount\WinREConfig.xml .

3. Create a \Sources\Recovery\Tools folder in the WinRE mount folder, and then copy the custom tool and
its configuration file into the new folder :

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-a-custom-tool-to-the-windows-re-boot-options-menu.md


md C:\mount\winre\sources\recovery\tools
copy C:\Tools\OEMDiagnostics.exe C:\mount\winre\sources\recovery\tools
copy C:\mount\WinREConfig.xml C:\mount\winre\sources\recovery\tools

Dism /unmount-image /mountdir:C:\mount\winre /commit

copy C:\mount\windows\windows\system32\recovery\winre.wim C:\mount\winre_amd64_backup.wim

Dism /unmount-image /mountdir:C:\mount\windows /commit

The custom tool and any associated folders must be in this folder so that it can continue to work after
future WinRE upgrades.

4. Commit your customizations and unmount the WinRE image:

5. Optional: make a backup copy of the WinRE image.

You can often reuse the same customizations on multiple images.

6. Unmount and save the changes from the base Windows image:

To deploy the image

<?xml version="1.0" encoding="utf-8"?>
<!-- AddDiagnosticsToolToBootMenu.xml -->
<BootShell>
   <WinRETool locale="en-us">
         <Name>Fabrikam Utility</Name>
         <Description>Troubleshoot your Fabrikam PC</Description>
   </WinRETool>
   <WinRETool locale="fr-fr">
      <Name>Utilité de Fabrikam</Name>
      <Description>Dépannez votre PC de Fabrikam</Description>
   </WinRETool>
</BootShell>

1. In Notepad, create a configuration file that describes the custom tool in the boot options menu. Add
descriptions for each language you support. This example specifies both English and French language
versions of the tool name and description:

Warning
Limit the <Name>  and <Description>  values to approximately 30 characters or less to make sure that they
appear correctly in the boot options menu.

Save the file using UTF-8 coding:

Click File, and then click Save As. In the Encoding box, select UTF-8, and save this file as 
E:\Recovery\BootMenu\AddDiagnosticsToolToBootMenu.xml .

Where E:\ is the drive letter of a removable drive or network location.

2. On your destination computer, during image deployment, but after you register the custom WinRE boot
image and the Windows operating system, you must register the description of the custom tool:



Related topics

Reagentc /setbootshelllink /configfile E:\Recovery\BootMenu\AddDiagnosticsToolToBootMenu.xml

If the custom tool is registered properly, the output from running this command will be: <OEM Tool = 1> .

Note
For more information about deploying Windows, see the Deploy Windows RE topic.

To verify the custom tool appears in the Boot Options menu when launched from Windows

1. Restart the destination computer, and complete OOBE as your user.

Note
If you are prompted for a product key, click Skip.

2. Click Start > PC settings, and then select General.

3. In the Advanced startup section, select Restart now.

The Windows Boot Options menu appears.

4. In the Boot Options menu, select Troubleshoot, and then click the Fabrikam Utility link.

The computer restarts in WinRE, and the tool that is specified in the <RecoveryTools> section of the
WinREConfig.xml file, appears.

5. Confirm that the custom tool works properly, and then close the tool.

If the custom tool does not appear on the Boot Options menu, you can try the following:

Reagentc /disable 
Reagentc /setbootshelllink /configfile E:\Recovery\BootMenu\AddDiagnosticsToolToBootMenu.xml
Reagentc /enable

Verify the WinREConfig.xml and the AddDiagnosticsToolToBootMenu.xml files are saved using the
UTF-8 encoding format.

Disable WinRE, register the custom tool again, and then enable WinRE. For example:

To verify the custom tool appears in the WinRE recovery menu

6. In the recovery menu, select Troubleshoot, and then click the Fabrikam Utility link.

7. Confirm that the custom tool works properly, and then close the tool.

8. Click Continue.

The PC reboots into the operating system.

Windows Recovery Environment (Windows RE) Technical Reference

Customize Windows RE

Deploy Windows RE

Windows RE Troubleshooting Features



Add a hardware recovery button to start Windows
RE
5/11/2018 • 2 minutes to read • Edit Online

On UEFI-based computers, you can configure a hardware recovery button (or button combination) to start
Windows RE, including push-button reset features for Windows 10 for desktop editions (Home, Pro, Enterprise,
and Education). This can help users get to the Windows RE menus more easily.

Relative to Windows 8/8.1, the recommended implementation in Windows 10 for such hardware buttons has
been greatly simplified. You no longer need to copy Windows boot files to an unmanaged location on the EFI
system partition (ESP) to create a secondary boot path. Instead, Windows configures and manages all the on-disk
resources required to support the hardware buttons. The design can be summarized as follows:

1. Windows 10 automatically creates a secondary Boot Configuration Data (BCD) store in the folder
\EFI\Microsoft\Recovery.

When Windows RE is installed, this secondary BCD store is automatically populated with the appropriate
settings to boot Windows RE by default.

If the location of Windows RE changes (for example, due to future updates), the secondary BCD store is
updated automatically.

2. You will still need to create a static boot device entry for recovery at the end of the UEFI firmware boot
order list.

This boot device entry should point to the default Windows Boot Manager (bootmgfw.efi) in the folder
\EFI\Microsoft\Boot on the ESP.

The boot device entry must specify the /RecoveryBCD  parameter.

When the hardware button is triggered, the recovery boot device entry should be selected automatically.

To learn more, see your hardware manufacturer's instructions for modifying the UEFI firmware on the
device.

3. When Windows Boot Manager is launched with the /RecoveryBCD  parameter, it uses the secondary BCD
store which is configured to boot Windows RE, instead of the default BCD store.

The following diagram illustrates the recommended implementation and the various boot paths:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-a-hardware-recovery-button-to-start-windows-re.md


Design recommendations for the hardware button:

Related topics

The hardware recovery button (or button combination) should be usable even when the PC is powered off. When
triggered, the PC should power on and go through the secondary boot path. This eliminates the need for users to
press the button within a very short time window during and after POST.

For PCs which support firmware options menu, triggering the button (or button combination) should first display
a simple menu which gives users the options to either boot Windows RE or to enter the firmware options menu.
This removes the need to support multiple button combinations.

Note The hardware button will not be able to boot the PC into Windows RE until Windows RE is installed. In
general, this means after the PC has completed the Specialize configuration pass.

Deploy Windows RE



Deploy Windows RE
5/11/2018 • 3 minutes to read • Edit Online

Prerequisites

Step 1: Deploy Windows RE

Use these steps to deploy Windows® Recovery Environment (Windows RE) to a new computer, to help end users
repair a PC when a system failure occurs.

To complete this walkthrough, you need the following:

A destination computer that has been configured with a Windows RE tools partition, and optionally, a
recovery image partition. For more information, see Capture and Apply Windows, System, and Recovery
Partitions.
Optional: Customize your recovery media. For more information, see Customize Windows RE.
Optional: Customize your recovery media to include custom tools. For more information, see Add a Custom
Tool to the Windows RE Boot Options Menu.

mkdir T:\Recovery\WindowsRE

xcopy /h W:\Windows\System32\Recovery\Winre.wim T:\Recovery\WindowsRE

mkdir S:\Recovery\WindowsRE

xcopy /h W:\Windows\System32\Recovery\Winre.wim S:\Recovery\WindowsRE

C:\Windows\System32\Reagentc /setreimage /path T:\Recovery\WindowsRE /target W:\Windows

C:\Windows\System32\Reagentc /setreimage /path S:\Recovery\WindowsRE /target W:\Windows

1. Create a new directory in the Windows RE Tools partition, and then copy your custom Windows RE tools
image (Winre.wim) to this directory. The following are examples based on your firmware type:

UEFI:

where T: is the drive letter of your Windows RE Tools partition. For example:

BIOS:

where S: is the system partition.

2. Register your custom Windows RE tools image:

UEFI:

where T: is the Windows RE Tools partition.

BIOS

where S: is the System partition.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-windows-re.md


Step 2: Identify the Recovery Partitions and Hide the Drive Letters

Reagentc /setbootshelllink /configfile E:\Recovery\BootMenu\AddDiagnosticsToolToBootMenu.xml

3. Optional: If you have added a custom tool to your Windows RE boot image, register it so that it will appear
on the Boot Options menu:

For more information about adding a custom tool, see Add a Custom Tool to the Windows RE Boot
Options Menu.

4. Optional: Configure a hardware recovery button (or button combination) to run a secondary boot path
that contains Windows RE. For more information, see Add a Hardware Recovery Button to Start Windows
RE.

Note If you want to configure push-button reset features for Windows 8 editions, skip this section, and go to the
topic: Deploy Push-Button Reset Features.

Configure your partitions as recovery partitions, and then conceal the drive letters so the partitions don't appear
in common Windows menus, such as File Explorer.

Prepare a DiskPart script to identify the recovery partitions and to hide drive letters

rem == HideRecoveryPartitions-UEFI.txt
select disk 0
select partition 1
remove
set id=de94bba4-06d1-4d40-a16a-bfd50179d6ac
gpt attributes=0x8000000000000001
rem == If Push-button reset features are included, add the following commands:
rem    select partition 5
rem    remove
rem    set id=de94bba4-06d1-4d40-a16a-bfd50179d6ac
rem    gpt attributes=0x8000000000000001
list volume

1. In Notepad, create a text file that includes commands to identify and hide the recovery partitions. The
following examples are based on your firmware type:

UEFI:

Use the ID: PARTITION_MSFT_RECOVERY_GUID (de94bba4-06d1-4d40-a16a-bfd50179d6ac) to define
the partitions as recovery partitions.

Use the GPT attributes: 0x8000000000000001 to hide the drive letters and to mark them as required, by
using a combination of two attributes: GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER and
GPT_ATTRIBUTE_PL ATFORM_REQUIRED.

For more information about UEFI hard drive partition attributes, see PARTITION_INFORMATION_GPT
structure.

BIOS:

Use the attribute: id=27  to define the system partition, and use the remove  command to remove the drive
letter.

http://go.microsoft.com/fwlink/?LinkId=240300


Related topics

rem == HideRecoveryPartitions-BIOS.txt
select disk 0
select partition 3
set id=27
remove
list volume
exit

2. Save your completed file as either E:\Recovery\HideRecoveryPartitions-UEFI.txt or
E:\Recovery\HideRecoveryPartitions-BIOS.txt, based on your firmware type.

Identify and hide the drive letters

Diskpart /s E:\Recovery\HideRecoveryPartitions-<firmware>.txt

Run the diskpart script to identify and hide the recovery partitions:

Where <firmware> is either UEFI or BIOS.

Verify that the Windows RE configuration is set correctly

reagentc /info

Open an administrative command prompt.

Verify the Windows RE information:

Verify the following:

Windows RE status is enabled.
Windows RE location is on the correct partition.
The BCD GUID entry for WinRE is the same as the WinRE GUID entry in the file: reagent.xml. On
BIOS-based PCs, this file is on the system partition, at \Recovery\(GUID)\. On UEFI-based PCs, this file
is on the Windows RE Tools partition, at \Recovery\WindowsRE\.
WinRE is located in the \Recovery\WindowsRE directory

Windows Recovery Environment (Windows RE) Technical Reference

DISM Image Management Command-Line Options

Customize Windows RE

Add a Custom Tool to the Windows RE Boot Options Menu



Push-button reset
5/11/2018 • 3 minutes to read • Edit Online

What's new for Windows 10

This topic is intended for original equipment manufacturers (OEMs) who want to add push-button reset features
to their Windows 10 desktop computer manufacturing processes. If you are a user who wants to reset a computer
that runs Windows 10, see Recovery options in Windows 10.

Push-button reset is a recovery tool that repairs the OS while preserving data and important customizations. It
reduces the need for custom recovery applications by providing users with more recovery options and the ability
to fix their own PCs with confidence.

Push-button reset is included in Windows 10 for desktop editions (Home, Pro, Enterprise, and Education), and
was introduced in Windows 8.

In Windows 10, Version 1703, Push-button reset has been updated to include the folowing change:

Use default config files when using ScanState to capture customizations: Starting with Windows 10
Version 1703, you have to use the /config  option with ScanState when capturing customizations. Use
only one of the default configuration files included with the Assessment and Deployment Kit (ADK). These
files are:

Config_AppsAndSettings.xml – Use this configuration file to specify that both desktop applications
and OS settings should be captured by the ScanState tool.
Config_AppsOnly.xml – Use this configuration file to specify that only desktop applications should be
captured by the ScanState tool. Since desktop applications are not always well-defined, this
configuration file does not guarantee that all setting related to desktop applications are captured.
Config_SettingsOnly.xml – Use this configuration file to specify that only OS settings should be
captured by the ScanState tool.

You can modify these configuration files by setting the migrate attribute for specific components to
no, but components that are already excluded from capture/migration in the default configuration
files must remain excluded.

Previous versions of Windows 10 provided the following improvements to push-button reset:

Improved reliability: When you start push-button reset features from the Settings app, Windows scans the
system files in the Windows Component Store for corruptions. If it finds corrupt files and can download
replacements through Windows Update, it fixes the problem automatically. Although this increases the overall
recovery time, it improves the reliability of the PC.
Recover from failed resets: In Windows 10, Version 1507, and Windows 10, Version 1511, failures that
occur during Reset this PC almost always rendered the PC unbootable/unrecoverable. This feature has been
redesigned in the Anniversary Update to support limited rollback if a problem occurs while the PC is in
Windows RE.
Recovery options when booted from recovery media: When the PC is booted from recovery media, the
Refresh this PC and Reset this PC features are no longer supported. The only Push-button reset feature
available when booted from media is bare metal recovery (i.e. Recover from a drive).
Image-less recovery: Push-button reset no longer require or support a separate recovery image on a local
partition or on media. This significantly reduces the disk space needed to support the features, and makes
recovery possible even on devices with limited storage capacity.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/push-button-reset-overview.md
http://windows.microsoft.com/en-us/windows-10/windows-10-recovery-options


CONTENT TYPE REFERENCES

Recovers to an updated state: Push-button reset features now recover the Operating System (OS) and
drivers (including device applets that are installed as part of INF-based driver packages) to an updated state.
This reduces the amount of time users have to spend reinstalling the OS updates and drivers after performing
a recovery.

The Push-button reset user experience continues to offer customization opportunities. Manufacturers can insert
custom scripts, install applications or preserve additional data at available extensibility points.

The following Push-button reset features are available to users with Windows 10 PCs and devices:

Refresh your PC Fixes software problems by reinstalling the OS while preserving the user data, user
accounts, and important settings. All other preinstalled customizations are restored to their factory state. In
Windows 10, this feature no longer preserves user-acquired Windows apps.
Reset your PC Prepares the PC for recycling or for transfer of ownership by reinstalling the OS, removing all
user accounts and contents (e.g. data, Windows desktop applications, and Universal Windows apps), and
restoring preinstalled customizations to their factory state.
Bare metal recovery Restores the default or preconfigured partition layout on the system disk, and reinstalls
the OS and preinstalled customizations from external media.

Overview How push-button reset features work | Recovery strategy
for common customizations | Siloed provisoning packages

Hard drive setup Hard Drives and Partitions | UEFI/GPT-based hard drive
partitions | BIOS/MBR-based hard drive partitions

Operations Deploy push-button reset features using ScanState | Bare
metal reset/recovery: enable your users to create
recovery media | Bare metal reset/recovery: create
recovery media while deploying new devices | Add a
script to push-button reset features | Create a
provisioning package with Windows desktop applications

Configuration files ResetConfig XML reference



CONTENT TYPE REFERENCES

Technologies used by push-button reset Windows Recovery Environment | Windows PE (WinPE) |
ScanState



How push-button reset features work
5/11/2018 • 16 minutes to read • Edit Online

Restoring the operating system and customizations

Restoring WindowsRestoring Windows

Restoring language packsRestoring language packs

Restoring driversRestoring drivers

Restoring previously installed Windows appsRestoring previously installed Windows apps

This section discusses the mechanisms Push-button reset features use to restore software on the PC.

Push-button reset features restore Windows 10 by constructing a new copy of the OS using runtime system files
located in the Windows Component Store (C:\Windows\WinSxS). This allows recovery to be possible even
without a separate recovery image containing a backup copy of all system files.

In addition, push-button reset features restore Windows to an updated state rather than to the factory-preinstalled
state. Specifically, the latest release or major update installed on the PC (such as Windows 10, version 1511) will
be restored, while other updates installed after that are discarded.

This approach provides a balance between user experience in terms of the number of updates which need to be
reinstalled and the features’ effectiveness in addressing update problems. It also allows Windows to remove older
system files which are no longer needed for runtime use or for recovery, freeing up disk space.

By default, non-major updates are not restored. To ensure that updates preinstalled during manufacturing are not
discarded after recovery, they should be marked as permanent by using the /Cleanup-Image command in DISM
with the /StartComponentCleanup and /ResetBase options. Updates marked as permanent are always restored
during recovery.

Language packs that are installed and used by at least one user account are restored. Other language packs are
removed from the Windows Component Store seven days after the Out-of-Box Experience (OOBE). Using Push-
button reset features after that will not restore the removed language packs.

On PCs running single-language editions of Windows, such as Windows 10 Home, users cannot download or
install additional language packs, and they cannot use push-button reset features to switch languages if the
preinstalled language packs have been removed.

Drivers are restored in a similar fashion as the OS. Instead of restoring them from a recovery image, existing
drivers are preserved across recovery. As with system files, drivers are restored to the state they were in when the
most recent release or major update is installed. For example:

If the customer performs recovery after booting up a new PC preinstalled with Windows 10, drivers that are
present during OOBE will be restored, even if newer drivers have been installed since.
If the customer performs recovery after upgrading from Windows 10 to Windows 10, version 1511, the drivers
that are present during the upgrade will be restored, even if newer drivers have been installed since.

Device applets which are installed outside of the driver INF package are not restored as part of this process. They
are restored to factory version and state in the same way as other customizations such as Windows desktop
applications. (See Restoring other customizations for more information.) If the device applet must always stay in
sync (version wise) with the driver, it is recommended that both the driver and the device applet be installed via the
same INF package.

Preinstalled Windows apps are always restored to their factory version and state. Instead of restoring them from a

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/how-push-button-reset-features-work.md


Restoring other customizationsRestoring other customizations

Refresh your PC

Preserved settingsPreserved settings

recovery image, a copy of the Windows apps is automatically backed up when they are provisioned during image
customization and manufacturing, and the backups are restored when Push-button reset features are used.

By default, Push-button reset features restore only OS files, drivers, and preinstalled Universal Windows apps.
Different mechanisms are used to restore other customizations, such as settings and Windows desktop
applications.

Windows desktop applications can be captured using the User State Migration Tool’s (USMT) ScanState
utility into a reference device data image within a provisioning package. Push-button reset features look for and
automatically restore this provisioning package from a well-known location.
Settings common to all editions of Windows 10 (including Windows 10 Mobile) can be set using the
Windows Imaging and Configuration Designer (ICD) tool and stored in provisioning packages. Push-button
reset features look for and automatically restore these provisioning packages from a well-known location.
Alternatively, these settings can be restored using a combination of an unattend file and extensibility scripts for
Push-button reset.
Settings specific to editions of Windows 10 for desktop editions (Home, Pro, Enterprise, and
Education) can be restored using a combination of an unattend file and extensibility scripts for Push-button
reset. Examples of these settings include manufacturer support information, manufacturer logos and Start
Menu layout.

Note
Many of the settings customizations allowed or required by the OPD are specific to Windows 10 for desktop, and
cannot be stored in provisioning packages created using Windows ICD. For Windows 10 RTM, the use of an
unattend file and Push-button reset extensibility scripts is recommended for restoring all settings customizations
during recovery. The use of provisioning packages created using Windows ICD is completely optional.

The Refresh your PC feature can be summarized in the following steps:

1. PC boots into the Windows Recovery Environment (Windows RE).
2. EXTENSIBILITY POINT A: OEMs can optionally add a script here. (See Extensibility points later in this topic).
3. User accounts, settings, and data are gathered and moved to a temporary location.
4. A new copy of the OS is constructed in a temporary location using files from the Windows Component Store.
5. Customizations stored in provisioning packages under C:\Recovery\Customizations are applied to the new OS.
6. Drivers are copied from the existing OS and injected into the new OS.
7. Preinstalled Windows apps are restored from their backup location.
8. System-critical settings are applied to the new OS.
9. Existing OS is moved to C:\Windows.old.

10. New OS is moved to the root of the OS volume.
11. EXTENSIBILITY POINT B: OEMs can optionally add a script here. (See Extensibility points later in this topic).
12. PC reboots to the new OS.
13. During first boot, user data and settings are reapplied.

The Refresh your PC feature preserves a number of system and user settings that are required to keep the
system running while minimizing the need for users to reconfigure their PCs.

Preserved settings can be broadly categorized into one of the following categories:

Are required for users to log on to their PCs after running the Refresh your PC feature.
Affect how users access their documents and personal files.



User dataUser data

Windows ApplicationsWindows Applications

Reset your PC

Are difficult for most users to recreate.
Affect system security or user privacy.
Personalize the PC.

The preserved settings are summarized as follows:

User accounts (local, domain, Microsoft account), and group memberships
Domain settings
Windows Update settings
Library settings
Lock screen background
Desktop themes
International settings
Wireless network profiles
Settings configured in Windows Welcome

Because user data can be stored in many locations, the Refresh your PC feature preserves most folders and files
that are not part of a standard Windows installation. The Refresh your PC feature refreshes the following system
locations and does not preserve the contents.

\Windows
\Program Files
\Program Files(x86)
\ProgramData
\Users\<user name>\AppData (in each user profile)

Note Some applications store user data in the \AppData folder in user profiles. The \AppData folders are available
in C:\Windows.old after using the Refresh your PC feature.

The Refresh your PC feature bypasses the following locations and preserves the contents:

File History versioning data
All files and folders on non-OS partitions

The Refresh your PC feature handles application types differently in order to ensure that the PC can be restored to
a reliable state. Applications are handled as follows:

User-acquired Windows apps from the Microsoft Store are not preserved. Users will need to reinstall them
from the Microsoft Store. This is a change from Windows 8/8.1.
Preinstalled Windows apps are restored to their factory version and state. Updates to these apps will be
downloaded and reapplied automatically when internet connectivity is available.
User-acquired Windows desktop applications are not preserved. Users will need to reinstall them manually.
Preinstalled Windows desktop applications captured in the customizations provisioning package will be
restored to their factory condition, even if users have previously uninstalled them.

The Refresh your PC feature does not preserve user-installed Windows desktop applications by default, and
locations that are commonly used for storing application settings (\AppData and \ProgramData) are deleted.
Manufacturers can leverage the push-button reset extensibility points to save and later restore specific application
settings and data, if necessary.



Data removal optionsData removal options

Bare metal recovery

The Reset your PC feature can be summarized in the following steps:

1. PC boots into the Windows Recovery Environment (Windows RE).
2. User accounts, data and installed Windows apps and Windows desktop applications are removed from the OS

volume.
3. Data volumes are formatted (if requested by the user).
4. Data erasure is performed on OS and data volumes (if requested by the user).
5. EXTENSIBILITY POINT C: OEMs can optionally add a script here. (See Extensibility points later in this topic).
6. A new copy of the OS is constructed in a temporary location using files from the Windows Component Store.
7. Customizations stored in provisioning packages under C:\Recovery\Customizations are applied to the new OS.
8. Drivers are copied from the existing OS and injected into the new OS.
9. Preinstalled Universal Windows apps are restored from their backup location.

10. Existing OS is removed.
11. New OS is moved to the root of the OS volume.
12. EXTENSIBILITY POINT D : OEMs can optionally add a script here. (See Extensibility points later in this topic).
13. PC reboots to the new OS.
14. OOBE starts.

When users use the Reset your PC feature, they will be presented with options that affect the way that their data
is removed from the PC.

If the PC has more than one user-accessible hard drive volumes, users can choose to remove data from all
volumes or only the Windows volume.

The Windows volume is never formatted, as the files needed to rebuild the OS are on it. Instead, user data
files are deleted individually.

If user chooses to remove data from all volumes, the data volumes are formatted.

Users can choose to simply delete their files or to also perform data erasure on the drive(s) so that recovery
of the data by someone else is much more difficult.

Manufacturers must configure custom utility partitions as follows to ensure these partitions are not affected by the
reset process.

For UEFI-based PCs, utility partitions on GUID Partition Table (GPT) disks should have the
GPT_ATTRIBUTE_PL ATFORM_REQUIRED attribute set. See PARTITION_INFORMATION_GPT structure for
more information on GPT partition attributes.
For BIOS-based PCs, utility partitions on Master Boot Record (MBR) disks must be of a type other than 0x7,
0x0c, 0x0b, 0x0e, 0x06, and 0x42.

The time it takes to perform data erasure depends on drive speed, partition size, and whether the drive is
encrypted using Windows BitLocker Drive Encryption. The data erasure functionality is targeted at consumers and
does not meet government and industry data erasure standards.

If Compact OS is enabled on the OS before the reset, Compact OS will remain enabled after the PC has been
reset.

If the user needs to replace their hard drive or completely wipe it, they can use bootable recovery media to
perform bare metal recovery. Bare metal recovery removes all existing partitions on the system disk and recreates
all partitions, before restoring software onto the PC. Two types of recovery media are supported:

http://go.microsoft.com/fwlink/?LinkId=617162


Data removal optionsData removal options

System disk selectionSystem disk selection

User-created recovery mediaUser-created recovery media

User-created recovery media using the Create a recovery drive utility in Windows 10. This backs up the
files needed to restore the PC to a pristine state.
Manufacturer-created recovery media for support and refurbishing scenarios by placing a recovery image
on a piece of bootable Windows RE media.

When user-created recovery media are used, the bare metal recovery feature can be summarized in the
following steps:

1. The system disk is identified.
2. All partitions from the system disk are removed.
3. Data erasure is performed on the system disk (if requested by the user).
4. Factory or default partition layout is recreated on the system disk.
5. All partitions are formatted.
6. Recovery files from recovery media are copied to the OS volume.
7. A new copy of the OS is constructed at the root of the OS volume.
8. Customizations stored in provisioning packages are applied.
9. Drivers are injected into the new OS.

10. Preinstalled Windows apps are restored.
11. Boot files are configured on the system partition.
12. PC reboots to the new OS.
13. OOBE starts.

When users use the bare metal recovery feature, they can choose to perform data erasure on the entire system
disk before the factory partition layout is reapplied. On most PCs, this data erasure process is done in software,
writing cryptographically random patterns to the entire LBA range of the system disk once.

However, on certain hardware configurations, the data erasure process is performed by the storage device’s
hardware controller. This often takes less time to complete and is usually more thorough in removing remnant
data. Hardware-based data erasure is supported on PCs with storage devices which meet the following criteria:

eMMC
Supports the Secure Trim and Sanitize commands

Bare metal recovery automatically identifies the system disk using the following methods:

On legacy BIOS/MBR systems, the BIOS-reported system disk is used.

Adaptor location path and GUID of the system disk are written to a UEFI variable during OOBE.

Performed only when both the system and Windows partitions are on the system disk.

The variable is updated if necessary when Windows RE gets disabled and then re-enabled.

During bare metal recovery, if multiple internal disks are detected, the system disk is searched in this order :

Disk with GUID matching the value stored in the UEFI variable.
Disk with location path matching the value stored in firmware.
Disk with an existing ESP.

Uninitialized (raw) disk.
If multiple disks with ESP are found, bare metal recovery will not proceed.

If multiple uninitialized disks are found, bare metal recovery will not proceed.



        

Manufacturer-created recovery mediaManufacturer-created recovery media

Extensibility points for push-button reset featuresExtensibility points for push-button reset features

Ext. point System state Example usage

A Settings and data to be migrated have
been moved to a temporary location

Copy files, drivers, or settings that are
not migrated by default when the user
runs the Refresh your PC feature.

B The OS has been rebuilt. Drivers and
customizations have been reapplied.
Only critical system settings have been
migrated.

Restore customization files (e.g.
unattend.xml, layoutmodification.xml),
or files and settings you might have
backed up at extensibility point A.

Ext. point System state Example usage

C All user data have been removed from
the Windows partition and data
partitions have (optionally) been
formatted.

Reconfigure data partitions if needed.

Important Do not modify the
Windows partition.

When users create USB recovery media using the Create a recovery drive utility, the resulting media always
contain a bootable copy of Windows RE. This gives users access to troubleshooting and recovery tools when
booting from recovery media.

Users can optionally back up files required to perform bare metal recovery. When the option is selected, the
following are copied onto the USB recovery media as well:

Windows Component Store
Installed drivers
Backup of preinstalled Windows apps
Provisioning packages containing preinstalled customizations (under C:\Recovery\Customizations)
Push-button Reset configuration XML and scripts (under C:\Recovery\OEM)

Bare metal recovery supports the use of a recovery WIM image when the media are prepared by manufacturers.
This type of media is primarily used in support and refurbishing scenarios.

Manufacturer-created media must contain the following:

1. A bootable Windows RE image.
2. A Push-button reset-compatible recovery image (install.wim).
3. A Push-button reset configuration file (Resetconfig.xml) which specifies disk partitioning information.
4. A DISKPART script to perform partitioning of the disk.

Push-button reset provides extensibility points where manufacturers can insert custom operations when a user
runs the Refresh your PC and Reset your PC features.

See the sections above to see where the custom operations that can be executed for these features appear.

The extensibility points for Refresh your PC are summarized in the following table:

The extensibility points for Reset your PC are summarized in the following table:



D The OS has been rebuilt. Drivers and
customizations have been reapplied.

Restore customization files (e.g.
unattend.xml, layoutmodification.xml),
or apply additional customizations.

Compact OS

Updating the on-disk Windows Recovery Environment

Compact OS is a collection of technologies which allow Windows 10 to be deployed on PCs with storage capacity
as low as 16 gigabytes (GB). The following two technologies in particular work in conjunction with the Push-
button reset changes to reduce Windows’ disk footprint:

Per-file compression When applying a reference image file (WIM) to a PC, the files written to the disk can be
compressed individually using the XPRESS Huffman codec. This is the same codec used by the WIMBoot
technology in Windows 8.1. When Push-button reset features rebuilds the OS, the runtime system files remain
compressed.
Single-instancing of installed customizations After the installed customizations (e.g. Windows desktop
applications) have been captured (using ScanState) into a reference device data image stored inside a
provisioning package, the two copies of the customizations can be singled-instanced to reduce disk footprint
impact. This is accomplished by converting the installed customizations (e.g. C:\Program Files\Foo\Foo.exe)
into file pointers linked to the contents of the reference device data image.

The following diagram illustrates the high-level content layout of PCs with Compact OS enabled:

Both technologies are optional and can be configured during deployment.

In Windows 10, the on-disk copy of Windows RE can be serviced as part of rollup updates for the OS. Not all
rollup updates will service Windows RE.

Unlike the normal OS update process, updates for Windows RE do not directly serviced the on-disk Windows RE
image (winre.wim). Instead, a newer version of the Windows RE image replaces the existing one, with the
following contents being injected or migrated into the new image:

Boot critical and input device drivers from the full OS environment are added to the new Windows RE image.
Windows RE customizations under \Sources\Recovery of the mounted winre.wim are migrated to the new
image.

The following contents from the existing Windows RE image are not migrated to the new image:

Drivers which are in the existing Windows RE image but not in the full OS environment
Windows PE optional components which are not part of the default Windows RE image
Language packs for Windows PE and optional components

The Windows RE update process makes every effort to reuse the existing Windows RE partition without any
modification. However, in some rare situations where the new Windows RE image (along with the
migrated/injected contents) does not fit in the existing Windows RE partition, the update process will behave as
follows:



If the existing Windows RE partition is located immediately after the Windows partition, the Windows partition
will be shrunk and space will be added to the Windows RE partition. The new Windows RE image will be
installed onto the expanded Windows RE partition.
If the existing Windows RE partition is not located immediately after the Windows partition, the Windows
partition will be shrunk and a new Windows RE partition will be created. The new Windows RE image will be
installed onto this new Windows RE partition. The existing Windows RE partition will be orphaned.
If the existing Windows RE partition cannot be reused and the Windows partition cannot successfully be
shrunk, the new Windows RE image will be installed onto the Windows partition. The existing Windows RE
partition will be orphaned.

Important To ensure that your customizations continue to work after Windows RE has been updated, they must
not depend on functionalities provided by Windows PE optional components which are not in the default
Windows RE image (e.g. WinPE-NetFX). To facilitate development of Windows RE customizations, the WinPE-HTA
optional component has been added to the default Windows RE image in Windows 10.

Note The new Windows RE image deployed as part of the rollup update contains language resources only for the
system default language, even if the existing Windows RE image contains resources for multiple languages. On
most PCs, the system default language is the language selected at the time of OOBE.



Recovery components
5/11/2018 • 7 minutes to read • Edit Online

Capturing Windows desktop applications using Windows User State
Migration Tool (USMT)'s ScanState tool

PARAMETER USE

Push-button reset features by default restore only drivers (installed through INF packages) and preinstalled
Windows apps. To configure the features to restore other customizations such as settings and Windows desktop
applications, you will need to prepare one or more customization packages which contain the customizations.
These customizations packages are in the form of provisioning packages (.ppkg).

Push-button reset features look for and automatically restore provisioning packages which are located in the folder
C:\Recovery\Customizations.

To protect the packages from tampering or accidental deletion, the Write/Modify permissions of
C:\Recovery\Customizations should be restricted to the local Administrators user group.

Some settings and customizations cannot be included in provisioning packages. Instead, you can restore them
using an unattend file applied using the Push-button reset extensibility scripts. For settings which are supported by
both provisioning packages and unattend, it is recommended that you specify them using only one of the
mechanisms, not both. To learn more, see How push-button reset features work.

The Windows User State Migration Tool (USMT) ScanState.exe has been updated in Windows 10 to support
capturing Windows desktop applications applications. This functionality can be activated by specifying the /apps

option.

When /apps  is specified, ScanState uses a set of application discovery rules to determine what should be
captured, and stores the output as a reference device data image inside a provisioning package. In general, the
reference device data includes the following:

Windows desktop applications installed using either Microsoft Windows Installer or other installers
All files and folders outside of the Windows namespace (in other words, outside of \Windows, \Program Files,
\Program Files (x86), \ProgramData, and \Users). This applies only to the volume on which Windows is
installed.
Not captured: Windows apps.
Not captured: User state/data.

You can also specify additional rules to include or exclude specific files, folders, and registry settings. For example,
if you are using ScanState during factory deployment, you might need to exclude manufacturing-specific tools so
that they will not be restored when end users use Push-button reset features. To specify additional rules, you will
need to author a migration XML and specify the /i  option when using ScanState.exe.

ScanState’s /apps option also supports the following optional parameters:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/recovery-strategy-for-common-customizations.md


+/-sysdrive Specifies whether applications, files, and folders outside of the
Windows namespace should be captured.

+/-oeminfo Specifies whether the OEM-specific help and support info
should be captured.

PARAMETER USE

Creating customization packages using Windows ICD

Restoring settings using unattend.xml and extensibility scripts

If +sysdrive  is specified, all contents on the system
drive are examined and eligible to be captured according
to the discovery rules.

If -sysdrive  is specified, only contents within the
Windows namespace are examined and eligible to be
captured according to the discovery rules.

+sysdrive  is the default.

If +oeminfo  is specified, OEM and support info are
captured.

If -oeminfo  is specified, OEM and support info are not
captured.

+oeminfo  is the default.

Important

Although push-button reset features can restore multiple provisioning packages, only one of the packages can
contain reference device data image captured using ScanState.
ScanState should be used only after all customizations have been applied to the PC. It does not support
appending additional changes to an existing reference device data image.
A provisioning package captured using ScanState.exe can only be applied using push-button reset features and
deployment media created using Windows Imaging and Configuration Designer (ICD). It cannot be applied
using tools such as DISM or USMT’s LoadState.exe.
When you prepare ScanState for capturing customizations, you should exclude Windows Defender settings to
prevent possible failures during recovery that can be caused by file conflicts. For more information, see Step 1
in Deploy push-button reset features.

For customizations involving settings which apply to all editions of Windows 10 (including Windows 10 Mobile),
you can create provisioning packages using the Windows ICD.

In build-to-stock (BTS) scenarios, if you have already captured your Windows desktop applications from your
reference PC using the ScanState tool, you can import the output provisioning package into Windows ICD and
specify additional settings which should be restored during recovery.

Most settings which are configured using unattend.xml and other configuration files (e.g. oobe.xml,
LayoutModification.xml) cannot be restored using provisioning packages. Instead, you will need to use the Push-
button reset extensibility points in order to restore them during recovery. These extensibility points allow you run
scripts which can:

Inject an unattend.xml into the recovered OS
Copy other configuration files and assets into the recovered OS



Recovery strategies for common customizations

CUSTOMIZATION HOW IT IS CONFIGURED HOW IT CAN BE RESTORED DURING PBR

OOBE – HID pairing Settings in the <hidSetup>  section of
OOBE.xml and images (e.g. .png files)

Use PBR extensibility script to restore
OOBE.xml and images from
C:\Recovery\OEM

OOBE – OEM EULA <Eulafilename>  setting in OOBE.xml
and license terms .rtf file(s) stored
under %WINDIR%\System32\Oobe\Info

Use PBR extensibility script to restore
OOBE.xml and .rtf files from
C:\Recovery\OEM

OOBE – Preconfigured language and
time zone

Settings in the <defaults>  section of
OOBE.xml

Use PBR extensibility script to restore
OOBE.xml from C:\Recovery\OEM

OOBE – Hide mobile broadband page Microsoft-Windows-WwanUI |
NotInOOBE setting in unattend.xml

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

OOBE – OEM Registration page Settings in the <registration> section of
OOBE.xml and HTML files for in-place
links

Use PBR extensibility script to restore
OOBE.xml and HTML files from
C:\Recovery\OEM

Start – Pinned tiles and groups LayoutModification.xml stored under
%SYSTEMDRIVE%\Users\Default\AppDa
ta\Local\Microsoft\Windows\Shell or
settings under Microsoft-Windows-
Shell-Setup | StartTiles in unattend.xml

Use PBR extensibility scripts to restore
LayoutModification.xml or unattend.xml
from C:\Recovery\OEM

Start – Prepopulated MFU list LayoutModification.xml stored under
%SYSTEMDRIVE%\Users\Default\AppDa
ta\Local\Microsoft\Windows\Shell

Use PBR extensibility scripts to restore
LayoutModification.xml from
C:\Recovery\OEM

Important

You should not use unattend.xml (or other mechanisms) to boot the recovered OS into Audit Mode. The
recovered OS must remain configured to boot to OOBE.
A copy of the configuration files and assets which need to be restored must be placed under C:\Recovery\OEM.
Contents in this folder are not modified by push-button reset features and are automatically backed up to
recovery media created using the Create a recovery drive utility. To protect the unattend.xml and
configuration files/assets from tampering or accidental deletion, Write/Modify permissions of
C:\Recovery\OEM should be restricted to the local Administrators user group.

To learn how to author scripts to be run using extensibility points, see Add a script to push-button reset features.

To learn how to use ScanState to capture and store the resulting PPKG under C:\Recovery\Customizations, which
is restored automatically during PBR, see Deploy push-button reset features using ScanState.

The following table outlines the recovery strategy for common customizations which are described in the User
Experience Windows Engineering Guide (UX WEG) as well as those covered in the OEM Policy Document (OPD).
For up-to-date details on these customizations, refer to the latest version of the UX WEG and OPD.



Continuum – Form factor Settings in unattend.xml: Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

Continuum – Default mode Microsoft-Windows-Shell-Setup |
SignInMode setting in unattend.xml

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

Desktop – Default and additional accent
colors

RunSynchronous command in
unattend.xml which adds the AGRB hex
color values to the registry under
HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Themes\Accents

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

Desktop – Background image Microsoft-Windows-Shell-Setup |
Themes | DesktopBackground setting in
unattend.xml and image (e.g.
.jpg/.png/.bmp file)

Use PBR extensibility scripts to restore
unattend.xml and background image
file from C:\Recovery\OEM

Desktop – Pinned taskbar items Settings under Microsoft-Windows-
Shell-Setup | TaskbarLinks in
unattend.xml and shortcut (.lnk) files
stored in a folder under
%ALLUSERSPROFILE%\Microsoft\Windo
ws\Start Menu\Programs</td>

Use PBR extensibility scripts to restore
unattend.xml and .lnk files from
C:\Recovery\OEM

Desktop – Systray icons Settings under Microsoft-Windows-
Shell-Setup | NotificationArea in
unattend.xml

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

Mobile broadband – Rename “WiFi” to
“WLAN” in network list

Microsoft-Windows-SystemSettings |
WiFiToWlan setting in unattend.xml

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

Mobile broadband – Enable Network
Selection control in Settings

Microsoft-Windows-SystemSettings |
DisplayNetworkSelection setting in
unattend.xml

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

PC Settings – Preinstalled settings apps Settings apps are preinstalled in the
same way as any other app, and
automatically appear in Settings.
Capability declared in the app manifest
determines whether it is a settings app
or not.

Restored automatically along with other
preinstalled apps

Default browser and handlers of
protocols

Default application association settings
XML file imported using the /Import-
DefaultAppAssociations command in
DISM

Use PBR extensibility scripts to re-
import the XML from C:\Recovery\OEM
using DISM

Support information in Contact Support
app

Settings under Microsoft-Windows-
Shell-Setup | OEMInformation in
unattend.xml and logo.bmp file

Use PBR extensibility scripts to restore
unattend.xml and .bmp file from
C:\Recovery\OEM

CUSTOMIZATION HOW IT IS CONFIGURED HOW IT CAN BE RESTORED DURING PBR

• Microsoft-Windows-Deployment |
DeviceForm

• Microsoft-Windows-GPIOButtons
| ConvertibleSlateMode



Store content modifier Microsoft-Windows-Store-Client-UI |
StoreContentModifier setting in
unattend.xml

Use PBR extensibility scripts to restore
unattend.xml from C:\Recovery\OEM

Windows desktop applications
(including driver applets installed via
setup.exe)

MSI or custom installers Use ScanState to capture and store the
resulting PPKG under
C:\Recovery\Customizations, which is
restored automatically during PBR.

RDX contents See UX WEG for details Should not be restored during PBR

CUSTOMIZATION HOW IT IS CONFIGURED HOW IT CAN BE RESTORED DURING PBR



Deploy push-button reset features
5/11/2018 • 13 minutes to read • Edit Online

Prerequisites

Push-button reset features are included with Windows 10 for desktop editions (Home, Pro, Enterprise, and
Education), though you'll need to perform additional steps to deploy PCs with the following customizations.

Windows desktop applications
Windows settings, such as customized OOBE screens or Start Menus.
Customized partition layouts.

These steps also show you how to add your own scripts during a reset to capture logs or perform other cleanup
tasks.

To complete these procedures, you'll need a technician PC which has Windows 10 and the following Windows
Assessment and Deployment Kit (ADK) for Windows 10 components installed:

Deployment Tools
Windows Preinstallation Environment (Windows PE)
Imaging and Configuration Designer (ICD)
User State Migration Tool (USMT)

You'll also need:

A destination PC with drive size of 100 GB or larger
A Windows 10 for desktop editions image (install.wim)
A Windows RE boot image (Winre.wim) (You'll extract this from a Windows 10 image).

For an overview of the entire deployment process, see the Desktop manufacturing guide.

Use the follow steps to prepare the ScanState tool to capture Windows desktop applications after they have been
installed:

Step 1: Prepare the ScanState tool

md C:\ScanState_amd64
xcopy /E "C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\User State Migration 
Tool\amd64" C:\ScanState_amd64
xcopy /E /Y "C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows 
Setup\amd64\Sources" C:\ScanState_amd64

1. On the technician PC, copy the Windows ADK files from Windows User State Migration Tool (USMT) and
Windows Setup to a working folder. You'll need to match the architecture of the destination device. You
don't need to copy the subfolders.

2. Copy the contents of the working folder to a network location or USB flash drive.

Use the following steps to customize your Windows RE boot image if additional drivers and language packs are
needed.

Step 2: Extract and customize the Windows RE boot image (optional)

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deploy-push-button-reset-features.md
http://go.microsoft.com/fwlink/p/?LinkId=526101


1. On the technician PC, click Start, and type deployment. Right-click Deployment and Imaging Tools
Environment and then select Run as administrator.

Mkdir C:\OS_image\mount

Mkdir C:\winre_amd64\mount

Dism /mount-image /imagefile:C:\OS_image\install.wim /index:1 /mountdir:C:\OS_image\mount

xcopy /H C:\OS_image\mount\windows\system32\recovery\winre.wim C:\winre_amd64 

Dism /unmount-image /mountdir:C:\OS_image\mount /discard

Dism /mount-image /imagefile:C:\winre_amd64\winre.wim /index:1 /mountdir:C:\winre_amd64\mount

Dism /unmount-image /mountdir:C:\winre_amd64\mount /commit 

2. In Deployment and Imaging Tools Environment, create the folder structure to store the Windows
image and its mount point.

3. Create the folder structure to store the Windows RE boot image and its mount point.

4. Mount the Windows image (install.wim) to the folder \OS_image\mount by using DISM.

where Index:1  is the index of the selected image in the Install.wim file.

5. Copy the Windows RE image from the mounted Windows image to the new folder.

6. Unmount the Windows image. Tip: If you haven't made any other changes in the Windows image, you
can unmount the image faster by using the /discard  option.

7. Mount the Windows RE boot image for editing.

where Index:1  is the number of the selected image in the Winre.wim file.

Once the Winre.wim file is extracted from the Install.wim file, you can customize the Windows RE boot
image.

8. Add language packs, boot-critical device drivers, and input device drivers to the Windows RE boot image.
To learn more, see Customize Windows RE.

9. Commit your customizations and unmount the image.

If you are planning to customize only the settings common to all editions of Windows 10 (including Windows 10
Mobile), use the following steps to create a provisioning package which specifies settings to be restored during
recovery:

Step 3: Create a provisioning package with settings to be restored (optional)

1. On the technician PC, start Windows Imaging and Configuration Designer (ICD).
2. Click File > New Project.
3. Enter a project name and description, and then click Next



4. In the Select project workflow step, select the Provisioning Package option, and then click Next.
5. In the Choose which settings to view and configure step, select the Common to all Windows editions

option, and then click Next.
6. In the Import a provisioning package (optional) step, click Finish to create the new project.
7. Use the Available customizations pane to add settings and specify the defaults which should be restored

during recovery. The settings will appear in the Selected customizations pane.
8. Click Export > Provisioning package.
9. In the Describe the provisioning package step, click Next.

10. In the Select the security details for the provisioning package step, click Next.
11. In the Select where to save the provisioning package step, enter a location to save the package (such as a

network share) and then click Next.
12. Click Build to create the provisioning package.
13. After the provisioning package is created, click Finish.

If your customizations include settings specific to editions of Windows 10 for desktop editions, use the following
steps to create an unattend.xml which specifies the settings to be restored during recovery:

Step 4: Create an unattend file to restore settings (optional)

1. On the technician PC, start Windows System Image Manager.
2. Click File > Select Windows image.
3. When prompted to create a catalog file, click Yes.
4. Use the Windows Image and Answer File panes to add settings to the Specialize or oobeSystem phase (or

both), and specify the defaults which should be restored during recovery.
5. Click Tool > Validate Answer File to check for errors. Correct any problem identified.
6. Click File > Save Answer File. Enter a location to save the answer file (such as a network share) and then

click Save.

If you plan to use Push-button reset’s extensibility points, use the following steps to prepare your extensibility
scripts and register them using a Push-button reset configuration file.

Important If you have created an unattend file, you must also create a script to reapply it using the
BasicReset_AfterImageApply and FactoryReset_AfterImageApply extensibility points.

Step 5: Prepare push-button reset extensibility scripts (optional)

1. Create scripts (.cmd) or executables (.exe) to run at the available extensibility points when the Refresh your
PC feature runs:

A: At BasicReset_BeforeImageApply

B: At BasicReset_AfterImageApply

2. Create scripts (.cmd) or executables (.exe) to run at the available extensibility points when the Reset your
PC feature runs:

C: At FactoryReset_AfterDiskFormat

D: At FactoryReset_AfterImageApply

3. Save the scripts to a network location, or USB flash drive.

4. Create a ResetConfig.xml file that specifies the location of the scripts that you created for the four
extensibility points. For example:



<?xml version="1.0" encoding="utf-8"?>
<Reset>
    <Run Phase="BasicReset_BeforeImageApply">
        <Path>Fabrikam\SampleScript_A.cmd</Path>
        <Duration>2</Duration>
    </Run>
    <Run Phase="BasicReset_AfterImageApply">
        <Path>Fabrikam\SampleScript_B.cmd</Path>
        <Param></Param>
        <Duration>2</Duration>
    </Run>
    <Run Phase="FactoryReset_AfterDiskFormat">
        <Path>Fabrikam\SampleScript_C.cmd</Path>
        <Duration>2</Duration>
    </Run>
    <Run Phase="FactoryReset_AfterImageApply">
        <Path>Fabrikam\SampleScript_D.cmd</Path>
        <Param></Param>
        <Duration>2</Duration>
    </Run>
</Reset>

Important If you use a text editor to author the ResetConfig.xml file, save the document with an .xml file
name extension and use UTF-8 encoding. Do not use Unicode or ANSI.

5. Save the ResetConfig.xml file together with the extensibility scripts that you created.

Step 6: Create bare-metal recovery configuration (optional)

<?xml version="1.0" encoding="utf-8"?>
<Reset>
            <SystemDisk>
        <MinSize>160000</MinSize>
        <DiskpartScriptPath>ReCreatePartitions.txt</DiskpartScriptPath>
        <OSPartition>3</OSPartition>
        <WindowsREPartition>4</WindowsREPartition>
        <WindowsREPath>Recovery\WindowsRE</WindowsREPath>
        <Compact>False</Compact>
</SystemDisk>
</Reset>

To specify the partition layout to be used when users perform bare metal recovery using recovery media
created from their PCs, modify resetconfig.xml to include the following elements:

MinSize - Specifies the minimum size of the system disk in megabytes (MB). Recovery process will
not proceed if the system disk does not meet this minimum size.
DiskpartScriptPath - Path to Diskpart script relative to install.wim location. The script should assume
that all existing partitions have been deleted, and the system disk has focus in Diskpart.
OSPartition - The partition to which the recovery image should be applied must be specified. The
ESP or active partition must be on the same disk as the OS.
WindowsREPartition; WindowsREPath – (Optional) The location in which WinRE should be staged.
The WinRE boot image on the media will be copied and registered with the OS. (Same as running
“reagentc.exe /setreimage”)

If partitioning information is not specified in resetconfig.xml, users can still perform bare metal recovery
using media they have created. However, the default/recommended partition layout for Windows 10 will
be used instead.

Step 7: Create a diskpart script for initial deployment



rem These commands are used with DiskPart tool.
rem Erase the drive and create four partitions
rem for a UEFI/GPT-based PC.
select disk 0
clean
convert gpt
rem == 1. System Partition =======================
create partition efi size=100
rem ***NOTE: For 4KB-per-sector drives, change 
rem this value to size=260.***
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) Partition =====
create partition msr size=16
rem == 3. Windows Partition ======================
rem ==    a. Create Windows Partition ============
create partition primary
rem ==    b. Create space for Windows RE tools partition
shrink minimum=450
rem ==    c. Prepare the Windows partition
format quick fs=ntfs label="Windows"
assign letter="W"
rem == 4. Windows RE Tools Partition =============
create partition primary
format quick fs=ntfs label="Windows RE tools"
set id=de94bba4-06d1-4d40-a16a-bfd50179d6ac
assign letter="T"
exit

rem These commands are used with DiskPart to 
rem erase the drive and create three partitions 
rem for a BIOS/MBR-based PC. 
rem Adjust the partition sizes to fill the drive.
select disk 0
clean
rem === 1. System Partition =====================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S" 
active 
rem === 2. Windows Partition ====================
rem ==    a. Create Windows partition ===========
create partition primary 
rem ==    b. Create space for Windows RE tools partition ====
shrink minimum=450
rem ==    c. Prepare the Windows partition ======
format quick fs=ntfs label="Windows" 
assign letter="W" 
rem === 3. Windows RE Tools Partition =============
create partition primary
format quick fs=ntfs label="Windows RE tools"
set id=27
assign letter="R" 
exit

1. Create a disk partitioning script for initial deployment.

UEFI example:

BIOS example:

2. Name the script CreatePartitions-UEFI or CreatePartitions-BIOS.txt, and save it to a network location, or
USB flash drive. Note: In these Diskpart examples, the partitions are assigned the letters S:\, W:\, and T:\
to simplify partition identification. After the PC reboots, Windows PE automatically assigns the letter C:\



to the Windows partition. The other partitions do not receive drive letters.

Step 8: Create a diskpart script for bare-metal recovery (optional)

rem These commands are used with DiskPart tool.
rem Erase the drive and create five partitions
rem for a UEFI/GPT-based PC.
convert gpt
rem == 1. System Partition =======================
create partition efi size=100
rem ***NOTE: For 4KB-per-sector drives, change 
rem this value to size=260.***
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) Partition =====
create partition msr size=16
rem == 3. Windows Partition ======================
rem ==    a. Create Windows Partition ============
create partition primary
rem ==    b. Create space for Windows RE tools partition
shrink minimum=450
rem ==    c. Prepare the Windows partition
format quick fs=ntfs label="Windows"
assign letter="W"
rem == 4. Windows RE Tools Partition =============
create partition primary
format quick fs=ntfs label="Windows RE tools"
set id=de94bba4-06d1-4d40-a16a-bfd50179d6ac
assign letter="T"
exit

rem These commands are used with DiskPart to 
rem erase the drive and create three partitions 
rem for a BIOS/MBR-based PC. 
rem Adjust the partition sizes to fill the drive.
rem === 1. System Partition =====================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S" 
active 
rem === 2. Windows Partition ====================
rem ==    a. Create Windows partition ===========
create partition primary 
rem ==    b. Create space for Windows RE tools partition ====
shrink minimum=450
rem ==    c. Prepare the Windows partition ======
format quick fs=ntfs label="Windows" 
assign letter="W" 
rem === 3. Windows RE Tools Partition =============
create partition primary
format quick fs=ntfs label="Windows RE tools"
set id=27
assign letter="R" 
exit

1. Create a diskpart script for bare-metal recovery.

Important The diskpart script used for bare metal recovery should not include a select disk  or clean

command. The system disk will be selected automatically before the diskpart script is processed.

UEFI example:

BIOS example:



2. Name the script RecreatePartitions-UEFI.txt or RecreatePartitions-BIOS.txt, and save it to the same
network location, or USB flash drive as create partitions.

Step 9: Deploy and customize Windows

1. On the destination PC, boot to Windows PE.

Diskpart /s N:\CreatePartitions.txt

Dism /Apply-Image /ImageFile:N:\Install.wim /Index:1 /ApplyDir:W:\

Dism /Apply-Image /ImageFile:N:\Install.wim /Index:1 /ApplyDir:W:\ /Compact:on

W:\Windows\System32\Bcdboot W:\Windows

Mkdir T:\Recovery\WindowsRE
xcopy /H N:\Winre.wim T:\Recovery\WindowsRE

W:\Windows\System32\Reagentc /setreimage /path T:\Recovery\WindowsRE /target W:\Windows

select disk 0
select partition 4
remove
set id=de94bba4-06d1-4d40-a16a-bfd50179d6ac
gpt attributes=0x8000000000000001
exit

2. At the Windows PE command prompt, run the script to create the recommended hard drive partitions.

where N:\CreatePartition is the location of the file.

3. Apply the Windows reference image to the Windows partition.

Optional: You can also specify the /compact option so that the files written to disk are compressed. For
example:

This is useful if you are deploying Windows onto PCs with limited storage capacity, but is not
recommended on PCs with rotational storage devices.

4. Configure the system partition by using BCDboot.

5. Create a folder in the Windows RE tools partition, and copy your custom Windows RE boot image to it.

where T:\ is the Windows RE tools partition.

Important You must store Winre.wim in \Recovery\WindowsRE.

6. Register the Windows RE boot image together with the Windows image.

7. Use Diskpart to conceal the Windows RE tools (T:\) partition from Windows Explorer.

For UEFI-based PCs:

For BIOS-based PCs:



select disk 0
select partition 3
remove
set id=27
exit

DISM.exe /Cleanup-Image /StartComponentCleanup /ResetBase

8. Customize the Windows image on the destination PC:

a. Perform offline customizations to the Windows image, such as installing INF-based driver packages
specific to the destination PC, installing OS updates and language packs, or provisioning additional
Windows apps.

b. Boot the destination PC to audit mode. This can be accomplished by using an answer file with the
Microsoft-Windows-Deployment | Reseal | Mode = audit setting, or by first booting the PC to OOBE,
and then pressing CTRL+SHIFT+F3.

c. Perform any remaining customizations such as installing applications and device software packages
that are specific to the destination PC.

9. If you have installed OS updates, clean up the superseded components and mark the updates as
permanent so that they will be restored during recovery:

Step 10: Capture and deploy customizations for recovery

N:\ScanState_amd64\scanstate.exe /apps /config:<path_to_config_file> /ppkg 
C:\Recovery\Customizations\apps.ppkg /o /c /v:13 /l:C:\ScanState.log

xcopy N:\RecoveryPPKG\*.ppkg C:\Recovery\Customizations

mkdir C:\Recovery\OEM
xcopy /E N:\RecoveryScripts\* C:\Recovery\OEM

1. Use the ScanState tool to capture the installed customizations into a provisioning package. Use the
/config option to specify one of the default configuration files included with the ADK, and save the .ppkg
file in the folder C:\Recovery\Customizations.

where N:\ is the location of the ScanState tool installed in Step 1.

2. If you have used Windows ICD to create additional provisioning packages with customizations which
should be restored during recovery, copy the packages to the destination PC. For example:

where N:\ is the location where the additional provisioning packages are located.

3. Copy any Push-button reset configuration file (resetconfig.xml) and extensibility scripts to the destination
PC, and then configure permissions to write/modify them. For example:

where N:\ is the location where the configuration file and scripts are located.

4. Restrict the Write/Modify permissions of the customizations, and hide the root folder. For example:



Related topics

icacls C:\Recovery\Customizations /inheritance:r /T
icacls C:\Recovery\Customizations /grant:r SYSTEM:(F) /T
icacls C:\Recovery\Customizations / grant:r *S-1-5-32-544:(F) /T
icacls C:\Recovery\OEM /inheritance:r /T
icacls C:\Recovery\OEM /grant:r SYSTEM:(F) /T
icacls C:\Recovery\OEM / grant:r *S-1-5-32-544:(F) /T
attrib +H C:\Recovery

Sysprep /oobe /exit

DISM /Apply-CustomDataImage /CustomDataImage:C:\Recovery\Customizations\USMT.ppkg /ImagePath:C:\ 
/SingleInstance

5. Use the Sysprep tool to reseal the Windows image without using the /generalize option.

Note Important: You must configure the image that you are shipping to the customer to boot to OOBE.

6. (Optional) To save space, you can also convert your installed Windows desktop applications into file
pointers referencing the customizations package. To do so, boot the destination PC to Windows PE and
run the following:

7. Shut down the destination PC for packaging and shipment. When the user starts the PC for the first time,
it will boot to OOBE.

Step 11: Verify your customizations

1. Verify that your customizations are restored after recovery, and that they continue to function by running
the Refresh your PC and Reset your PC features from the following entry points:

Settings : From the Start Menu, click Settings > Update & security > Recovery. Click the Get Started
button under Reset this PC and follow the on-screen instructions.

Windows RE : From the Choose an option screen in Windows RE, click Troubleshoot > Reset this PC
and then follow the on-screen instructions

2. Verify that recovery media can be created, and verify its functionality by running the bare metal
recovery feature:

a. Launch Create a recovery drive from Control Panel.
b. Follow the on-screen instructions to create the USB recovery drive.
c. Boot the PC from the USB recovery drive
d. From the Choose an option screen, click Troubleshoot
e. Click Recover from a drive and then follow the on-screen instructions
Note The Push-button reset UI has been redesigned in Windows 10. The Keep my files option in the UI
now corresponds to the Refresh your PC feature, whereas the Remove everything option corresponds
to the Reset your PC feature.

ScanState Syntax

Bare metal reset/recovery: Create recovery media while deploying new devices

Deploy push-button reset features using ScanState

http://go.microsoft.com/fwlink/p/?linkid=615076
http://go.microsoft.com/fwlink/?LinkId=615126


Add a script to push-button reset features
5/11/2018 • 7 minutes to read • Edit Online

Prerequisites

Step 1: Creating Configuration Files to Prepare for Recovery

You can customize the Push-button reset experience by configuring extensibility points. This enables you to run
custom scripts, install additional applications, or preserve additional user or application data.

To configure extensibility points and customize the Push-button reset experience, you need the following.

A configuration file named ResetConfig.xml
Scripts that execute custom operations at selected extensibility points.
Any additional files required by the scripts

Each script must meet the following requirements:

Be an executable (.exe) or a command script (.cmd)
Run without displaying a graphical user interface (GUI)
Return either 0 to indicate a successful operation, or a non-zero value to indicate an unsuccessful operation

These files should be placed in the folder C:\Recovery\OEM, and will automatically be detected by Push-button
reset features. It's OK to use subfolders.

To create extensibility scripts

In Notepad, you can create custom scripts to save or retrieve log files, check partitions, and to install
applications.

Important
Your scripts must meet the following requirements:

The scripts are formatted as a .cmd or .exe files.
The scripts do not depend on Windows PE optional components not present in the default Windows RE
image (winre.wim).
The scripts do not depend on binaries (e.g. .exe or .dll files) not present in the default Windows RE image
(winre.wim).
The scripts run without displaying a graphical user interface (GUI).
The scripts complete all intended functions within 5 minutes for each extensibility point.
The script must not modify the drive letters. This can potentially cause the recovery to fail.

Your scripts must return a 0 (zero), if successful. If push-button reset receives a non-0 value, the following
steps occur :

If running the Refresh your PC feature: All system changes are rolled back. If the script or
executable file is initiated from the Windows PC settings menu, the system reboots in Windows. If
the script or executable file is initiated from Windows RE or the Boot Options menu, the system
remains in Windows RE and displays an error message.

If running the Reset your PC feature: The failure is ignored. The script or executable file proceeds
to the next step in the reset process and logs the failure.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/add-a-script-to-push-button-reset-features.md


**Example 1: Saving Log Files**

This example script preserves files that would otherwise be removed, by placing them in a temporary location 
in memory, to be retrieved by another sample script, **RetrieveLogFiles.cmd**.

```
:rem == SaveLogFiles.cmd

:rem == This sample script preserves files that would 
:rem    otherwise be removed by placing them in a 
:rem    temporary location in memory, to be retrieved by
:rem    RetrieveLogFiles.cmd.

:rem == 1. Use the registry to identify the location of
:rem       the new operating system and the primary hard
:rem       drive. For example, 
:rem       %TARGETOS% may be defined as C:\Windows
:rem       %TARGETOSDRIVE% may be defined as C:
for /F "tokens=1,2,3 delims= " %%A in ('reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RecoveryEnvironment" 
/v TargetOS') DO SET TARGETOS=%%C

for /F "tokens=1 delims=\" %%A in ('Echo %TARGETOS%') DO SET TARGETOSDRIVE=%%A

:rem == 2. Copy old logs to a temporary folder in memory
mkdir X:\Temp
xcopy %TARGETOS%\Logs\*.* X:\temp /cherkyi

EXIT 0
```

**Example 2: Retrieving Log Files**

This sample script retrieves the files that were saved in memory by the `SaveLogFiles.cmd` script, and adds 
them back to the system. It also runs a system diagnostic, and then sends the output to the C:\\Fabrikam 
folder.

```
:rem == RetrieveLogFiles.cmd

:rem == This sample script retrieves the files that 
:rem    were saved in memory by 
:rem    SaveLogFiles.cmd,
:rem    and adds them back to the system.
:rem
:rem    It also runs a system diagnostic, and sends the output
:rem    to the C:\Fabrikam folder.

:rem == 1. Use the registry to identify the location of
:rem       the new operating system and the primary drive.
:rem        

You can use the following locations for storage, if needed.

Windows PE RAM drive (X:). This virtual drive is created by Windows PE, and stays active during
the Refresh your PC process. You can use it with the Refresh your PC feature to save data before
the partition is refreshed, and to restore the data after the partition refresh is complete. The amount
of available memory is limited to the amount of RAM on the system, minus the amount of RAM
needed for the Windows RE tools when fully expanded. For instructions about mounting Windows
RE and determining the fully-expanded file size, see Customize Windows RE.

Designated OEM partition. You can leave extra room on a partition. For example, you can leave
room on the recovery image partition, and use scripts to temporarily assign a drive letter and then
save files to that partition. However, if your user uses the recovery media to repartition the disks, the
data on these partitions might be lost during the recovery process.



:rem       %TARGETOS% is the Windows folder 
:rem          (This later becomes C:\Windows)
:rem       %TARGETOSDRIVE% is the Windows partition 
:rem          (This later becomes C:)
for /F "tokens=1,2,3 delims= " %%A in ('reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RecoveryEnvironment" 
/v TargetOS') DO SET TARGETOS=%%C
for /F "tokens=1 delims=\" %%A in ('Echo %TARGETOS%') DO SET TARGETOSDRIVE=%%A

:rem == 2. Copy the old logs to the new OS 
:rem       at C:\Windows\OldLogs
mkdir %TARGETOS%\OldLogs
xcopy X:\Temp\*.* %TARGETOS%\OldLogs /cherkyi

:rem == 3. Run system diagnostics using the
:rem       DirectX Diagnostic tool, and save the 
:rem       results to the C:\Fabrikam folders. ==

mkdir %TARGETOSDRIVE%\Fabrikam
%TARGETOS%\system32\dxdiag.exe /whql:off /t %TARGETOSDRIVE%\Fabrikam\DxDiag-TestLogFiles.txt

EXIT 0
```

To create a push-button reset configuration file

<?xml version="1.0" encoding="utf-8"?>
<!-- ResetConfig.xml -->
   <Reset>
      <Run Phase="BasicReset_BeforeImageApply">
         <Path>SaveLogFiles.cmd</Path>
         <Duration>4</Duration>
      </Run>      
      <Run Phase="BasicReset_AfterImageApply">
         <Path>RetrieveLogFiles.cmd</Path>
         <Duration>2</Duration>
      </Run>
      <Run Phase="FactoryReset_AfterDiskFormat">
         <Path>CheckPartitions.exe</Path>
         <Duration>2</Duration>
      </Run>
      <Run Phase="FactoryReset_AfterImageApply">
         <Path>InstallApps.cmd</Path>
         <Param>/allApps</Param>
         <Duration>2</Duration>
      </Run>
      <!-- May be combined with Recovery Media Creator
           configurations – insert SystemDisk element here -->
   </Reset>

1. In Notepad, create a configuration file (ResetConfig.xml) that points to your push-button reset extensibility
scripts. For more information about this file, see ResetConfig XML Reference.

Where SaveLogFiles.cmd, RetrieveLogFiles.cmd, CheckPartitions.exe, and InstallApps.cmd are all fictional
scripts.

2. Click File, and then click Save As. In the Encoding box, select UTF-8, and save this file as
E:\Recovery\RecoveryImage\ResetConfig.xml.

Where E is the drive letter of a USB flash drive or other removable media. Do not use ANSI coding.

Note
You can use the same ResetConfig.xml file to configure Windows to create recovery media. For more
information, see Deploy Push-Button Reset Features.



Step 2: Adding Configuration Files and Scripts to the Destination
Computer

Sample script: making sure unattend.xml, LayoutModification.xml, and
OOBE.xml are kept during a reset

<?xml version="1.0" encoding="utf-8"?>
<!-- ResetConfig.xml -->
<Reset>
  <Run Phase="BasicReset_AfterImageApply">
    <Path>EnableCustomizations.cmd</Path>
    <Duration>2</Duration>
  </Run>
  <Run Phase="FactoryReset_AfterImageApply">
    <Path>EnableCustomizations.cmd</Path>
    <Duration>2</Duration>
  </Run>
</Reset>

rem EnableCustomizations.cmd

rem Define %TARGETOS% as the Windows folder (This later becomes C:\Windows) 
for /F "tokens=1,2,3 delims= " %%A in ('reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RecoveryEnvironment" 
/v TargetOS') DO SET TARGETOS=%%C

rem Define %TARGETOSDRIVE% as the Windows partition (This later becomes C:)
for /F "tokens=1 delims=\" %%A in ('Echo %TARGETOS%') DO SET TARGETOSDRIVE=%%A

rem Add back Windows settings, Start menu, and OOBE.xml customizations
copy "%TARGETOSDRIVE%\Recovery\OEM\Unattend.xml" "%TARGETOS%\Panther\Unattend.xml" /y
copy "%TARGETOSDRIVE%\Recovery\OEM\LayoutModification.xml" 
"%TARGETOSDRIVE%\Users\Default\AppData\Local\Microsoft\Windows\Shell\LayoutModification.xml" /y
xcopy "%TARGETOSDRIVE%\Recovery\OEM\OOBE\Info" "%TARGETOS%\System32\Info\" /s

rem Recommended: Create a pagefile for devices with 1GB or less of RAM.
wpeutil CreatePageFile /path=%TARGETOSDRIVE%\PageFile.sys /size=256

To add your configuration files and scripts

Copy E:\Recovery\RecoveryImage\* R:\RecoveryImage\*

1. On your destination computer, insert the USB flash drive with the configuration files.

2. Copy the configuration files to the destination computer

where E is the drive letter of the USB flash drive.

Windows doesn't automatically save settings created through unattend.xml setup files, nor Windows Start Menu
customizations created with LayoutModification.xml during a full-system reset, nor first-login info from oobe.xml.
To make sure your customizations are saved, that includes steps to put the unattend.xml, LayoutModification.xml,
and oobe.xml files back into place.

Here's some sample scripts that show how to retain these settings and put them back into the right spots.

Save copies of unattend.xml, LayoutModification.xml, oobe.xml, plus these two text files, in C:\Recovery\OEM\.

ResetConfig.xml:

EnableCustomizations.cmd:



xcopy "%ScriptFolder%\Info\" "%TargetOSDrive%\System32\Info\" /s

Next Steps

Related topics

For multilingual deployments, OOBE.xml uses a more complicated folder structure. It's OK to just copy the entire
folder into C:\Recovery\OEM, and then modify the script to copy the entire folder :

Now that you have customized the push-button reset experience, you can deploy the recovery image for push-
button reset (Install.wim) to the recovery image partition.

To copy the Diskpart script, the ResetConfig.xml file, and the push-button reset recovery image (install.wim) to the
recovery image partition of the destination PC, follow the instructions in the Deploy Push-Button Reset Features
topic.

Push-Button Reset Overview

Create Media to Run Push-Button Reset Features

Deploy Push-Button Reset Features

REAgentC Command-Line Options

ResetConfig XML Reference



Bare metal reset/recovery: create recovery media
while deploying new devices
5/11/2018 • 3 minutes to read • Edit Online

Create a bootable Windows RE image

Recovery media (bare metal recovery) helps restore a Windows device to the factory state, even if the user needs
to replace the hard drive or completely wipe the drive clean.

You can include this media with new devices that you provide to your customers using the same Windows
images used to deploy the devices.

Note

The PC firmware/BIOS must be configured so that the PC can boot from the media (USB drive or DVD drive).
The USB flash drive or DVD recovery media must have enough space for the Windows image.
If the Windows images are larger than 32GB or are larger the media you're using (for example, 4.7GB DVDs),
you'll need to split the Windows image file to span across multiple DVDs.

To create a bootable USB recovery drive for a personal device, see Create a USB recovery drive.

To create the recovery media that you can include with the PC, you must have the following:

A Windows image (Install.wim). You can either use the base Windows image or a customized recovery image.
A Windows RE tools image (Winre.wim). You can either extract the base Windows RE tools image from the
Windows image, or use a customized Windows RE image.

Step 1: Open the Deployment and Imaging Tools Environment

1. Download and install the Windows Assessment and Deployment Kit (ADK).
2. On your technician PC: Click Start, and type deployment. Right-click Deployment and Imaging Tools

Environment and then select Run as administrator.

Step 2: Extract the Windows RE image from the Windows image

md c:\mount\Windows

Dism /Mount-Image /ImageFile:D:\sources\install.wim /Index:1 /MountDir:C:\mount

md C:\Images

xcopy C:\mount\Windows\System32\Recovery\winre.wim C:\Images\winre.wim /h

Dism /Unmount-Image /MountDir:C:\mount\winre /Discard

1. Mount the Windows image:

2. Copy the Windows RE image.

3. Unmount the Windows image:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/create-media-to-run-push-button-reset-features-s14.md
http://go.microsoft.com/fwlink/p/?linkid=296450
http://go.microsoft.com/fwlink/?LinkId=526803


Create bootable media

Step 3: Create a working folder for Windows RE files

copype amd64 C:\resetmedia_amd64

xcopy C:\MyImages\winre.wim C:\resetmedia_amd64\media\sources\boot.wim /h

1. Create a folder structure for Windows RE, which is based on Windows PE:

where amd64 is the architecture of the system you are creating media for.

2. Replace the default Windows PE boot image (Boot.wim) with a Windows RE tools image.

Step 4: Add the Windows image

copy D:\sources\install.wim C:\resetmedia_amd64\media\sources\install.wim

Copy the Windows image to the working folder.

where D:\sources\install.wim is either the base Windows image or a customized push-button reset
recovery image.

Step 5: Add bare metal recovery configuration scripts

copy E:\Recovery\RecoveryImage\ResetConfig.xml C:\resetmedia_amd64\media\sources\ResetConfig.xml

copy E:\Recovery\RecoveryImage\ResetPartitions-UEFI.txt 
C:\resetmedia_amd64\media\sources\ResetPartitions-UEFI.txt

If you're using a customized partition layout, add bare metal recovery configuration scripts to the working
folder, under \sources. For more info, see Bare Metal Reset/Recovery: Enable Your Users to Create Media.

To create a bootable USB flash drive:

Makewinpemedia /ufd C:\resetmedia_amd64 F:

1. Install Windows RE to a USB flash drive:

where F is the drive letter of the USB flash drive.

2. Label the USB flash drive with a descriptive name:

In File Explorer, right-click the drive, and select Rename, and type Full-PC Recovery.

To create a bootable DVD:

Makewinpemedia /iso C:\resetmedia_amd64 C:\resetmedia_amd64\RecoveryImage.iso

3. In File Explorer, navigate to C:\resetmedia_amd64 , right-click RecoveryImage.iso , and then click Burn disc

1. Create a DVD image file:

2. Insert a DVD.



Test the bare metal recovery features

Select **Yes, repartition the drives** &gt; **Just remove my files** &gt; **Reset**.

Windows resets the computer to its original state by using the recovery image.

Large-Scale Deployment

Related topics

image.

1. On a PC with an empty hard drive, insert your new recovery media.
2. Start the PC, press a key to open the firmware boot menus, and then select the appropriate boot device.
3. At the Windows RE Tools menus, select a keyboard layout, for example, US.
4. Click Troubleshoot > Reset your PC > Next

Note
If you are testing on the same PC, and you have not cleaned the hard drive, you may be prompted to select
a drive. Select Windows 10.

If you are deploying USB keys with your computers, you can create a basic copy of the Windows recovery media
on USB by using the steps above. After you have performed final customization of the image, you can boot the
computer to Windows PE, and update the install.wim image on the USB recovery media.

You can potentially save manufacturing time by appending the Windows image on the USB flash drive, rather
than recapturing the entire Windows image. If you do this, you must also update the ResetConfig.xml
configuration file element: RestoreFromIndex  to the appropriate index number. For more information, see Append
a Volume Image to an Existing Image Using DISM and ResetConfig XML Reference.

Bare Metal Reset/Recovery: Enable Your Users to Create Media

Push-Button Reset Overview

ResetConfig XML Reference

REAgentC Command-Line Options



Bare metal reset/recovery: enable your users to
create recovery media
5/11/2018 • 6 minutes to read • Edit Online

Creating configuration files

Recovery media (bare metal recovery) helps restore a Windows device to the factory state, even if the user needs
to replace the hard drive or completely wipe the drive clean.

Windows uses the built-in Windows files, including recent Windows and driver updates, plus any customizations
included in the OEM provisioning package, to create the recovery media.

If you deploy Windows using the default partition layout, your users will be able to create bare metal recovery
media by default.

If you're deploying Windows with a custom partition layout, you'll need to add a few configuration files to enable
your users to create bare metal recovery media:

A partition reset script, which is a modified DiskPart script that resets your custom partition layout.
A push-button reset configuration file (ResetConfig XML) that identifies the Windows and Windows RE
partitions.

Note: In Windows 10, version 1607, desktop applications and settings captured in siloed provisioning packages
will not be restored using this media. Regular customizations packages (.ppkg) captured using the ScanState tool
are not affected by this issue.

Partition reset script

1. In Notepad, create a configuration file that partitions the hard drive after the hard drive has been reset. This
script should be the same as the script used to create partitions on the hard drive, with the following
exceptions:

The script should not contain commands to select or clean the drive. Windows identifies the system
drive automatically. To learn more, see Identifying the System Drive later in this topic.

The script should assign letters to the system partition, the Windows partition, and the Windows RE
tools partition.

Examples:

UEFI (based on UEFI/GPT-based hard drive partitions):

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/bare-metal-resetrecovery-enable-your-users-to-create-media-and-to-recover-hard-drive-space.md


rem == ResetPartitions-UEFI.txt ==
rem == These commands are used with DiskPart to
rem    reset the drive and recreate five partitions
rem    for a UEFI/GPT-based computer.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
rem == The differences between this file and
rem    CreatePartitions-UEFI.txt
rem    are noted in parenthesis.
rem       (NOT USED: select disk 0)
rem       (NOT USED: clean)
convert gpt
rem == 1. System partition =========================
create partition efi size=100
rem    ** NOTE: For Advanced Format 4Kn drives,
rem               change this value to size = 260 ** 
format quick fs=fat32 label="System"
assign letter="S"
rem == 2. Microsoft Reserved (MSR) partition =======
create partition msr size=128
rem == 3. Windows partition ========================
rem ==    a. Create the Windows partition ==========
create partition primary 
rem ==    b. Create space for the recovery tools ===
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                    **
rem ==    c. Prepare the Windows partition ========= 
format quick fs=ntfs label="Windows"
assign letter="C"
rem === 4. Recovery tools partition ================
create partition primary
format quick fs=ntfs label="Recovery tools"
assign letter="R"
set id="de94bba4-06d1-4d40-a16a-bfd50179d6ac"
gpt attributes=0x8000000000000001
list volume

BIOS (based on BIOS/MBR-based hard drive partitions):



rem == ResetPartitions-BIOS.txt ==
rem == These commands are used with DiskPart to
rem    reset the drive and create three partitions
rem    for a BIOS/MBR-based computer.
rem    Adjust the partition sizes to fill the drive
rem    as necessary. ==
rem == The differences between this file and
rem    CreatePartitions-BIOS.txt
rem    are noted in parenthesis.
rem       (NOT USED: select disk 0 )
rem       (NOT USED: clean )
rem == 1. System partition ======================
create partition primary size=100
format quick fs=ntfs label="System"
assign letter="S"
active
rem == 2. Windows partition =====================
rem ==    a. Create the Windows partition =======
create partition primary
rem ==    b. Create space for the recovery tools  
shrink minimum=500
rem       ** NOTE: Update this size to match the
rem                size of the recovery tools 
rem                (winre.wim)                 **
rem ==    c. Prepare the Windows partition ====== 
format quick fs=ntfs label="Windows"
assign letter="C"
rem == 3. Recovery tools partition ==============
create partition primary
format quick fs=ntfs label="Recovery"
assign letter="R"
set id=27
list volume

2. Save your file, for example, E:\Recovery\RecoveryImage\ResetPartitions-UEFI.txt.

Push-button reset configuration file (ResetConfig.xml)

<?xml version="1.0" encoding="utf-8"?>
<!-- ResetConfig.xml for UEFI -->
<Reset>
    <!-- May be combined with custom scripts – insert Run Phase elements here -->
    <SystemDisk>
        <DiskpartScriptPath>ResetPartitions-UEFI.txt</DiskpartScriptPath>
        <MinSize>75000</MinSize>
        <WindowsREPartition>4</WindowsREPartition>
        <WindowsREPath>Recovery\WindowsRE</WindowsREPath>
        <OSPartition>3</OSPartition>
    </SystemDisk>
</Reset>

1. In Notepad, create a configuration file that points to your push-button reset partition script.

For information about configuring this file, see ResetConfig XML Reference.

UEFI:

BIOS:



Enable users to create media

<?xml version="1.0" encoding="utf-8"?>
<!-- ResetConfig.xml for BIOS -->
<Reset>
    <!-- May be combined with custom scripts – insert Run Phase elements here -->
    <SystemDisk>
        <DiskpartScriptPath>ResetPartitions-BIOS.txt</DiskpartScriptPath>
        <MinSize>75000</MinSize>
        <WindowsREPartition>3</WindowsREPartition>
        <WindowsREPath>Recovery\WindowsRE</WindowsREPath>
        <OSPartition>2</OSPartition>
    </SystemDisk>
</Reset>

2. Save the file using the UTF-8 file format:

Click File, and then click Save As. In the Encoding box, select UTF-8, and save this file as
E:\Recovery\RecoveryImage\ResetConfig.xml.

Users can use this option to create recovery media when needed.

Step 1: Add the configuration files to the destination computer

Copy E:\Recovery\RecoveryImage\* R:\RecoveryImage\*

1. On your destination computer, insert the USB flash drive with the configuration files.

2. Copy the configuration files to the destination computer :

where E is the drive letter of the USB flash drive and R is the drive letter of the recovery image partition.

Step 2: Test that Windows can create recovery media

1. Restart the destination computer, and complete Out-Of-Box Experience (OOBE).

2. Click Start, type create a recovery drive, and select Create a recovery drive, and click Yes at the UAC
prompt.

3. Insert a USB flash drive.

4. Select Copy the recovery partition from the PC to the recovery drive > Next > Next > Create.

Step 3: Test the recovery media

1. On a computer that has no operating system, insert your recovery media.
2. Start the computer, press a key to open the firmware boot menus, and then select the appropriate boot device.
3. At the Windows RE Tools menus, select a keyboard layout, for example, US.
4. Click Troubleshoot > Reset your PC > Next. If you're prompted to clean the drive, select Yes.
5. Select Yes, repartition the drives > Just remove my files > Reset.

Troubleshooting:

Make sure that ResetConfig.xml is saved as a UTF-8 file.
Make sure that the filename listed in the <DiskpartScriptPath> element of the ResetConfig.xml file matches
the filename in the Diskpart script.
Make sure that the Diskpart script doesn't include commands to select the drive or clean the drive (
select disk 0 , clean ).



 Identifying the system drive

Related topics

Windows identifies the system drive using the following methods:

BIOS-based computers: the BIOS-reported system drive is used.

UEFI-based computers: When Windows RE is enabled by using the reagentc /setreimage  command, Windows
writes the adaptor location path and GUID of the system disk to a UEFI variable. This step is only performed when
both the system and OS partitions are on the system drive. The variable is updated if necessary when Windows
RE gets disabled and then re-enabled.

If multiple local drives are detected, Windows identifies the system drive by searching in the following
order:

1. Windows searches for a drive with a GUID matching the value stored in firmware.

2. Windows searches for a drive with a location path matching the value stored in firmware.

3. Windows searches for a drive with an existing ESP.

If multiple drives with ESP are found, the recovery process will not proceed.

4. Windows searches for an uninitialized (raw) disk.

If multiple uninitialized disks are found, the recovery process will not proceed.

Push-Button Reset Overview

ResetConfig XML Reference

Bare metal reset/recovery: create recovery media while deploying new devices

UEFI/GPT-based hard drive partitions

BIOS/MBR-based hard drive partitions



Push-button reset frequently-asked questions (FAQ)
5/11/2018 • 4 minutes to read • Edit Online

QUESTION ANSWER

Is Window RE required for a user to run the Push-button reset
features?

Yes. To run a Push-button reset feature, you must make the
Windows RE boot image (Winre.wim) available on the local
hard drive, and register its location by using the Reagentc tool.
You can use the default Winre.wim (available at
C:\Windows\System32\Recovery), or a custom Winre.wim
image. If Windows RE is not enabled on the local hard drive,
users will have to boot Windows RE from media to access
Push-button reset features.

What is Compact OS? Compact OS is a collection of features which allow Windows
10 to be deployed on PCs with storage capacity as low as
16GB. The two primary technologies include:

When should I use Compact OS? Both the compression of system files and single-instancing of
customizations have similar characteristics as the WIMBoot
technology from Windows 8.1. While Compact OS is
supported on all hardware configurations, it is only
recommended to be used on PCs with flash-based storage.

How do I know if the OS is compressed? Compact.exe can be used to query the current compression
state.

How can I tell if a .ppkg is single-instanced? Run Fsutil.exe and specify the drive where the .ppkg is stored.
For example: fsutil.exe wim enumwims c:

Are there any formatting requirements for the ResetConfig.xml
file?

Yes. Always use UTF-8 encoding, and do not use Unicode or
ANSI. Add the following declaration in the ResetConfig.xml file,
and in other .xml files: 
<?xml version="1.0" encoding="utf-8"?> .

What types of removable media are supported for
manufacturer-created recovery media?

DVDs or USB flash drives can be used as recovery media. Note
that Push-button reset features requires all recovery resources
to be located on the same piece of media.

Is recimg.exe supported in Windows 10? No recimg.exe is deprecated in Windows 10.

Is Push-button reset supported on Windows Server ? No, this functionality is not supported on Windows Server
2016 Technical Preview.

Can custom recovery solutions (i.e. not Push-button reset)
restore the provisioning packages created using either
Windows ICD or USMT’s ScanState tool.

Provisioning packages can only be applied by Push-button
reset or deployment media created using Windows Imaging
and Configuration Designer (ICD). Application of these
packages by custom recovery solutions is not supported.

Compression of the runtime system files
Single-instancing of installed customizations with the
customizations package used by Push-button reset
features

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/pbr-faq.md


If the provisioning package created using USMT’s ScanState
tool is larger than 4GB, will the “Create a recovery drive” utility
allow customers to create USB recovery media?

Yes, the Create a recovery drive utility will split the
provisioning package into smaller pieces before copying them
to the USB flash drive. During recovery, the pieces will be
reassembled into the original provisioning package.

I’ve preinstalled OS updates on the PC, how can I ensure that
they are restored during recovery?

DISM.exe’s /Cleanup-Image command with the
/StartComponentCleanup and /ResetBase options marks all
installed OS updates as permanent. Permanent updates are
always restored during recovery.

How can I determine when the /ResetBase option was last
run?

I have files that need to be persisted/restored when Reset your
PC and Refresh your PC are performed, but I don’t want to
capture them using ScanState. Where should I put these files?

All contents under C:\Recovery\OEM are left unmodified
during Reset your PC and Refresh your PC. However, it should
be noted that these contents will also be backed up onto the
USB recovery media when using the Create a recovery drive
utility.

I can’t find the Refresh your PC option in Settings or Windows
RE anymore. Where did the feature go?

Both Refresh your PC and Reset your PC are now part of the
same user experience, under the Reset this PC option in
Settings and in Windows RE. When you launch the Reset this
PC experience, you’ll see additional options:

Should I specify the /drivers option when using ScanState to
capture customizations?

The /drivers option is not required if the provisioning package
being created is to be used for Push-button reset features.
Push-button reset features persist the drivers which are
already installed, making it unnecessary to reapply the
factory-preinstalled drivers. Note: Driver applets installed
outside of the driver INF package are captured using
ScanState’s /apps option.

How much available disk space is required in order for the
Refresh your PC feature to run successfully?

If you have converted the installed customizations into file
pointers referencing the customizations package created using
ScanState, the required disk space is: 4GB + size_of_ppkg0.2

Am I required to reduce the size of the MSR partition from
128MB to 16MB based on the updated partition layout
recommendations?

No. Windows continues to support 128MB MSR partitions.
However, on PCs with limited storage capacity, a 16MB MSR
partition is recommended to give end users as much available
storage as possible.

QUESTION ANSWER

Check the LastResetBase_UTC registry entry under the
registry path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Component Based Servicing

Keep my files – This initiates the Refresh your PC
feature.
Remove everything – This initiates the Reset your PC
feature.
Restore factory settings – On PCs upgraded from
Windows 8/8.1, this initiates factory recovery using the
existing recovery image.

Otherwise, the required disk space is: 4GB +
size_of_ppkg2



Is there any known issue with using Reset your PC to restore
PCs back to factory condition after going through factory
floor testing?

Although PBR features are not intended to be used on factory
floors, there’s no technical limitation which prevents it.
However, keep the following in mind when using Reset your
PC on the factory floor:

QUESTION ANSWER

If your factory floor testing includes activating
Windows, Reset your PC will not revert the unit back to
an non-activated state
Preinstalled RDX contents will be removed
If the unit is not reset for multiple days after factory
validation but remains powered on, the preinstalled
languages except for the one selected during OOBE will
be removed during maintenance
End users will be able to tell that a unit has been reset
during factory by looking for the PBR logs under
C:\Windows\Logs\PBR



REAgentC command-line options
5/11/2018 • 3 minutes to read • Edit Online

REAgentC Commands

OPTION ONLINE/OFFLINE DESCRIPTION

Reagentc /setreimage /path 
S:\Recovery\WindowsRE

Reagentc /setreimage /path 
T:\Recovery\WindowsRE 
/target W:\Windows

You can use the REAgentC.exe tool to configure a Windows Recovery Environment (Windows RE) boot image
and a push-button reset recovery image, and to administer recovery options and customizations. You can run the
REAgentC command on an offline Windows image or on a running Windows operating system.

Note
If you are using Windows PE 2.X, 3.X, or 4.X to configure recovery on an offline Windows 10 installation, you
must use the Winrecfg.exe file from the Recovery folder of the Windows Assessment and Deployment Kit
(Windows ADK). Winrecfg.exe supports only the offline operations that REAgentC.exe supports.

The following command-line options are available for Windows RE:

reagentc.exe <command> <arguments>

The following table describes these command-line options:

/setreimage /path
<path_to_Windows_RE_image>
[/target <path_to_offline_image>]

Both Sets the location of a Windows RE
boot image. In Windows 10,
Windows 8.1, Windows 8 ,
Windows Server 2016 Technical
Preview, Windows Server 2012 R2,
and Windows Server 2012, /path
supports UNC paths to locations
on the local disk. For example:

Use the /target option to specify
the location of the Windows image
when you apply the setting offline.
For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/reagentc-command-line-options.md


OPTION ONLINE/OFFLINE DESCRIPTION

/enable [/auditmode] [/osguid
<bcd_guid>]

Both Enables a custom Windows RE
boot image.

The /enable option runs
automatically during the specialize
configuration pass. If you don't
specify a Windows RE boot image,
the computer attempts to enable
Windows RE by using the default
Winre.wim file from the
\Windows\System32\Recovery
folder.

Reagentc /enable 
/auditmode

Reagentc /enable 
/osguid {00000000-
0000-0000-0000-
000000000000}

/auditmode:

By default, the /enable
option doesn't perform any
actions when Windows is in
audit mode. To override the
default behavior and enable
Windows RE from audit
mode, specify the
/auditmode option. For
example:

If you generalize the image
after you use the /enable
option in audit mode,
Windows RE is disabled
until you use the /enable
option again or until after
the specialize configuration
pass runs.

/osguid <bcd_guid>:

This option allows you to
enable your custom
Windows RE boot image
from Windows PE. It can
only be used after
bcdboot.exe has been run.
<bcd_guid> is the Boot
Configuration Data (BCD)
identifier of the target
Windows installation,
obtained by running 
bcdedit -enum -v .



Reagentc /disable

Reagentc /boottore

Reagentc /setosimage /path 
R:\RecoveryImage /index 1

Reagentc /setosimage /path 
R:\RecoveryImage /index 1 
/target W:\Windows

OPTION ONLINE/OFFLINE DESCRIPTION

/disable Online Disables any active Windows RE
image that is mapped to the online
image. For example:

/boottore Online Specifies that Windows RE starts
automatically the next time the
system starts. For example:

/setosimage /path
<path_to_recovery_image> /index
<image_index> [/target
<path_to_offline_image>]

Both This setting is not used in Windows
10.

Registers the location of a push-
button reset image in an online or
offline image. The recovery image
must be in the Windows image
(.wim) format.

The /index option specifies the
index number of the recovery
image to use from within a .wim
file. For example:

Use the /target option to specify
the location of the offline Windows
image. For example:



Reagentc /info

Reagentc /info /target 
W:\Windows

Reagentc /setbootshelllink 
/configfile 
F:\BootMenu\AddDiagnosticsTo
olToBootMenu.xml

Reagentc /setbootshelllink 
/target W:\Windows

OPTION ONLINE/OFFLINE DESCRIPTION

Related topics

/info [/target
<path_to_offline_image>]

Both Displays the current status of
Windows RE and any available
recovery image on an online or
offline image. For example, the
following command returns the
status of the online operating
system:

Use the /target option to obtain
configuration information about an
offline image. For example:

/setbootshelllink [/configfile
<path_to_BootShellXML>] [/target
<path_to_offline_image>]

Both Registers the link to a custom tool
that appears in the Windows boot
options menu. For example:

The BootShellXML file is an.xml file
that contains the <BootShell>
element and the <Name> and
<Description> attributes that you
want to appear in the link. For
more information, see Customize
Windows RE.

Use the /target option to specify
the location of the offline Windows
image. If this argument is not used,
the running operating system is
used. For example:

Windows RE Troubleshooting Features



ResetConfig XML reference
5/11/2018 • 3 minutes to read • Edit Online

Reset

Run

ELEMENT DESCRIPTION

This reference describes all XML elements that are used to author the ResetConfig.xml file, used to configure
Windows Recovery Environment push-button reset features.

The Reset  XML element can contain the elements: Run  and SystemDisk .

The Run  XML element is used to add custom scripts to push-button reset features.

You can specify up to four Run  elements in a single ResetConfig.xml file. Each Run  element must contain a
different [ExtPoint] value for the Phase  attribute.

The following table describes the valid elements that can be added to the Run  element:

Run Phase="[ExtPoint]"" Each Run  element defines the extensibility point to be
used, the script that is executed at that extensibility
point, and estimated time duration in minutes.

The Phase  attribute is required. It accepts only the
following values for [ExtPoint]:

BasicReset_BeforeImageApply . Runs the
specified program at extensibility point A.

BasicReset_AfterImageApply . Runs the
specified program at extensibility point B

FactoryReset_AfterDiskFormat . Runs the
specified program at extensibility point C

FactoryReset_AfterImageApply . Runs the
specified program at extensibility point D

You can specify up to four Run  sections in a single
ResetConfig.xml file. However, each Run  section must
contain a different value for the phase attribute.

Path Specifies the location of the script for a particular Run

section.

The path must be the relative path of the script from the
folder which contains ResetConfig.xml (usually this is
C:\Recovery\OEM).

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/resetconfig-xml-reference-s14.md


ELEMENT DESCRIPTION

SystemDisk

ELEMENT DESCRIPTION

MinSize

Duration Specifies the estimated time, in minutes, that you expect
the custom script to run. This estimate is used to display
progress information in the GUI.

The duration must be an integer and must be between 1
and 5.

Param Specifies the command-line parameters to use when you
run the custom script or executable file. The value is
treated as a string, and can contain multiple parameters.

Param  does not support empty elements. If your script
does not require parameters, then do not include this
element. For examples, see Using ResetConfig.xml later in
this topic.

The SystemDisk  element customizes bare metal recovery functionality. For more information, see Create Media
to Run Push-Button Reset Features.

You can specify one SystemDisk  section. Here's the required and optional elements:

Required. Specifies the minimum required size for the
primary hard drive, in megabytes.

Bare metal recovery won't proceed if the system disk
doesn't meet this size requirement.

DiskpartScriptPath Required. Path to Diskpart script relative to
C:\Recovery\OEM. The script should assume that all
existing partitions have been deleted, and the system
disk has focus in Diskpart.

For example, if the recovery scripts are located at 
C:\Recovery\OEM\Scripts\RecreatePartitions.dps ,

use the value \Scripts\RecreatePartitions.dps .

OSPartition Required. The partition to which the OS should be
restored. The ESP or active partition must be on the
same disk as the OS.

WindowsREPartition Required. Specifies the partition where the Windows RE
boot image is installed.

WindowsREPath Required. Specifies the folder path where the Winre.wim
boot image is copied and staged, relative to the root of
the partition specified in the WindowsREPartition

element.



 

ELEMENT DESCRIPTION

Using ResetConfig.xml

Example

RestoreFromIndex Optional. The index of the image within install.wim to be
applied during bare metal recovery. This element is
optional and is only needed on manufacturer-created
recovery media

Compact Optional. Specifies whether the recovery image should
be applied with per-file compression enabled. This
element is optional and is only needed on manufacturer-
created recovery media.

Compact  accepts the following values:

True : Files applied from the image are compressed
individually.
False  (default value): Compression is not used.

RecoveryImagePartition This setting is deprecated in Windows 10.

RecoveryImagePath This setting is deprecated in Windows 10.

RecoveryImageIndex This setting is deprecated in Windows 10.

WIMBoot This setting is deprecated in Windows 10.

If you use a text editor to author your .xml files, you must save the document with an .xml file name extension,
and use UTF-8 encoding. You must not use ANSI coding.

These files should be placed in the folder C:\Recovery\OEM, and will automatically be detected by Push-button
reset features.

This is a code example for the ResetConfig.xml file.



<?xml version="1.0" encoding="utf-8"?>
<Reset>
 <Run Phase="BasicReset_BeforeImageApply">
   <Path>Fabrikam\CopyFiles.cmd</Path>
   <Duration>2</Duration>
 </Run>
 <Run Phase="BasicReset_AfterImageApply">
   <Path>Fabrikam\InstallDrivers.cmd</Path>
   <Param>/allDrivers</Param>
   <Duration>2</Duration>
 </Run>
 <Run Phase="FactoryReset_AfterDiskFormat">
   <Path>Fabrikam\FixPartitions.exe</Path>
   <Duration>2</Duration>
 </Run>
 <Run Phase="FactoryReset_AfterImageApply">
   <Path>Fabrikam\InstallDrivers.cmd</Path>
   <Param>/allDrivers</Param>
   <Duration>2</Duration>
 </Run>
 <SystemDisk>
   <MinSize>75000</MinSize>
   <DiskpartScriptPath>Fabrikam\CreatePartition.txt </DiskpartScriptPath>
   <OSPartition>4</OSPartition>
   <RestoreFromIndex>2</RestoreFromIndex>
   <WindowsREPartition>1</WindowsREPartition>
   <WindowsREPath>Recovery\WindowsRE</WindowsREPath>
   <Compact>False</Compact>
 </SystemDisk>
</Reset>

Related topics
Push-Button Reset Overview

Create Media to Run Push-Button Reset Features



WinREConfig XML reference
4/30/2018 • 2 minutes to read • Edit Online

Example WinREConfig.xml file
<?xml version="1.0" encoding="utf-8"?>
<!-- WinREConfig.xml -->
<Recovery>
   <RecoveryTools>
      <RelativeFilePath>OEMDiagnostics.exe</RelativeFilePath>
      <CommandLineParam>/param1 /param2</CommandLineParam>
      <RequireLogonOnReset></RequireLogonOnReset>
   </RecoveryTools>
</Recovery>

Description of available elements
ELEMENT DESCRIPTION

RelativeFilePath The relative path from the \Tools subfolder of the folder in
which Recenv.exe resides. For example, if Recenv.exe is located
in X:\WinRE, the path designated in this field is relative to
X:\WinRE\tools.

CommandLineParam Optional parameters that are used when running the custom
tool.

RequireLogonOnReset When present, "Reset this PC" -> "Remove everything"
prompts users to choose an account and enter a password.

Create WinREConfig.xml

This reference describes all xml elements that are used to author the winreconfig.xml file, which enables you to
define custom support and diagnostic tools within WinRE.

1. Create a tools subdirectory in your working Windows RE directory. For example, in Sources\Recovery\Tools .
2. Create an .xml file called winreconfig.xml.

<?xml version="1.0" encoding="utf-8"?>
<!-- WinREConfig.xml -->
<Recovery>
<RecoveryTools>
    <RelativeFilePath></RelativeFilePath>
    <CommandLineParam></CommandLineParam>
    <RequireLogonOnReset></RequireLogonOnReset>
</RecoveryTools>
</Recovery>

3. Copy the following, and paste it into winreconfig.xml:

4. Configure the elements in the xml file.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winreconfig-xml-reference.md


5. Save the file in your working Windows RE directory under Sources\Recovery\Tools .



Windows RE troubleshooting features
5/11/2018 • 4 minutes to read • Edit Online

Recovering from startup failures

Advanced troubleshooting utilities in Windows RE

Automatic RepairAutomatic Repair

System Image RecoverySystem Image Recovery

If a Windows device can't start, it automatically fails over to the Windows Recovery Environment (Windows RE).
The Automatic Repair tool in Windows RE automates the diagnosis and repair of an unbootable Windows
installation. Windows RE is also a starting point for several tools for manual system recovery. This topic describes
the automatic failover behavior, manual diagnosis, and repair process in Windows RE.

If the system detects a boot failure on a computer running Windows, the system automatically fails over into the
on-disk Windows RE tool. At startup, the Windows loader sets a status flag to indicate that the boot process has
started. Windows typically clears this flag before the Windows logon screen appears. However, if the boot attempt
fails, Windows doesn't clear the flag. The next time that the computer starts, the loader detects the flag and
assumes that a boot failure occurred. When this occurs, the loader starts Windows RE instead of Windows.

Note
Boot failure detection relies on boot completion and not whether an error occurred in Windows 8. For example, a
false positive may occur if power is lost during the boot process, and your user starts Windows RE even though
the Windows installation is bootable.

Because the failover mechanism relies on the Windows boot manager and the Windows boot loader, some
failures can make Windows RE inaccessible. In the following scenarios, your user must use the bootable Windows
RE media to recover the computer :

Corrupt disk metadata exists in the master boot record (MBR), partition table, or boot sector of a Windows
RE partition.

The boot manager is missing or corrupted.

The Boot Configuration Data (BCD) store is missing or corrupted.

If the boot loader can't read or write to the boot status flag, Windows won't be able to automatically fail over into
Windows RE. However, your user can still manually start the on-disk Windows RE tool through the Boot Options
menu.

Your user can manually start several system recovery tools after starting the on-disk Windows RE tool from the
recovery media, or from the Boot Options menu. With the exception of Automatic Repair, the Windows
Assessment and Deployment Kit (Windows ADK) doesn't include these tools. Push-button reset is the
recommended recovery solution in Windows.

The Automatic Repair tool automates common diagnostic and repair tasks for non-bootable operating system
installations. Automatic Repair starts if the computer fails over into Windows RE because of a detected boot
failure. If automatic failover to an on-disk instance of Windows RE is not available, your users can also start
Automatic Repair as a manual recovery tool from a Windows RE CD or DVD.

Use System Image Recovery for file backup and system image backup. System Image Recovery requires an
external storage device. For file backup, your users can let Windows choose what to back up, or they can select

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-re-troubleshooting-features.md


Command PromptCommand Prompt

Custom Support and Recovery ToolsCustom Support and Recovery Tools

Related topics

individual folders, libraries, and drives. By default, backups are created on a regular schedule. Your users can
change the schedule and manually create a backup at any time. After your user sets up System Image Recovery,
Windows keeps track of the new or modified files and folders, adding them to the backup.

For system image backup, your users can create a system image or an exact image of a drive. A system image
includes Windows and system settings, programs, and files. Your users can use a system image to restore the
contents of their computer if the hard disk drive or computer stops working.

If your users restore their computer from a system image, the restoration is a complete restoration. Your users
can't choose individual items to restore. All of the current programs, system settings, and files are replaced.

If you set up a scheduled file backup, you can include a system image with only the drives Windows requires to
run. You can manually create a system image if you want to include additional data drives.

Note
Previous system image versions are copies of the files and folders saved automatically by Windows as part of the
system protection process. Depending on the type of file or folder, your users can open a previous version, save
the version to a different location, or restore a previous version. Your users can use these previous versions to
restore accidentally modified, deleted, or damaged files or folders. However, because Windows replaces these files
with new versions the files won't be available if the drive fails.

All Windows PE command-line tools are available from a command prompt window. For example, you can use
Registry Editor (Regedit.exe), which includes command-line switches, to modify the Windows registry. Or, you can
use the Chkdisk.exe tool to troubleshoot and fix volumes. For more information, see Registry Editor, Chkdsk, and
Troubleshooting Tools and Strategies.

Computer manufacturers can provide custom support and recovery tools. These tools will vary by manufacturer.
For more information, see the manufacturer-provided documentation.

BCDboot Command-Line Options

REAgentC Command-Line Options

http://go.microsoft.com/fwlink/?LinkId=207693
http://go.microsoft.com/fwlink/?LinkId=207694
http://go.microsoft.com/fwlink/?LinkId=207695


Deployment tools reference
5/16/2018 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

DISM - Deployment Image Servicing and Management Reference information for DISM, including command-line
options

Windows PE (WinPE) Windows PE reference

Windows Setup Windows Setup reference, including command-line options

Command-Line Tools BCDEdit, Bootsect, and Oscdimg command-line reference

This section covers information about Windows deployment tools and environments.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-deployment-tools-reference.md


DISM - Deployment Image Servicing and
Management
4/16/2018 • 2 minutes to read • Edit Online

In This Section

Related topics

Deployment Image Servicing and Management (DISM) is a command-line tool that is used to mount and
service Windows images before deployment. You can use DISM image management commands to mount and
get information about Windows image (.wim) files or virtual hard disks (VHD). You can also use DISM to
capture, split, and otherwise manage .wim files.

You can use DISM to install, uninstall, configure, and update Windows features, packages, drivers, and
international settings in a .wim file or VHD using the DISM servicing commands.

DISM commands are used on offline images, but subsets of the DISM commands are also available for
servicing a running operating system.

DISM is installed with Windows, and it is also distributed in the Windows Assessment and Deployment Kit
(Windows ADK). DISM replaces several deployment tools, including PEimg, Intlcfg, ImageX, and Package
Manager.

DISM overview Describes how you can use DISM, where to find DISM,
and what's new in DISM.

DISM How-to Topics (Deployment Image Servicing and
Management)

Provides how-to instructions on using DISM.

DISM Reference (Deployment Image Servicing and
Management)

Provides reference information for DISM, including
command-line options, best practices, and supported
platforms.

Windows Setup Technical Reference

Device Drivers and Deployment Overview

Language Packs

Understanding Servicing Strategies

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism---deployment-image-servicing-and-management-technical-reference-for-windows.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-how-to-topics--deployment-image-servicing-and-management


DISM Overview
4/16/2018 • 4 minutes to read • Edit Online

What's New in DISM

What is DISM?

Image RequirementsImage Requirements

Common Servicing and Management ScenariosCommon Servicing and Management Scenarios

DISM in Windows 10 supports new features:

Full Flash Update (.FFU): DISM supports the Full Flash Update (.FFU) format, which captures an
applies an entire drive, including partition information. This can make deployment faster and easier. See
Windows full flash update images for more info.

Capabilities: This new Windows package type allows you to request services like .NET or languages
without specifying the version. Use DISM to search multiple sources like Windows Update or your
corporate servers to find and install the latest version. For more info, see Features on Demand.

Compress operating system and provisioning packages: Save space on a Windows image by
running the operating system and other system files from compressed files. This replaces the WIMBoot
features from Windows 8.1. See /Apply-Image /Compact  and /Apply-CustomDataImage  in DISM Image
Management Command-Line Options for more info.

Deployment Image Servicing and Management (DISM.exe) is a command-line tool that can be used to service
and prepare Windows images, including those used for Windows PE, Windows Recovery Environment
(Windows RE) and Windows Setup. DISM can be used to service a Windows image (.wim) or a virtual hard disk
(.vhd or .vhdx).

DISM comes built into Windows and is available through the command line or from Windows PowerShell. To
learn more about using DISM with PowerShell, see Deployment Imaging Servicing Management (DISM)
Cmdlets in Windows PowerShell.

DISM can be used to mount and service a Windows image from a .wim file, .ffu file, .vhd file, or a .vhdx file and
also to update a running operating system. It can be used with older Windows image files (.wim files). However,
it cannot be used with Windows images that are more recent than the installed version of DISM.

For a complete technical description of WIM, see the Windows Imaging File Format (WIM) white paper.

DISM can be used to service Windows images starting with Windows 7, Windows Server 2008 R2, and their
associated versions of WinPE and WinRE. The commands and options that are available for servicing an image
depend on which Windows operating system you are servicing, and whether the image is offline or a currently
running operating system.

For a list of the supported platforms and architecture types, see DISM Supported Platforms.

Image servicing and management solutions fall into two main categories:

Managing the data or information included in the Windows image, such as enumerating or taking an
inventory of the components, updates, drivers, or applications that are contained in an image, capturing or
splitting an image, appending or deleting images within a .wim file, or mounting an image.
Servicing the image itself, including adding or removing driver packages and drivers, modifying language
settings, enabling or disabling Windows features, and upgrading to a higher edition of Windows.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/what-is-dism.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-dism-in-windows-powershell-s14
http://go.microsoft.com/fwlink/?LinkId=92227


LimitationsLimitations

DISM.exe /image:"c:\images\Image1" /Add-Driver /ForceUnsigned /DriverName:"C:\Drivers\1.inf" 
/DriverName:"C:\Drivers\2.inf" /DriverName:"C:\Drivers\3.inf"

Where is DISM?

DISM in Windows 10DISM in Windows 10

DISM in the ADKDISM in the ADK

Related topics

Version compatibility. DISM can be used with target images of older Windows operating systems, but not
with target images of operating systems that are more recent than the installed version of DISM. For example,
DISM from Windows 10, version 1511 can service Windows 10, version 1511 and version 1507 but not version
1607. To learn more, see DISM Supported Platforms.

Remote installation. Installing packages to a remote computer over a network is not supported.

Answer files. When you specify an answer file (Unattend.xml) for an image, only the settings specified in the 
offlineServicing  configuration pass are applied. All other settings in the answer file are ignored. You can only

specify one answer file at a time. For more information, see DISM Unattended Servicing Command-Line
Options

Use an answer file to ensure package dependencies. Some packages require other packages to be installed
first. Because of this dependency requirement, you should use an answer file if you are installing multiple
packages. By applying an answer file by using DISM, multiple packages can be installed in the correct order. This
is the preferred method for installing multiple packages.

Package installation order. Packages are installed in the order that they are listed in the command line. In the
following example, 1.inf, 2.inf, and 3.inf will be installed in the order in which they are listed in the command line.

Multiple servicing commands are not supported. You can specify multiple drivers (1.inf, 2.inf) or packages,
but you cannot specify multiple commands (such as /Add-Driver /Remove-Driver or /Add-Driver /Add-
Package) on the same command line.

Wildcards. Wildcards are not supported in DISM command lines.

Deployment Image Servicing and Management (DISM.exe) is a command-line tool that can be used to service a
Windows image or to prepare a Windows Preinstallation Environment (Windows PE) image. For more
information about DISM see What is DISM?

DISM comes with Windows 10, in the c:\windows\system32  folder, but you can run DISM in the command
prompt from any location. You have to be running from a Command Prompt as administrator to use use DISM.

If you are running an older version of Windows, or you need a different version of DISM on your PC, download
and install the Windows Assessment and Deployment Kit (Windows ADK), see Windows Assessment and
Deployment Kit (Windows ADK) Technical Reference.

DISM appears in the Windows ADK here: 
C:\Program Files (x86)\Windows Kits\<version>\Assessment and Deployment Kit\Deployment Tools\<arch>\DISM

where <version> can be 8.0, 8.1, or 10, and <arch> can be x86 or amd64.

If you need to copy and ADK version of DISM to a PC that does not have the ADK, see Copy DISM to another
computer.

DISM Reference (Deployment Image Servicing and Management)

http://go.microsoft.com/fwlink/p/?LinkId=526740


Deployment Image Servicing and Management (DISM) Command-Line Options

Device Drivers and Deployment Overview

Language Packs

Understanding Servicing Strategies



Use DISM in Windows PowerShell
5/11/2018 • 2 minutes to read • Edit Online

DISM command to DISM cmdlet mapping table

DISM.EXE COMMAND DISM CMDLET

Dism.exe /Add-Capability Add-WindowsCapability

Dism.exe /Append-Image Add-WindowsImage

Dism.exe /Apply-Image Expand-WindowsImage

Dism.exe /Capture-Image New-WindowsImage

Dism.exe /Cleanup-MountPoints Clear-WindowsCorruptMountPoint

Dism.exe /Commit-Image Save-WindowsImage

Dism.exe /Export-Image Export-WindowsImage

Dism.exe /Get-Capabilities Get-WindowsCapability

Dism.exe /Get-ImageInfo Get-WindowsImage

Dism.exe /Get-MountedImageInfo Get-WindowsImage -Mounted

Dism.exe /Get-WimBootEntry Get-WIMBootEntry

Dism.exe /List-Image Get-WindowsImageContent

Dism.exe /Mount-Image Mount-WindowsImage

Dism.exe /Split-Image Split-WindowsImage

Dism.exe /Remove-Capability Remove-WindowsCapability

Dism.exe /Remove-Image Remove-WindowsImage

Dism.exe /Remount-Image Mount-WindowsImage -Remount

The Deployment Image Servicing and Management (DISM) cmdlets can be used to perform the same functions as
the DISM.exe command-line tool. In many cases, the DISM cmdlet names are similar to their corresponding
Dism.exe options and the same arguments can be used. See DISM PowerShell for detailed information about the
PowerShell cmdlets.

DISM cmdlet names don't always correspond directly to Dism.exe options. Here is a table that maps DISM
commands to their corresponding PowerShell cmdlets.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/use-dism-in-windows-powershell-s14.md
https://docs.microsoft.com/powershell/module/dism/?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/add-windowscapability?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/add-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/expand-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/new-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/clear-windowscorruptmountpoint?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/save-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/export-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowscapability?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-wimbootentry?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsimagecontent?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/mount-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/split-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/remove-windowscapability?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/remove-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/mount-windowsimage?view=win10-ps


Dism.exe /Unmount-Image Dismount-WindowsImage

Dism.exe /Update-WimBootEntry Update-WIMBootEntry

Dism.exe /Image:<...> /Add-Driver Add-WindowsDriver

Dism.exe /Image:<...> /Add-Package Add-WindowsPackage

Dism.exe /Image:<...> /Add-ProvisionedAppxPackage Add-AppxProvisionedPackage

Dism.exe /Image:<...> /Cleanup-Image /CheckHealth Repair-WindowsImage -CheckHealth

Dism.exe /Image:<...> /Cleanup-Image /ScanHealth Repair-WindowsImage -ScanHealth

Dism.exe /Image:<...> /Cleanup-Image /RestoreHealth Repair-WindowsImage -RestoreHealth

Dism.exe /Image:<...> /Disable-Feature Disable-WindowsOptionalFeature

Dism.exe /Image:<...> /Enable-Feature Enable-WindowsOptionalFeature

Dism.exe /Image:<...> /Export-Driver Export-WindowsDriver

Dism.exe /Image:<...> /Get-CurrentEdition Get-WindowsEdition -Current

Dism.exe /Image:<...> /Get-Driverinfo Get-WindowsDriver -Driver

Dism.exe /Image:<...> /Get-Drivers Get-WindowsDriver

Dism.exe /Image:<...> /Get-Featureinfo Get-WindowsOptionalFeature -FeatureName

Dism.exe /Image:<...> /Get-Features Get-WindowsOptionalFeature

Dism.exe /Image:<...> /Get-Packageinfo Get-WindowsPackage -PackagePath

Dism.exe /Image:<...> /Get-Packages Get-WindowsPackage

Dism.exe /Image:<...> /Get-ProvisionedAppxPackages Get-AppxProvisionedPackage

Dism.exe /Image:<...> /Get-TargetEditions Get-WindowsEdition -Target

Dism.exe /Image:<...> /Optimize-Image Optimize-WindowsImage

Dism.exe /Image:<...> /Remove-Driver Remove-WindowsDriver

Dism.exe /Image:<...> /Remove-Package Remove-WindowsPackage

Dism.exe /Image:<...> /Remove-ProvisionedAppxPackage Remove-AppxProvisionedPackage

Dism.exe /Image:<...> /Set-Edition Set-WindowsEdition

DISM.EXE COMMAND DISM CMDLET

https://docs.microsoft.com/en-us/powershell/module/dism/dismount-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/update-wimbootentry?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/add-windowsdriver?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/add-windowspackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/Add-AppxProvisionedPackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/repair-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/repair-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/repair-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/disable-windowsoptionalfeature?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/enable-windowsoptionalfeature?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/export-windowsdriver?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsedition?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsdriver?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsdriver?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsoptionalfeature?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsoptionalfeature?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowspackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowspackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-appxprovisionedpackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/get-windowsedition?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/optimize-windowsimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/remove-windowsdriver?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/remove-windowspackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/remove-appxprovisionedpackage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/set-windowsedition?view=win10-ps


Dism.exe /Image:<...> /Set-ProductKey Set-WindowsProductKey

Dism.exe /Image:<...> /Set-ProvisionedAppxDataFile Set-AppXProvisionedDataFile

DISM.EXE COMMAND DISM CMDLET

Use DISM Powershell modules in WinPE

Use DISM PowerShell modules in previous versions of Windows

Related topics

You can add Powershell support to WinPE. Visit Adding PowerShell support to Windows PE to learn how.

The DISM PowerShell module is included in Windows 10 and Windows Server 2016. On other supported
operating systems, you can install the Windows Assessment and Deployment Kit (ADK) which includes the DISM
PowerShell module. See the previous version of this topic for more information.

DISM - Deployment Image Servicing and Management Technical Reference for Windows

DISM Supported Platforms

https://docs.microsoft.com/en-us/powershell/module/dism/set-windowsproductkey?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/dism/set-appxprovisioneddatafile?view=win10-ps
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh825010(v%3dwin.10)#install-the-windows-assessment-and-deployment-kit-optional


Windows 10 DISM Command-Line Options
5/11/2018 • 2 minutes to read • Edit Online

In This Section

DISM Provisioning Package (.ppkg) Command-Line Options

Deployment Image Servicing and Management (DISM.exe) mounts a Windows image (.wim) file or virtual hard
disk (.vhd or .vhdx) for servicing. You can also use DISM to install, uninstall, configure, and update the features
and packages in offline Windows images and offline Windows Preinstallation Environment (WinPE) images. For
more information about common DISM scenarios, see What is DISM?.

In addition to the command-line tool, DISM is available by using PowerShell. For more information, see
Deployment Imaging Servicing Management (DISM) Cmdlets in Windows PowerShell.

DISM replaces tools including PEImg, Intlcfg, Package Manager, and ImageX.

DISM Image Management Command-Line Options Image management commands such as capturing,
applying, and mounting a Windows image.

DISM Global Options for Command-Line Syntax Basic command-line syntax and universal options for
servicing functions.

DISM Operating System Package Servicing Command-
Line Options

Package-servicing commands for adding, removing, and
enumerating .cab and .msu packages and enabling,
disabling, and enumerating features.

Use Windows provisioning packages (.ppkg)

DISM Capabilities Package Servicing Command-Line
Options

Capabilities servicing commands for adding languages,
.NET, and other Windows features.

DISM App Package (.appx or .appxbundle) Servicing
Command-Line Options

Servicing commands for adding, removing, and
enumerating app packages.

DISM Application Servicing Command-Line Options Servicing commands that can be used to check the
applicability of Windows Installer application patches
(.msp files) and to query your offline image for
information about installed MSI applications and
application patches (.msp files).

DISM Default Application Association Servicing
Command-Line Options

Servicing commands for importing, exporting, removing,
and enumerating the settings that specify which
application opens a file based on file extension or
protocol

DISM Languages and International Servicing Command-
Line Options

International-servicing commands for adjusting
international settings and configurations.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deployment-image-servicing-and-management--dism--command-line-options.md
http://go.microsoft.com/fwlink/?LinkId=239926


Related topics

DISM Driver Servicing Command-Line Options Driver-specific servicing commands for adding,
removing, and enumerating driver .inf files.

DISM Unattended Servicing Command-Line Options Servicing commands that can be used to apply an
Unattend.xml file.

DISM Windows PE Servicing Command-Line Options WinPE–specific servicing commands for preparing a
WinPE image.

DISM Windows Edition-Servicing Command-Line
Options

Edition-servicing commands for changing the edition of
your Windows image.

DISM Operating System Uninstall Command-Line
Options

Commands for working with operating system
uninstalls.

DISM Image Management Command-Line Options

DISM How-to Topics (Deployment Image Servicing and Management)

What is DISM?

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-how-to-topics--deployment-image-servicing-and-management


DISM Image Management Command-Line
Options
4/30/2018 • 20 minutes to read • Edit Online

/Append-Image

IMPORTANTIMPORTANT

DISM.exe /Append-Image /ImageFile:<path_to_image_file> /CaptureDir:<source_directory> /Name:
<image_name> [/Description:<image_description>] [/ConfigFile:<configurtion_file.ini>] [/Bootable] 
/WIMBoot [/CheckIntegrity] [/Verify] [/NoRpFix]

PARAMETER DESCRIPTION

/WIMBoot Use /WIMBoot to append the image with Windows
image file boot (WIMBoot) configuration. This only
applies to Windows 8.1 images that have been captured
or exported as a WIMBoot file. This feature isn't
supported in Windows 10.

Deployment Image Servicing and Management (DISM.exe) mounts a Windows image (.wim) file or
virtual hard disk (.vhd or .vhdx) for servicing. You can also use the DISM image management command to
list the image index numbers, to verify the architecture for the image that you are mounting, append an
image, apply an image, capture an image and delete an image. After you update the image, you must
unmount it and either commit or discard the changes that you have made.

This topic discusses DISM commands related to image management. To see other command-line options,
see Deployment Image Servicing and Management (DISM) Command-Line Options. For more
information about common DISM scenarios, see What is DISM?.

In addition to the command-line tool, DISM is available by using Windows PowerShell. For more
information, see Deployment Imaging Servicing Management (DISM) Cmdlets in Windows PowerShell.

The following commands can be used to mount, unmount, capture, append, and delete and query .wim,
.vhd and .vhdx files. These options are not case sensitive.

Adds an additional image to a .wim file. /Append-Image compares new files to the resources in the
existing .wim file specified by the /ImageFile argument, and stores only a single copy of each unique file
so that each file is only captured once. The .wim file can have only one assigned compression type.
Therefore, you can only append files with the same compression type.

This command-line option does not apply to virtual hard disk (VHD) files.

Ensure that you have enough disk space for the /Append-Image option to run. If you run out of disk space while
the image is being appended, you might corrupt the .wim file.

Syntax:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-image-management-command-line-options-s14.md
http://go.microsoft.com/fwlink/?LinkId=239926


/ConfigFile specifies the location of a configuration file that lists
exclusions for image capture and compress commands.
For more information, see DISM Configuration List and
WimScript.ini Files.

/Bootable Marks a volume image as being a bootable image. This
argument is available only for Windows Preinstallation
Environment (WinPE) images. Only one volume image
can be marked as bootable in a .wim file.

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/Verify Checks for errors and file duplication.

/NoRpFix Disables the reparse point tag fix. A reparse point is a file
that contains a link to another file on the file system. If
/NoRpFix is not specified, reparse points that resolve to
paths outside of the value specified by /ImageFile will not
be captured.

PARAMETER DESCRIPTION

Dism /Append-Image /ImageFile:install.wim /CaptureDir:D:\ /Name:Drive-D

/Apply-FFU

/Apply-Ffu /ImageFile:<path_to_image_file> /ApplyDrive:<physical_drive_path> [/SFUFile:<pattern>]

PARAMETER DESCRIPTION

/ImageFile The path and name of the FFU image file that will be
applied

/ApplyDrive The path to the phyisical drive that will be imaged

/SFUfile<pattern> Optional, for split FFUs that are captured with no
compression. Use /SFUFile to reference split FFU files
(SFUs). Pattern is the naming pattern and location of split
files. Use a wildcard character when specifying the naming
pattern. For example, "E:\image\install*.sfu" will apply all
of the split files in the E:\image directory named
install1.sfu, install2.sfu, and so on.

Example:

For FFU, this command applies a Full Flash Utility (FFU) or split FFU (SFU) to a specified physical drive.

Syntax:

Example:



DISM.exe /Apply-Ffu /ImageFile:flash.ffu /ApplyDrive:\\.\PhysicalDrive0

/Apply-Image

DISM.exe /Apply-Image /ImageFile:<path_to_image_file> [/SWMFile:<pattern>] /ApplyDir:
<target_directory> {/Index:< image_index> | /Name:<image_name>} [/CheckIntegrity] [/Verify] [/NoRpFix] 
[/ConfirmTrustedFile] [/WIMBoot (deprecated)] [/Compact] [/EA]

DISM.exe /Apply-Image /ImageFile:<path_to_image_file> /ApplyDrive:<target_drive> [/SFUFile:<pattern>] 
/index:1

PARAMETER DESCRIPTION

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/Verify Checks for errors and file duplication.

/NoRpFix Disables the reparse point tag fix. A reparse point is a file
that contains a link to another file on the file system. If
/NoRpFix is not specified, reparse points that resolve to
paths outside the value specified by /ImageFile will not be
captured.

/SWMFile Enables you to reference split .wim files (SWMs). Pattern
is the naming pattern and location of split files. Use a
wildcard character when specifying the naming pattern.
For example, "E:\image\install*.swm" will apply all of the
split files in the E:\image directory named install1.swm,
install2.swm, and so on.

For WIM, this command applies a Windows image file (.wim) or a split Windows image (.swm) files to a
specified partition. Beginning with Windows 10, version 1607, DISM can apply and capture extended
attributes (EA).

For FFU, this command applies a full flash update (.ffu) image to a specified drive. It doesn’t support
applying an image from a virtual hard disk (.vhdx) file, though you can use this command to apply a full
image to a VHD. FFU applies to Windows 10 only.

This option doesn’t support applying an image from a virtual hard disk (VHD), though you can use this
command to apply images to a .vhdx file that's been attached, partitioned, and formatted.

If Dism /Apply-Image fails with error code 5 and you are using Windows 10 version 1607 with Windows
Subsystem for Linux (WSL) feature, see KB article 319598.

Arguments for WIM:

Arguments for FFU

https://support.microsoft.com/kb/3179598


/ConfirmTrustedFile Validates the image for Trusted Desktop on a Windows
10, Windows 8.1, or Windows 8. This option can only be
run on a computer running at least WinPE 4.0. When
using /Apply-Image with the /ConfirmTrustedFile option
in WinPE, always specify the /ScratchDir option pointed to
a physical media location. This ensures that short file
names will always be available. See DISM Global Options
for Command-Line Syntax for more information about
the default behavior of the /ScratchDir option. Beginning
with Windows 10, version 1607, you can use /EA to apply
extended attributes.

/WIMBoot Use /WIMBoot to append the image with Windows
image file boot (WIMBoot) configuration. This only
applies to Windows 8.1 images that have been captured
or exported as a WIMBoot file. This feature isn't
supported in Windows 10.

/Compact Applies an image in compact mode, saving drive space.
Replaces WIMBoot. For Windows 10 for desktop editions
(Home, Pro, Enterprise, and Education) only. 

Note: If you're applying an image in compact mode with
the /ScratchDir option, make sure your ScratchDir folder
is not on a FAT32-formatted partition. Using a FAT32
partition could result in unexpected reboots during
OOBE.

/EA New in Windows 10, version 1607. Applies extended
attributes.

/ApplyDrive Specifies the logical drive, using the DeviceID. to get the
device ID from the command line, type "wmic diskdrive
list brief". Note: a VHD may appear with the name
“PhysicalDrive” in the description, for example,
.\PhysicalDrive2.

/SFUFile Use /SFUFile to reference split FFU files (SFUs). Pattern is
the naming pattern and location of split files.

PARAMETER DESCRIPTION

Dism /apply-image /imagefile:install.wim /index:1 /ApplyDir:D:\

Dism /apply-image /imagefile:install.swm /swmfile:install.swm /index:1 /applydir:D:

DISM.exe /Apply-image /ImageFile:flash.ffu /ApplyDrive:\\.\PhysicalDrive0 /index:1

DISM.exe /Apply-image /ImageFile:flash.sfu /SFUFile:flash*.sfu /ApplyDrive:\\.\PhysicalDrive0 /index:1

/Capture-CustomImage

Examples:



  

Dism /Capture-CustomImage /CaptureDir:<source_directory> [/ConfigFile:<configuration_file.ini>] 
[/CheckIntegrity] [/Verify] [/ConfirmTrustedFile]

PARAMETER DESCRIPTION

/CaptureDir Specifies the directory to which the image was applied
and customized.

/ConfigFile Specifies the location of a configuration file that lists
exclusions for image capture and compress commands.
For more information, see DISM Configuration List and
WimScript.ini Files.

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/Verify Checks for errors and file duplication.

[/ConfirmTrustedFile Validates the image for Trusted Desktop on a Windows
10, Windows 8.1, or Windows 8. This option can only be
run on a computer running at least WinPE 4.0.

Dism /Capture-CustomImage /CaptureDir:D:\

/Capture-FFU

Captures the incremental file changes based on the specific install.wim file to a new file, custom.wim for a
WIMBoot image. You can’t capture an empty directory. The captured files are converted to pointer files.
The custom.wim is placed in the same folder next to the install.wim.

Important

/Capture-CustomImage only captures the customization files. It can’t be used to capture installation
files into a new WIM.
Keep the install.wim and custom.wim files together. Don't switch out either the custom.wim file or the
install.wim file.
You can only capture the custom image once. Don’t remove or recapture a custom.wim after capturing
the incremental file changes.

Syntax:

Example:

Captures an image of a physical drive's partitions to a new .ffu file.

You can capture the image as a full flash utility image (.ffu) file or a set of split ffu (.sfu) files;

Syntax:



Dism /Capture-Ffu /ImageFile:<path_to_image_file> /CaptureDrive:<physical_drive_path> /Name:
<image_name> [/Description:<image_description>] [/PlatformIds:<platform_ids>] [/Compress:
{default|none}] 

PARAMETER DESCRIPTION

/CaptureDrive The physical drive to be captured. You can use diskpart to
get drive number information. Uses the format 
\\.\PhysicalDriveX , where X is the disk number that

diskpart provides.

/PlatformIds Not needed for desktop capture. Specifies one or more
platform ids (separated with semicolon) to be added to
the image. If not specified, platform id will be '*'.

/Compress Specifies the type of compression used for when
capturing. If you'll be splitting the FFU, specify none , as
DISM doesn't support splitting compressed FFUs.

DISM.exe /Capture-Ffu /ImageFile:install.ffu /CaptureDrive:\\.\PhysicalDrive0 /Name:Drive0

DISM.exe /Capture-Ffu /ImageFile:install.ffu /CaptureDrive:\\.\PhysicalDrive0 /Name:Drive0 
/Compress:none

/Capture-Image

Dism /Capture-Image /ImageFile:<path_to_image_file> /CaptureDir:<source_directory> /Name:<image_name> 
[/Description:<image_description>]
[/ConfigFile:<configuration_file.ini>] {[/Compress:{max|fast|none}] [/Bootable] | [/WIMBoot]} 
[/CheckIntegrity] [/Verify] [/NoRpFix] [/EA]

PARAMETER DESCRIPTION

/ConfigFile Specifies the location of a configuration file that lists
exclusions for image capture and compress commands.
For more information, see DISM Configuration List and
WimScript.ini Files.

Examples:

Capture a desktop FFU:

Capture a desktop FFU that will be split:

Captures an image of a drive to a new .wim file. Captured directories include all subfolders and data. You
cannot capture an empty directory. A directory must contain at least one file.

You can capture the image as a Windows image (.wim) file or a set of split Windows image (.swm) files;
this option doesn’t support capturing a virtual hard disk (.vhd/.vhdx) file or a full flash update (.ffu) image.
Beginning with Windows 10, version 1607, DISM can apply and capture extended attributes (EA).

Syntax:



/Compress Specifies the type of compression used for the initial
capture operation. The maximum option provides the
best compression, but takes more time to capture the
image. The fast option provides faster image
compression, but the resulting files are larger than those
compressed by using the maximum option. This is also
the default compression type that is used if you do not
specify the argument. The none option does not
compress the captured image at all.

/Bootable Marks a volume image as being a bootable image. This
argument is available only for WinPE images. Only one
volume image can be marked as bootable in a .wim file.

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/Verify Checks for errors and file duplication.

/NoRpFix Disables the reparse point tag fix. A reparse point is a file
that contains a link to another file on the file system. If
/NoRpFix is not specified, reparse points that resolve to
paths outside of the value specified by /ImageFile will not
be captured.

/WIMBoot Use /WIMBoot to append the image with Windows
image file boot (WIMBoot) configuration. This only
applies to Windows 8.1 images that have been captured
or exported as a WIMBoot file. This feature isn't
supported in Windows 10.

/EA New in Windows 10, version 1607. Captures extended
attributes. The switch must be explicitly specified to
capture extended attributes. DISM will capture extended
attribute bits if they are set in the components to be
captured in the WIM image. If the bits are not set, DISM
won't set them. Only the inbox components of CAB
packages and drivers will have these extended attribute
bits, not the AppX package components or Win32
application components. Extended attributes with prefix
“$Kernel.” in name will be skipped because only user
mode extended attributes are captured. If you use DISM
in Windows 10, version 1607 to capture extended
attributes and use an earlier version of DISM to apply the
image, the operation will succeed but the extended
attributes will not be set to the applied image.

PARAMETER DESCRIPTION

Dism /Capture-Image /ImageFile:install.wim /CaptureDir:D:\ /Name:Drive-D

dism /Capture-Image /CaptureDir:C:\ /ImageFile:"C:\WindowsWithOffice.wim" /Name:"Chinese Traditional" 
/ea

Examples:



/Cleanup-Mountpoints

Dism /Cleanup-Mountpoints

/Commit-Image

Dism /Commit-Image /MountDir:<path_to_mount_directory> [/CheckIntegrity] [/Append]

PARAMETER DESCRIPTION

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/Append Adds the modified image to the existing .wim file instead
of overwriting the original image. The /CheckIntegrity
and /Append arguments do not apply to virtual hard disk
(VHD) files.

Dism /Commit-Image /MountDir:C:\test\offline

/Delete-Image

Dism /Delete-Image /ImageFile:<path_to_image_file> {/Index:<image_index> | /Name:<image_name>} 
[/CheckIntegrity]

Deletes all of the resources associated with a mounted image that has been corrupted. This command will
not unmount images that are already mounted, nor will it delete images that can be recovered using the
/Remount-Image command.

Example:

To learn more, see Repair a Windows Image

Applies the changes that you have made to the mounted image. The image remains mounted until the
/Unmount-Image option is used.

Syntax:

Example:

Deletes the specified volume image from a .wim file that has multiple volume images. This option deletes
only the metadata entries and XML entries. It does not delete the stream data and does not optimize the
.wim file.

This command-line option does not apply to virtual hard disk (VHD) files.

Syntax:



PARAMETER DESCRIPTION

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

Dism /Delete-Image /ImageFile:install.wim /Index:1

/Export-Image

Dism /Export-Image /SourceImageFile:<path_to_image_file> {/SourceIndex:<image_index> | /SourceName:
<image_name>} /DestinationImageFile:<path_to_image_file> [/DestinationName:<Name>] [/Compress:
{fast|max|none|recovery}] [/Bootable] [/WIMBoot] [/CheckIntegrity]

PARAMETER DESCRIPTION

/SWMFile Enables you to reference split .wim files. pattern is the
naming pattern and location of split files. You can also
specify wildcard characters. For example,
"E:\image\install*.swm" will export the split files in the
E:\image directory named install1.swm, install2.swm, and
so on.

/Compress Specifies the type of compression used for the initial
capture operation. The /Compress argument does not
apply when you export an image to an existing .wim file,
you can only use this argument when you export an
image to a new .wim file. The maximum option provides
the best compression, but takes more time to capture the
image. The fast option provides faster image
compression, but the resulting files are larger than those
compressed by using the maximum option. This is also
the default compression type that is used if you do not
specify the argument. Use the recovery option to export
push-button reset images. The resulting files are much
smaller in size, which in turn, greatly reduce the amount
of disk space needed for saving the push-button reset
image on a recovery drive. The destination file must be
specified with an .esd extension. The none option does
not compress the captured image at all.

/Bootable Marks a volume image as being a bootable image. This
argument is available only for WinPE images. Only one
volume image can be marked as bootable in a .wim file.

Example:

Exports a copy of the specified image to another file. The source and destination files must use the same
compression type. You can also optimize an image by exporting to a new image file. When you modify an
image, DISM stores additional resource files that increase the overall size of the image. Exporting the
image will remove unnecessary resource files.

This command-line option does not apply to virtual hard disk (VHD) files.

Syntax:



/WIMBoot Use /WIMBoot to append the image with Windows
image file boot (WIMBoot) configuration. This only
applies to Windows 8.1 images that have been captured
or exported as a WIMBoot file. This feature isn't
supported in Windows 10.

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

PARAMETER DESCRIPTION

Dism /Export-Image /SourceImageFile:install.wim /SourceIndex:1 /DestinationImageFile:install2.wim

/Get-ImageInfo

Dism /Get-ImageInfo /ImageFile:<path_to_image.wim> [{/Index:<Image_index> | /Name:<Image_name>}]

Dism /Get-ImageInfo /ImageFile:C:\test\offline\install.wim

Dism /Get-ImageInfo /ImageFile:C:\test\images\myimage.vhd /Index:1

/Get-MountedImageInfo

Dism /Get-MountedImageInfo

/Get-WIMBootEntry

Example:

Displays information about the images that are contained in a .wim, .ffu, .vhd or .vhdx file. When used with
the /Index or /Name argument, information about the specified image is displayed, which includes if an
image is a WIMBoot image, if the image is Windows 8.1, see Take Inventory of an Image or Component
Using DISM. The /Name argument does not apply to VHD files. You must specify /Index:1 for FFU and
VHDX files.

Syntax:

Examples:

Returns a list of .ffu, .vhd, .vhdx, and .wim images that are currently mounted, as well s information about
the mounted image such as whether the image is valid, read/write permissions, mount location, mounted
file path, and mounted image index.

Example:

Use /Get-WIMBootEntry to display WIMBoot configuration entries for the specified disk volume.

For more information about how to display WIMBoot configuration entries, see Take Inventory of an



Dism /Get-WIMBootEntry /Path:<volume_path>

Dism /Get-WIMBootEntry /Path:C:\

/List-Image

Dism /List-Image /ImageFile:<path_to_image_file> {/Index:<image_index> | /Name:<image_name>}

Dism /List-Image /ImageFile:install.wim /Index:1

/Mount-Image

Dism /Mount-Image /ImageFile:<path_to_image_file> {/Index:<image_index> | /Name:<image_name>} 
/MountDir:<path_to_mount_directory> [/ReadOnly] [/Optimize] [/CheckIntegrity]

PARAMETER DESCRIPTION

/ReadOnly Sets the mounted image with read-only permissions.
Optional.

/Optimize Reduces initial mount time.

Image or Component Using DISM.

This only applies to Windows 8.1; this feature isn't supported in Windows 10.

Syntax:

Example:

Displays a list of the files and folders in a specified image.

This command-line option does not apply to virtual hard disk (VHD) files.

Syntax:

Example:

Mounts an image from a .ffu, .wim, .vhd or .vhdx file to the specified directory so that it is available for
servicing.

When mounting an image, note the following:

The mount directory must be created, but empty.
An index or name value is required for all image types. WIMs can contain more than image. For FFU
and VHD, use index:1 .

Syntax:



/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

PARAMETER DESCRIPTION

Dism /Mount-Image /ImageFile:C:\test\images\myimage.wim /index:1 /MountDir:C:\test\offline

Dism /Mount-Image /ImageFile:C:\test\images\myimage.vhd /index:1 /MountDir:C:\test\offline /ReadOnly

Dism /Mount-Image /ImageFile:C:\test\images\WinOEM.ffu /MountDir:C:\test\offline /index:1

/Optimize-Image /WIMBoot

PARAMETER DESCRIPTION

/WIMBoot configure an offline image for installing on a Windows
image file boot (WIMBoot) system.

/Optimize Reduces initial mount time. /Optimize-Image /WIMBoot
only applies to Windows 8.1 images that have been
captured or exported as a WIMBoot file. Only use
/Optimize-Image with images that will be used for
WIMBoot supported systems. If /Optimize-Image is used
with a non-WIMBoot supported system image, Windows
may not work as expected, after installation on a non-
WIMBoot supported device.

Dism /Image:C:\test\offline /Optimize-Image /WIMBoot

/Remount-Image

Dism /Remount-Image /MountDir:<path_to_mount_directory>

Dism /Remount-Image /MountDir:C:\test\offline

Examples:

Performs specified configurations to an offline image.

Example:

Remounts a mounted image that has become inaccessible and makes it available for servicing.

Syntax:

Example:



/Split-FFU

Dism /Split-Ffu /ImageFile:<path_to_image_file> /SFUFile:<pattern> /FileSize:<MB-Size> 
[/CheckIntegrity]

PARAMETER DESCRIPTION

/FileSize Specifies the maximum size in megabytes (MB) for each
created file. If a single file is larger than the value specified
in the /FileSize option, one of the split .swm files that
results will be larger than the value specified in the
/FileSize option, in order to accommodate the large file.

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/ImageFile Specifies the path of a .FFU file, example: flash.ffu.

/SFUFile References split FFU files (SFUs). Pattern is the naming
pattern and location of split files.

DISM.exe /Split-Ffu /ImageFile:flash.ffu /SFUFile:flash.sfu /FileSize:650

/Split-Image

Dism /Split-Image /ImageFile:<path_to_image_file> /SWMFile:<path_to_swm> /FileSize:<MB-Size> 
[/CheckIntegrity]

For FFU, this command splits an existing full-flash update (.ffu) file into multiple read-only split .sfu files.
DISM doesn't support splitting compressed FFUs. If you are splitting FFUs, make sure that your FFU was
captured with the /compress:none  option specificed.

This option creates the .sfu files in the specified directory, naming each file the same as the specified
/SFUFile, but with an appended number. For example, if you use c:\flash.sfu , you'll get a flash.sfu file, a
flash2.ffu file, a flash3.sfu file, and so on, defining each portion of the split .sfu file and saving it to the C:\
directory.

Syntax for FFU:

Example:

For WIM, this command splits an existing .wim file into multiple read-only split .swm files.

This option creates the .swm files in the specified directory, naming each file the same as the specified
path_to_swm, but with an appended number. For example, if you set path_to_swm as c:\Data.swm , this
option creates a Data.swm file, a Data2.swm file, a Data3.swm file, and so on, defining each portion of the
split .wim file and saving it to the C:\ directory.

This command-line option does not apply to virtual hard disk (VHD) files.

Syntax for WIM:



PARAMETER DESCRIPTION

/FileSize Specifies the maximum size in megabytes (MB) for each
created file. If a single file is larger than the value specified
in the /FileSize option, one of the split .swm files that
results will be larger than the value specified in the
/FileSize option, in order to accommodate the large file.

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/ImageFile Specifies the path of an image file, example: install.wim.

Dism /Split-Image /ImageFile:install.wim /SWMFile:split.swm /FileSize:650

/Unmount-Image

Dism /Unmount-Image /MountDir:<path_to_mount_directory> {/Commit | /Discard} [/CheckIntegrity] 
[/Append]

PARAMETER DESCRIPTION

/CheckIntegrity Detects and tracks .wim file corruption when used with
capture, unmount, export, and commit operations.
/CheckIntegrity stops the operation if DISM detects that
the .wim file is corrupted when used with apply and
mount operations.

/Append Adds the modified image to the existing .wim file instead
of overwriting the original image. The /CheckIntegrity
and /Append arguments do not apply to virtual hard disk
(VHD, VHDX), or FFU files.

Dism /Unmount-Image /MountDir:C:\test\offline /commit

Dism /Unmount-Image /MountDir:C:\test\offline /discard

/Update-WIMBootEntry

Example:

Unmounts the .ffu, .wim, .vhd or .vhdx file and either commits or discards the changes that were made
when the image was mounted.

You must use either the /commit or /discard argument when you use the /Unmount-Image option.

Syntax:

Examples:



Dism /Update-WIMBootEntry /Path:<Volume_path> /DataSourceID:<Data_source_id> /ImageFile:
<Renamed_image_path>

PARAMETER DESCRIPTION

/Path Specifies the disk volume of the WIMBoot configuration.

/DataSourceID Specifies the data source ID as displayed by /Get-
WIMBootEntry.

DISM.exe /Update-WIMBootEntry /Path:C:\ /DataSourceID:0 /ImageFile:R:\Install.wim

/Apply-SiloedPackage

/Apply-SiloedPackage /PackagePath:<package_path> /ImagePath:<applied_image_path>

PARAMETER DESCRIPTION

/PackagePath Specifies the path of a siloed provisioning package file.

/ImagePath Specifies the path of the Windows image where you are
applying the SPP.

Dism.exe /apply-SiloedPackage /PackagePath:C:\test\Word.spp /PackagePath:C:\test\spp2.spp 
/ImagePath:C:\

Related topics

Updates the WIMBoot configuration entry, associated with the specified data source ID, with the renamed
image file or moved image file path.

Note: /Update-WIMBootEntry requires a restart in order for any updates to take effect.

Syntax:

Example:

Applies one or more siloed provisioning packages (SPPs) to a specified image. This option is only
available after running CopyDandI.cmd from the ADK for Windows 10, Version 1607, and running 
dism.exe /Apply-SiloedPackage  from the target folder created by CopyDandI.cmd.

Note: /Apply-SiloedPackage can only be run once against a Windows image, but /PackagePath can
used more than once in the same command to apply multiple SPPs. SPPs will be applied in the specified
order, so a dependency should be specified before the SPP that depends on it.

For more information about siloed provisioning packages, and how to use CopyDandI.cmd, see Siloed
provisioning packages.

To find out how to work with siloed provisioning packages, see Lab 10: Add desktop applications and
settings with siloed provisioning packages (SPPs).

Example:



DISM - Deployment Image Servicing and Management Technical Reference for Windows

What is DISM?

DISM Global Options for Command-Line Syntax

Deploy Windows using Full Flash Update (FFU)

WIM vs. VHD vs. FFU: comparing image file formats



DISM Global Options for Command-Line Syntax
5/11/2018 • 5 minutes to read • Edit Online

Basic Syntax for Servicing Commands

Basic Syntax for Imaging Commands

Global Options for Servicing and Imaging Commands

Global options can be added to most of the servicing and imaging options in the Deployment Image Servicing
and Management (DISM) tool. These options can be used to access the command-line help, specify the location of
files to use, and control logging.

After you have mounted or applied a Windows® image so that it is available offline as a flat file structure, you can
specify any DISM global options, the servicing option that will update your image, and the location of the offline
image. You can use only one servicing option per command line.

If you are servicing a running computer, you can use the /Online option instead of specifying the location of the
offline Windows image. The commands and options that are available for servicing an image depend on which
Windows operating system you are servicing. They also depend on whether the image is offline or a running
operating system. All commands work on an offline Windows image. Subsets of the commands are available for
servicing a running operating system.

The base syntax for DISM servicing commands is:

DISM.exe {/Image:<path_to_image> | /Online} [dism_global_options] {servicing_option}
[<servicing_argument>]

For more information about servicing commands, see Deployment Image Servicing and Management (DISM)
Command-Line Options.

Many of the global options are also available for imaging commands. The base syntax for DISM imaging
commands is:

DISM.exe [dism_global_options] {servicing_option} [<servicing_argument>]

For more information about using DISM for image management, such as applying or mounting an image, see
DISM Image Management Command-Line Options.

The following DISM global options are available for an offline image.

DISM.exe /image:<path_to_offline_image_directory> [/WinDir:<path_to_%WINDIR%>]
[/LogPath:<path_to_log_file.log>] [/LogLevel:<n>] [/SysDriveDir:<path_to_bootMgr_file>] [/Quiet]
[/NoRestart] [/ScratchDir:<path_to_scratch_directory>] [/English] [/Format:<output_format> ]

The following DISM global options are available for a running operating system.

DISM.exe /online [/LogPath:<path_to_log_file>] [/LogLevel:<n>] [/SysDriveDir:<path_to_bootMgr_file>]
[/Quiet] [/NoRestart] [/ScratchDir:<path_to_scratch_directory>] [/English] [/Format:<output_format> ]

The following table provides a description of how each DISM global option can be used. These options are not
case sensitive.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-global-options-for-command-line-syntax.md


GLOBAL OPTION DESCRIPTION

Important

/Get-Help

/?

Displays information about available DISM command-line
options and arguments.

Use the /? or /Get-Help option without specifying an
image file to get help on image management commands
such as /Mount-Image.

Example:

Dism /?

Specify an image file with the
/Image:<path_to_an_image> option or use the /Online
option to get help on the servicing command in the
image, such as /Get-Packages. The options that are
available for servicing an image depend on the servicing
technology that is available in your image.

Example:

Dism /image:C:\test\offline /?

Dism /online /?

You can display additional Help by specifying a command-
line option.

Example:

Dism /image:C:\test\offline /Add-Driver /?

Dism /image:C:\test\offline /Add-Package /?

Dism /online /Get-Drivers /?

/LogPath:<path to log file.log> Specifies the full path and file name to log to. If not set,
the default is: %WINDIR%\Logs\Dism\dism.log

In Windows PE, the default directory is the RAMDISK
scratch space which can be as low as 32 MB.

The log file will automatically be archived. The archived
log file will be saved with .bak appended to the file
name and a new log file will be generated. Each time
the log file is archived the .bak file will be overwritten.

When using a network share that is not joined to a
domain, use the net use command together with domain
credentials to set access permissions before you set the
log path for the DISM log.

Example:

Dism /image:C:\test\offline
/LogPath:AddPackage.log /Add-Package
/PackagePath:C:\packages\package.cab



GLOBAL OPTION DESCRIPTION

/LogLevel:<n> Specifies the maximum output level shown in the logs.
The default log level is 3. The accepted values are as
follows:

1 = Errors only

2 = Errors and warnings

3 = Errors, warnings, and informational

4 = All of the information listed previously, plus debug
output

Example:

Dism /image:C:\test\offline
/LogPath:AddPackage.log /LogLevel:1 /Add-
Package /PackagePath:C:\packages\package.cab

/Image:<path_to_offline_image_directory> This is the full path to the root directory of the offline
Windows image that you will service. If the directory
named Windows is not a subdirectory of the root
directory, /WinDir must be specified.

This option cannot be used with /Online.

Example:

Dism /image:C:\test\offline
/LogPath:AddPackage.log /LogLevel:1 /Add-
Package /PackagePath:C:\packages\package.cab

/WinDir:<path_to_%WINDIR%> Used with the /Image option to specify the path to the
Windows directory relative to the image path. This cannot
be the full path to the Windows directory; it should be a
relative path. If not specified, the default is the Windows
directory in the root of the offline image directory.

This option cannot be used with the /Online option.

Example:

Dism /image:C:\test\offline /WinDir:WinNT /Add-
Package /PackagePath:C:\packages\package.cab

/Online Specifies that the action is to be taken on the operating
system that is currently running.

This option cannot be used with the /Image or the
/WinDir option. When /Online is used the Windows
directory for the online image is automatically detected.

Example:

Dism /online /Get-Packages



Note

GLOBAL OPTION DESCRIPTION

/SysDriveDir:<path_to_sysdrive_directory> Use /SysDriveDir to service an installed Windows image
from a Windows PE environment.

The /SysDriveDir option specifies the path to the
location of the BootMgr files. This is necessary only when
the BootMgr files are located on a partition other than
the one that you are running the command from.

For example, at a Windows PE command prompt, type:

Dism /image:C:\Windows /SysDriveDir:C:</strong>

/Quiet Turns off information and progress output to the console.
Only error messages will be displayed.

To run in quiet mode, this option must be set every time
that the command-line utility is run.

Do not use the /Quiet option with /Get commands. No
information will be displayed.

Example:

Dism /image:C:\test\offline /Add-Package
/PackagePath:C:\packages\package.cab /quiet

/NoRestart Suppresses reboot. If a reboot is not required, this
command does nothing. This option will keep the
application from prompting for a restart (or keep it from
restarting automatically if the /Quiet option is used).

Example:

Dism /online /Add-Package
/PackagePath:C:\packages\package.cab /NoRestart
/quiet

/ScratchDir:<path_to_scratchdirectory> Specifies a temporary directory that will be used when
extracting files for temporary use during servicing. The
directory must exist locally. If not specified, the
\Windows<em>%Temp% directory will be used, with a
subdirectory name of randomly generated hexadecimal
value for each run of DISM. Items in the scratch directory
are deleted after each operation.

You should not use a network share location as a scratch
directory to expand a package (.cab or .msu file) for
installation. The directory used for extracting files for
temporary usage during servicing should be a local
directory.

Example:

Dism /image:C:\test\offline /ScratchDir:C:\Scratch
/Add-Package
/PackagePath:C:\packages\package.cab



Note

GLOBAL OPTION DESCRIPTION

Related topics

/English Displays command-line output in English.

Some resources cannot be displayed in English.

This option is not supported when you use the DISM /?
command.

Example:

Dism /Get-ImageInfo
/ImageFile:C:\test\offline\install.wim /index:1
/English

/Format:{Table | List} Specifies the report output format.

Example:

Dism /Image:C:\test\offline /Get-Apps /Format:table

Deployment Image Servicing and Management (DISM) Command-Line Options

DISM Application Servicing Command-Line Options

DISM Windows Edition-Servicing Command-Line Options

DISM Languages and International Servicing Command-Line Options

DISM Operating System Package Servicing Command-Line Options

DISM Driver Servicing Command-Line Options

DISM Unattended Servicing Command-Line Options

DISM Windows PE Servicing Command-Line Options



DISM Operating System Package (.cab or .msu)
Servicing Command-Line Options
5/11/2018 • 10 minutes to read • Edit Online

Syntax
DISM.exe {/Image:<path_to_image_directory> | /Online} [dism_global_options] {servicing_option} 
[<servicing_argument>]

DISM.exe /Image:<path_to_image_directory> [/Get-Packages | /Get-PackageInfo | /Add-Package | /Remove-
Package ] [/Get-Features | /Get-FeatureInfo | /Enable-Feature | /Disable-Feature ] [/Cleanup-Image]

DISM.exe /Online [/Get-Packages | /Get-PackageInfo | /Add-Package | /Remove-Package ] [/Get-Features | 
/Get-FeatureInfo | /Enable-Feature | /Disable-Feature ] [/Cleanup-Image]

Operating system package-servicing options

/Get-Help /?/Get-Help /?

Dism /Get-Help 

Dism /Image:C:\test\offline /Add-Package /?

Dism /Online /Get-Packages /?

/Get-Packages/Get-Packages

Use DISM with Windows cabinet (.cab) or Windows Update Stand-alone Installer (.msu) files to install or
remove updates, service packs, language packs, and to enable or disable Windows features. Features are
optional components for the core operating system.

The following operating system package-servicing options are available for an offline image:

The following operating system package-servicing options are available for a running operating system:

This section describes how you can use each operating system package-servicing option. These options are not
case sensitive.

When used immediately after a package-servicing command-line option, information about the option and the
arguments is displayed.

Additional topics might become available when an image is specified.

Syntax:

Examples:

Displays basic information about all packages in the image. Use the /Format:Table or /Format:List argument to

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-operating-system-package-servicing-command-line-options.md


Dism /Get-Packages [/Format:{Table | List}]

Dism /Image:C:\test\offline /Get-Packages

Dism /Image:C:\test\offline /Get-Packages /Format:Table

Dism /Online /Get-Packages

/Get-PackageInfo/Get-PackageInfo

Dism /Get-PackageInfo {/PackageName:<name_in_image> | /PackagePath:<path_to_cabfile>}

Dism /Image:C:\test\offline /Get-PackageInfo /PackagePath:C:\packages\package.cab

Dism /Image:C:\test\offline /Get-PackageInfo 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

/Add-Package/Add-Package

display the output as a table or a list.

Syntax:

Examples:

Displays detailed information about a package provided as a .cab file. Only .cab files can be specified. You
cannot use this command to obtain package information for .msu files. /PackagePath can point to either a .cab
file or a folder.

You can use the /Get-Packages option to find the name of the package in the image, or you can specify the path
to the .cab file. The path to the .cab file should point to the original source of the package, not to where the file
is installed on the offline image.

Syntax:

Examples:

Installs a specified .cab or .msu package in the image. An .msu package is supported only when the target
image is offline, either mounted or applied.

Multiple packages can be added on one command line. The applicability of each package will be checked. If the
package cannot be applied to the specified image, you will receive an error message. Use the /IgnoreCheck
argument if you want the command to process without checking the applicability of each package.

Use the /PreventPending option to skip the installation of the package if the package or Windows image has
pending online actions. (Introduced in Windows 8/Windows PE 4.0).

/PackagePath can point to:

A single .cab or .msu file.

A folder that contains a single expanded .cab file.

A folder that contains a single .msu file.



Dism /Add-Package /PackagePath:<path_to_cabfile> [/IgnoreCheck] [/PreventPending]

Dism /Image:C:\test\offline /LogPath:AddPackage.log /Add-Package /PackagePath:C:\packages\package.msu

Dism /Image:C:\test\offline /Add-Package /PackagePath:C:\packages\package1.cab 
/PackagePath:C:\packages\package2.cab /IgnoreCheck

Dism /Image:C:\test\offline /Add-Package /PackagePath:C:\test\packages\package.cab /PreventPending

/Remove-Package/Remove-Package

/Remove-Package {/PackageName:<name_in_image> | /PackagePath:<path_to_cabfile>}

Dism /Image:C:\test\offline /LogPath:C:\test\RemovePackage.log /Remove-Package 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

Dism /Image:C:\test\offline /LogPath:C:\test\RemovePackage.log /Remove-Package 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0 /PackageName:Microsoft-Windows-
MediaPlayer-Package~31bf3856ad364e35~x86~~6.1.6801.0

Dism /Image:C:\test\offline /LogPath:C:\test\RemovePackage.log /Remove-Package 
/PackagePath:C:\packages\package1.cab /PackagePath:C:\packages\package2.cab

/Get-Features/Get-Features

A folder that contains multiple .cab or .msu files.

Notes

If /PackagePath points to a folder that contains a .cab or .msu files at its root, any subfolders will also be
recursively checked for .cab and .msu files.
/Add-Package doesn't run a full check for a package's applicability and dependencies. If you're adding a
package with dependencies, make sure that all dependencies are installed when you add the package.

Syntax:

Examples:

Removes a specified .cab file package from the image. Only .cab files can be specified. You cannot use this
command to remove .msu files.

Note
Using this command to remove a package from an offline image will not reduce the image size.

You can use the /PackagePath option to point to the original source of the package, specify the path to the CAB
file, or you can specify the package by name as it is listed in the image. Use the /Get-Packages option to find the
name of the package in the image.

Syntax:

Examples:



/Get-Features {/PackageName:<name_in_image> | /PackagePath:<path_to_cabfile>} [/Format:{Table | List}]

Dism /Image:C:\test\offline /Get-Features

Dism /Image:C:\test\offline /Get-Features /Format:List

Dism /Image:C:\test\offline /Get-Features 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

Dism /Image:C:\test\offline /Get-Features /PackagePath:C:\packages\package1.cab

/Get-FeatureInfo/Get-FeatureInfo

/Get-FeatureInfo /FeatureName:<name_in_image> [{/PackageName:<name_in_image> | /PackagePath:
<path_to_cabfile>}]

Dism /Image:C:\test\offline /Get-FeatureInfo /FeatureName:Hearts

Dism /Image:C:\test\offline /Get-FeatureInfo /FeatureName:Hearts /PackagePath:C:\packages\package.cab

/Enable-Feature/Enable-Feature

Displays basic information about all features (operating system components that include optional Windows
foundation features) in a package. You can use the /Get-Features option to find the name of the package in the
image, or you can specify the path to the original source of the package. If you do not specify a package name
or path, all features in the image will be listed. /PackagePath can point to either a .cab file or a folder.

Feature names are case sensitive if you are servicing a Windows image other than Windows 8.

Use the /Format:Table or /Format:List argument to display the output as a table or a list.

Syntax:

Examples:

Displays detailed information about a feature. You must use /FeatureName. Feature names are case sensitive if
you are servicing a Windows image other than Windows 10 or Windows 8.x. You can use the /Get-Features
option to find the name of the feature in the image.

/PackageName and /PackagePath are optional and can be used to find a specific feature in a package.

Syntax:

Examples:

Enables or updates the specified feature in the image. You must use the /FeatureName option. Feature names
are case sensitive if you are servicing a Windows image other than Windows 8. Use the /Get-Features option to
find the name of the feature in the image.

You can specify the /FeatureName option multiple times in one command line for features that share the same
parent package.



/Enable-Feature /FeatureName:<name_in_image> [/PackageName:<name_in_image>] [/Source: <source>] 
[/LimitAccess] [/All]

Dism /Online /Enable-Feature /FeatureName:Hearts /All

Dism /Online /Enable-Feature /FeatureName:Calc /Source:c:\test\mount\Windows /LimitAccess

Dism /Image:C:\test\offline /Enable-Feature /FeatureName:Calc 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

/Disable-Feature/Disable-Feature

/Disable-Feature /FeatureName:<name_in_image> [/PackageName:<name_in_image>] [/Remove]

You do not have to specify the package name using the /PackageName option if the package is a Windows
Foundation Package. Otherwise, use /PackageName to specify the parent package of the feature.

You can restore and enable a feature that has previously been removed from the image. Use the /Source
argument to specify the location of the files that are required to restore the feature. The source of the files can
by the Windows folder in a mounted image, for example c:\test\mount\Windows. You can also use a Windows
side-by-side folder as the source of the files, for example z:\sources\SxS.

If you specify multiple /Source arguments, the files are gathered from the first location where they are found
and the rest of the locations are ignored. If you do not specify a /Source for a feature that has been removed,
the default location in the registry is used or, for online images, Windows Update (WU) is used.

Use /LimitAccess to prevent DISM from contacting WU for online images.

Use /All to enable all parent features of the specified feature.

The /Source, /LimitAccess, and /All arguments can be used with Windows 10, Windows 8.x, and Windows PE
images above 4.0.

Syntax:

Examples:

Disables the specified feature in the image. You must use the /FeatureName option. Feature names are case
sensitive if you are servicing a Windows image other than Windows 8. Use the /Get-Features option to find the
name of the feature in the image.

You can specify /FeatureName multiple times in one command line for features in the same parent package.

You do not have to specify the package name using the /PackageName option if it the package is a Windows
Foundation Package. Otherwise, use /PackageName to specify the parent package of the feature.

Use /Remove to remove a feature without removing the feature's manifest from the image. This option can
only be used can be used with Windows 10, Windows 8.x, and Windows PE images above 4.0. The feature will
be listed as "Removed" when you use /Get-FeatureInfo to display feature details and can be restored and
enabled using /Enable-Feature with the /Source option.

Syntax:

Examples:



*Dism /Online /Disable-Feature /FeatureName:Hearts

Dism /Image:C:\test\offline /Disable-Feature /FeatureName:Calc 
/PackageName:Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

/Cleanup-Image/Cleanup-Image

/Cleanup-Image {/RevertPendingActions | /SPSuperseded [/HideSP] | /StartComponentCleanup [/ResetBase 
[/Defer]] | /AnalyzeComponentStore | /CheckHealth | /ScanHealth | /RestoreHealth [/Source: <filepath>] 
[/LimitAccess]}

PARAMETER DESCRIPTION

/RevertPendingActions If you experience a boot failure, you can use the
/RevertPendingActions option to try to recover the system.
The operation reverts all pending actions from the previous
servicing operations because these actions might be the
cause of the boot failure. The /RevertPendingActions option
is not supported on a running operating system or a
Windows PE or Windows Recovery Environment (Windows
RE) image. Important: You should use the
/RevertPendingActions option only in a system-recovery
scenario on a Windows image that did not boot.

SPSuperseded Removes any backup files created during the installation of a
service pack. Use /HideSP to prevent the service pack from
being listed in the Installed Updates Control Panel. The
service pack cannot be uninstalled after the /SPSuperseded
operation is completed.

/StartComponentCleanup Cleans up the superseded components and reduces the size
of the component store. Use /ResetBase to reset the base of
superseded components, which can further reduce the
component store size. Installed Windows updates can’t be
uninstalled after running /StartComponentCleanup with the
/ResetBase option. Use /Defer with /ResetBase to defer long-
running cleanup operations to the next automatic
maintenance.

Performs cleanup or recovery operations on the image. /AnalyzeComponentStore and /ResetBase can be used
with Windows 10, Windows 8.1, and Windows PE images above 5.0. Beginning with Windows 10, version
1607, you can specify /Defer with /ResetBase. But we highly recommend you only use /Defer as an option in
the factory where DISM /Resetbase requires more than 30 minutes to complete. /StartComponentCleanup can
be used with Windows 10, Windows 8.x, and Windows PE images above 4.0. /CheckHealth, /ScanHealth,
/RestoreHealth, /Source, and /LimitAccess can be used with Windows 10, Windows 8.x, and Windows PE
images above 4.0. /HideSP and /SPSuperseded can’t be used when servicing a version of Windows that is
earlier than Windows 7 Service Pack 1 (SP1) image.

Tip
To determine when the /ResetBase option was last run, check the LastResetBase_UTC registry entry under this
registry path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing

Syntax:



/AnalyzeComponentStore Creates a report of the component store. For more
information about the report and how to use the
information provided in the report, see Determine the
Actual Size of the WinSxS Folder.

/CheckHealth Checks whether the image has been flagged as corrupted by
a failed process and whether the corruption can be repaired.

/ScanHealth Scans the image for component store corruption. This
operation will take several minutes.

/RestoreHealth Scans the image for component store corruption, and then
performs repair operations automatically. This operation will
take several minutes.

/Source Used with /RestoreHealth to specify the location of known
good versions of files that can be used for the repair, such as
a path to the Windows directory of a mounted image.

/LimitAccess Prevents DISM from contacting Windows Update for repair
of online images.

PARAMETER DESCRIPTION

Dism /Image:C:\test\offline /Cleanup-Image /RevertPendingActions

Dism /Image:C:\test\offline /Cleanup-Image /SPSuperseded /HideSP

Dism /Online /Cleanup-Image /ScanHealth

Dism /Online /Cleanup-Image /RestoreHealth /Source:c:\test\mount\windows /LimitAccess

Limitations

Examples:

To learn more, see Repair a Windows Image.

When you are installing a package in an offline image, the package state is “install pending” because of
pending online actions. In other words, the package will be installed when the image is booted and the
online actions are processed. If subsequent actions are requested, they cannot be processed until the
previous pending online action is completed. You can use the /PreventPending option when you add a
package with /AddPackage to skip the installation of a package when there are pending online actions.
Some packages require other packages to be installed first. You should not assume that dependencies will
be satisfied. If there are dependency requirements, you should use an answer file to install the necessary
packages. By passing an answer file to DISM, multiple packages can be installed in the correct order. This is
the preferred method for installing multiple packages. For more information, see Add or Remove Packages
Offline Using DISM.
Packages are installed in the order that they are listed in the command line.
When using DISM to list the optional components in a Windows PE image, the optional components will
always be listed as pending even when the servicing operation was successful. This is by design and



Related topics

requires no additional action from you.

What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options



DISM Provisioning Package (.ppkg) Command-Line
Options
5/11/2018 • 2 minutes to read • Edit Online

/Add-ProvisioningPackage

DISM.exe /Add-ProvisioningPackage /PackagePath:<package_path> [/CatalogPath:<path>]

DISM.exe /Image=C:\ /Add-ProvisioningPackage /PackagePath:C:\oem.ppkg

/Get-ProvisioningPackageInfo

DISM.exe /Get-ProvisioningPackageInfo /PackagePath:<package_path>

DISM.exe /Image=C:\ /Get-ProvisioningPackageInfo /PackagePath:C:\oem.ppkg

/Apply-CustomDataImage

/Apply-CustomDataImage /CustomDataImage:<path_to_image_file> /ImagePath:<target_drive> /SingleInstance

PARAMETER DESCRIPTION

/CustomDataImage Specifies where the provisioning package is stored.

Use DISM to work with Provisioning Packages (.ppkg) files. For example, you can add settings and Windows
desktop applications to Windows 10, or reduce the size of your Windows installation.

Adds applicable payload of provisioning package to the specified image.

Syntax:

Example:

Get the information of provisioning package.

Syntax:

Example:

Dehydrates files contained in the custom data image to save space. For client editions, this package is used by the
push-button recovery tools.

Syntax:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-provisioning-package-command-line-options.md


/ImagePath Specifies the drive that contains the Windows image. DISM
scans this drive for any non-system files on this drive and
incorporates them into the provisioning package.

/SingleInstance After DISM captures the non-system files to a compressed
provisioning package, DISM adds pointers on the drive to the
new compressed provisioning package, and removes the
original files. As a result, the files are still visible to the system,
but take up less space on the drive.

PARAMETER DESCRIPTION

DISM.exe /Apply-CustomDataImage /CustomDataImage:C:\oem.ppkg /ImagePath:C:\ /SingleInstance

Example:

Applies to: Windows 10 for desktop editions (Home, Pro, Enterprise, and Education) only.



DISM App Package (.appx or .appxbundle) Servicing Command-
Line Options
7/16/2018 • 9 minutes to read • Edit Online

App package servicing options

SERVICING OPTION DESCRIPTION EXAMPLE

/Get-Help /? When used immediately after an app package
servicing command-line option, information
about the option and the arguments is
displayed. Additional topics might become
available when an image is specified.

Dism /image:C:\test\offline /Add-
ProvisionedAppxPackage /?

Dism /online /Get-ProvisionedAppxPackages
/?

/Get-ProvisionedAppxPackages Displays information about app packages (.appx
or .appxbundle), in an image, that are set to
install for each new user.

Dism /Image:C:\test\offline /Get-
ProvisionedAppxPackages

/Add-ProvisionedAppxPackage Adds one or more app packages to the image.

The app will be added to the Windows image
and registered for each existing or new user
profile the next time the user logs in. If the app is
added to an online image, the app will not be
registered for the current user until the next time
the user logs in.

It is recommended to provision apps in an online
operating system in audit mode so that
appropriate hard links can be created for apps
that contain the exact same files (to minimize
disk space usage) while also ensuring no apps
are running for a successful installation.

Syntax: 

Dism /Image:C:\test\offline /Add-
ProvisionedAppxPackage
/FolderPath:c:\Test\Apps\MyUnpackedApp
/CustomDataPath:c:\Test\Apps\CustomData.xml

Dism /Online /Add-ProvisionedAppxPackage
/PackagePath:C:\Test\Apps\MyPackedApp\MainPackage.appx
/DependencyPackagePath:C:\Test\Apps\MyPackedApp\Framework-
x86.appx
/DependencyPackagePath:C:\Test\Apps\MyPackedApp\Framework-
x64.appx /LicensePath:C:\Test\Apps\MyLicense.xml

Dism /Online /Add-ProvisionedAppxPackage
/FolderPath:C:\Test\Apps\MyUnpackedApp
/SkipLicense

Dism /Image:C:\test\offline /Add-ProvisionedAppxPackage
/PackagePath:C:\Test\Apps\MyPackedApp\MainPackage.appxbundle
/SkipLicense

Dism /Online /Add-ProvisionedAppxPackage
/PackagePath:C:\Test\Apps\MyPackedApp\MainPackage.appxbundle
/Region="all"

Dism /Online /Add-ProvisionedAppxPackage
/PackagePath:C:\Test\Apps\MyPackedApp\MainPackage.appxbundle
/Region="US;GB"

You can use app package-servicing commands to add, remove, and list provisioned app packages (.appx or .appxbundle) in a Windows
image. An .appxbundle, new for Windows 10, is a collection of app and resource packages used together to enrich the app experience,
while minimizing the disk footprint on a given PC. For detailed documentation about .appxbundle packages and the Microsoft Store
pipeline, see App packaging. Only a subset of the packages within an .appxbundle might be added to the image when a bundle is
provisioned using DISM. For more information, see Understanding How DISM Adds .appxbundle Resource Packages to an Image.

Provisioned app packages are added to a Windows image and are then installed for every new or existing user profile the next time the
user logs on. For more information, including requirements for app package provisioning, see Sideload Apps with DISM.

You can also use PowerShell to add, remove, and list app packages (.appx or .appxbundle) per image or per user in a Windows installation.
For more information, see Deployment Imaging Servicing Management (DISM) Cmdlets in Windows PowerShell and App Installation
Cmdlets in Windows PowerShell.

The base syntax for servicing a Windows image using DISM is:

DISM.exe {/Image:<path_to_image_directory> | /Online} [dism_global_options] {servicing_option} [<servicing_argument>]

The following app package (.appx or .appxbundle) servicing options are available for an offline image.

DISM.exe /Image:<path_to_image_directory> [/Get-ProvisionedAppxPackages | /Add-ProvisionedAppxPackage | /Remove-
ProvisionedAppxPackage | /Set-ProvisionedAppxDataFile]

The following app package (.appx or .appxbundle) servicing options are available for a running operating system.

DISM.exe /Online [/Get-ProvisionedAppxPackages | /Add-ProvisionedAppxPackage | /Remove-ProvisionedAppxPackage |
/Set-ProvisionedAppxDataFile]

This table describes how you can use each app servicing option. These options are not case sensitive.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-app-package--appx-or-appxbundle--servicing-command-line-options.md
http://go.microsoft.com/fwlink/p/?LinkId=698643
http://go.microsoft.com/fwlink/?LinkId=239926
http://go.microsoft.com/fwlink/?LinkId=247300


dism.exe /Add-ProvisionedAppxPackage
{/FolderPath:<App_folder_path>
[/SkipLicense\] [/CustomDataPath:
<custom_file_path>] /PackagePath:
<main_package_path>
[/DependencyPackagePath:
<dependency_package_path>]
{[/LicenseFile:<license_file_path>]
[/SkipLicense\]} [/CustomDataPath:
<custom_file_path>]} [/Region=<region>]

Use /FolderPath to specify a folder of unpacked
app files containing a main package, any
dependency packages, and the license file. This is
only supported for an unpacked app package.

Use /PackagePath to specify an app package
(.appx or .appxbundle). You can use
/PackagePath when provisioning a line-of-
business app online.

Important: Use the /PackagePath parameter
to provision .appxbundle packages. Also,
dependency packages cannot be provisioned
with /PackagePath, they must be provisioned
with the /DependencyPackagePath parameter
for an app.

/PackagePath is not supported from a host PC
that is running Windows Preinstallation
Environment (WinPE) 4.0, Windows Server 2008
R2, or an earlier version of Windows.

Use /Region to specify what regions an app
package (.appx or .appxbundle) must be
provisioned in. The region argument can either
be “all”, indicating that the app should be
provisioned for all regions, or it can be a semi-
colon delimited list of regions. The regions will be
in the form of ISO 3166-1 Alpha-2 or ISO 3166-
1 Alpha-3 codes. For example, the United States
can be specified as either "US" or "USA" (case-
insensitive). When a list of regions is not
specified, the package will be provisioned only if
it is pinned to start layout.

Use /DependencyPackagePath to specify each
depencency package needed for the app to be
provisioned. The necessary dependency
packages of an app can be found by looking at
the elements in the AppxManifest.xml in the root
of the .appx package of the app. If multiple apps
all share the same dependency, the latest minor
version of each major version of the dependency
package should be installed. For example, App1,
App2, and App3 all have a dependency on
Microsoft.NET.Native.Framework. App1 specifies
Microsoft.NET.Native.Framework.1.6 with minor
version 25512.0, App2 specifies
Microsoft.NET.Native.Framework.1.6 with minor
version 25513.0, and App3 specifies
Microsoft.NET.Native.Framework.1.3 with minor
version 24202.0. Because both App1 and App2
both specify the same major version of the
dependency package, only the latest minor
version 25513.0 should be installed, while App3
specifies a different major version of the
dependency package, so it must also be installed.
So the dependency packages that should be
installed are Microsoft.NET.Native.Framework.1.6
with minor version 25513.0 and
Microsoft.NET.Native.Framework.1.3 with minor
version 24202.0.

If the package has dependencies that are
architecture-specific, you must install all of the
applicable architectures for the dependency on
the target image. For example, on an x64 target
image, include a path to both the x86 and x64
dependency packages or include them both in
the folder of unpacked app files. If the ARM

SERVICING OPTION DESCRIPTION EXAMPLE

https://en.wikipedia.org/wiki/ISO_3166-1


dependency package is also specified or included,
DISM will ignore it since it does not apply to the
target x64 image.

COM PUTER
ARCHITECTURE

DEPENDENCIES TO
INSTALL:

x64 x64 and x86

x86 x86

ARM Windows RT (ARM)
only

Use /CustomDataPath to specify an optional
custom data file for an app. You can specify any
file name. The file will be renamed to Custom.dat
when it is added to the image.

Use /LicensePath with the /PackagePath
option to specify the location of the .xml file
containing your application license.

Only use /SkipLicense with apps that do not
require a license on a sideloading-enabled
computer. Using /SkipLicense in other scenarios
can compromise an image.

/Remove-ProvisionedAppxPackage Removes provisioning for app packages (.appx or
.appxbundle) from the image. App packages will
not be registered to new user accounts that are
created.

Syntax:
/Remove-ProvisionedAppxPackage
/PackageName:<PackageName>

Important: This option will only remove the
provisioning for a package if it is registered to
any user profile. Use the Remove-AppxPackage
cmdlet in PowerShell to remove the app for each
user that it is already registered to in order to
fully remove the app from the image.

If the app has not been registered to any user
profile, the /Remove-ProvisionedAppxPackage
option will remove the package completely.

To remove app packages from a Windows Server
2012 image that has the Desktop Experience
installed, you must remove the app packages
before you remove the Desktop Experience. The
Desktop Experience is a requirement of the
/Remove-ProvisionedAppxPackage option
for Server Core installations of Windows Server
2012.

Dism /Image:C:\test\offline /Remove-ProvisionedAppxPackage
/PackageName:microsoft.devx.appx.app1_1.0.0.0_neutral_ac4zc6fex2zjp

/Optimize-ProvisionedAppxPackages Optimizes the total file size of provisioned
packages on the image by replacing identical files
with hardlinks. Once an image with provisioned
AppX packages is online, /optimize-
provisionedappxpackages won't be able to
optimize provisioned AppX packages. If you take
an image offline and add packages, only the
packages that are provisioned after the image
was brought back offline will be optimized. 

This command is not supported against an
online image.

DISM.exe /Image:C:\test\offline
/Optimize-ProvisionedAppxPackages

SERVICING OPTION DESCRIPTION EXAMPLE

http://go.microsoft.com/fwlink/?LinkId=215772


 

/Set-ProvisionedAppxDataFile Adds a custom data file into the specified app
package (.appx or .appxbundle).

Syntax:
/Set-ProvisionedAppxDataFile
[/CustomDataPath<custom_file_path>]
/PackageName<PackageName>

The specified app (.appx or .appxbundle) package
must already be added to the image prior to
when you add the custom data file with this
option. You can also add a custom data file when
you use the /Add-ProvisionedAppxPackage
option.

Use /CustomDataPath to specify an optional
custom data file for an app. You can specify any
file name. The file will be renamed to Custom.dat
when it is added to the image. If a Custom.dat
file already exists, it will be overwritten.

Use /PackageName to specify an app package
(.appx or .appxbundle).

DISM.exe /Image:C:\test\offline /Set-ProvisionedAppxDataFile
/CustomDataPath:c:\Test\Apps\Custom.dat
/PackageName:microsoft.appx.app1_1.0.0.0_neutral_ac4zc6fex2zjp

SERVICING OPTION DESCRIPTION EXAMPLE

Understanding How DISM Adds .appxbundle Resource Packages to an Image

Limitations

When an .appxbundle is added to the image, not all resource packages within the bundle are applicable. For example, if an app is being
added to a Windows image with a Spanish (Spain) default language, French (France) resources should not be included. To determine what
resources are added to the image, the package applicability is determined using:

Language Resource Packs: If an operating system language is not present, the corresponding app language resource pack is not
added. For example, you might have an image that is a Windows 10 with English (US) as the default language, and a Spanish
(Spain) language pack included. English (US) and Spanish (Spain) app resource packs will be added to the image. If a French
(France) resource pack (or any other language) is available in the app bundle, it will not be added.

Scale and DirectX (DXFL) Resource Packs: Scale and DirectX (DXFL) resource packs depend upon the hardware configuration of
the Windows device. Because the type of target hardware can’t be known at the time the DISM commands are run, all scale and
DXFL resource packages are added to the image at provisioning time. For more information about developing an app with scaling
resources, see Guidelines for scaling to pixel density (Microsoft Store apps).

For an image containing multiple language packs, app resource packages will be added to the image for each language. Once the first user
has signed in to the PC with the deployed image and the user has chosen a language during OOBE, the inapplicable resource packages,
(language resource packs, scale resource packs and DXFL resource packages) that do not match the user profile settings are removed.

For example, an app might support English (US), French (France), and Spanish (Spain) languages. If the app is added to an image with
English (US) and Spanish (Spain) language packs present, only English (US) and Spanish (Spain) resource packs will be added these to the
image. Then, if a user signs in for the first time and, during OOBE, selects English (US) as their operating system language, the Spanish
(Spain) resource packages will be removed after sign in completes.

Important
If you add or remove a language pack from an image, you change the applicability context which may result in leaving an incorrect or
incomplete set of resource packages in the image. When a language pack is added or removed, you must, once again, add all .appxbundle
packages (including any dependency packages and Microsoft Store license file) to the image. This will ensure that the correct set of
resource packages is provisioned.

You cannot install an app package (.appx) on an operating system that does not support Windows 8 apps. You can’t install an app
bundle package (.appxbundle) on an operating system that does not support at least Windows 8.1 apps. Apps aren't supported on
WinPE 4.0, the Windows Server 2012 Server Core installation option, or on any versions of Windows older than Windows 8 and
Windows Server 2012.

To install and run apps on Windows Server 2012, you must install the Desktop Experience.

The /FolderPath option is only supported for app packages based on the .appx format.

/PackagePath must always be used for .appxbundle packages.

http://go.microsoft.com/fwlink/?LinkId=320890
http://go.microsoft.com/fwlink/?LinkId=247330


Related topics
What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options

Sideload Apps with DISM



DISM Application Servicing (.msp) Command-Line
Options
5/11/2018 • 2 minutes to read • Edit Online

Application servicing options

/Get-Help /?/Get-Help /?

/Check-AppPatch /PatchLocation:< path_to_patch.msp>/Check-AppPatch /PatchLocation:< path_to_patch.msp>

/Get-AppPatchInfo: [/PatchCode:< patch_code_GUID>] [/ProductCode:< product_code_GUID>]/Get-AppPatchInfo: [/PatchCode:< patch_code_GUID>] [/ProductCode:< product_code_GUID>]

Application servicing command-line options can be used on an offline image to check the applicability of
Windows Installer application patches (.msp files) and to query your offline image for information about installed
Windows Installer applications and application patches (.msp files).

For information about using Deployment Image Servicing and Management (DISM) with app packages, see
DISM App Package (.appx or .appxbundle) Servicing Command-Line Options.

The base syntax for servicing a Windows image using DISM is:

DISM.exe /Image:<path_to image_directory> [dism_global_options] {servicing_option}
[<servicing_argument>]

The following servicing options are available to list Windows Installer applications and .msp application patches,
and to check the applicability of an application patch for an offline Windows image:

DISM.exe /Image:<path_to_directory> [/Check-AppPatch | /Get-AppPatchInfo: | /Get-AppPatches | /Get-
AppInfo | /Get-Apps]

This section describes how you can use each application servicing option. These options are not case sensitive.

When used immediately after a package servicing command-line option, information about the option and the
arguments is displayed. Additional topics might become available when an image is specified.

Example:

Dism /image:C:\test\offline /Check-AppPatch /?

Displays information only if the MSP patches apply to the offline image. The path to the MSP patch file must be
specified. Multiple patch files can be specified.

Example:

Dism /image:C:\test\offline /Check-AppPatch /PatchLocation:C:\test\MSIPatches\MsiTestPatch1.msp
/PatchLocation:C:\test\MSIPatches\MsiTestPatch2.msp

Displays detailed information about installed MSP patches filtered by <patch_code_GUID> and
<product_code_GUID>.

If the /PatchCode option is specified, detailed information is displayed for all Windows Installer applications that
the patch is applied to.

If the /ProductCode option is specified, information about all MSP patches in the specified application is
displayed.

If the /PatchCode and /ProductCode options are specified, information is displayed only if that specific patch is

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-application-servicing-command-line-options.md


/Get-AppPatches: [/ProductCode:< product_code_GUID>]/Get-AppPatches: [/ProductCode:< product_code_GUID>]

/Get-AppInfo: [/ProductCode:< product_code_GUID>]/Get-AppInfo: [/ProductCode:< product_code_GUID>]

/Get-Apps/Get-Apps

Limitations

applied to the specified Windows Installer application.

Use the /Get-AppPatches option to find the patch code GUID and the product code GUID specific to the patch.
Use the /Get-Apps option to list all product code GUIDs for an installed Windows Installer applications.

If /PatchCode and /ProductCode are not specified, all installed Windows Installer packages and MSP patches
are displayed.

Example:

Dism /image:C:\test\offline /Get-AppPatchInfo

Dism /image:C:\test\offline /Get-AppPatchInfo: /PatchCode:{B0B9997C-GUID-GUID-GUID-
74D866BBDFFF}

Dism /image:C:\test\offline /Get-AppPatchInfo: /ProductCode:{B0F9497C-GUID-GUID-GUID-
74D866BBDF59}

Dism /image:C:\test\offline /Get-AppPatchInfo: /PatchCode:{B0B9997C-GUID-GUID-GUID-
74D866BBDFFF} /ProductCode:{B0F9497C-GUID-GUID-GUID-74D866BBDF59}

Displays basic information about all applied MSP patches for all applications installed on the offline image. If a
product code GUID is specified, information is displayed about all patches in the specified Windows Installer
application.

Examples:

Dism /image:C:\test\offline /Get-AppPatches

Dism /image:C:\test\offline /Get-AppPatches /ProductCode:{B0F9497C-GUID-GUID-GUID-
74D866BBDF59}

Displays detailed information about a specific installed Windows Installer application.

Use the /Get-Apps option to find the GUID for an installed Windows Installer application. If a product code GUID
is not specified, information is displayed for all Windows Installer applications installed in the offline image.

Examples:

Dism /image:C:\test\offline /Get-AppInfo

Dism /image:C:\test\offline /Get-AppInfo /ProductCode:{B0F9497C-GUID-GUID-GUID-
74D866BBDF59}

Displays basic information about all Windows Installer applications in the offline image.

Example:

Dism /image:C:\test\offline /Get-Apps

/Get-AppPatches and /Get-AppPatchInfo apply only to installed patches (.msp files).

When you determine the applicability of an MSP patch, only the Windows Installer applications for which the
patch is applicable will be displayed. One patch can apply to many installed applications and many patches can
apply to one application.



Related topics
What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options

DISM App Package (.appx or .appxbundle) Servicing Command-Line Options



DISM Default Application Association Servicing
Command-Line Options
5/11/2018 • 2 minutes to read • Edit Online

OPTION DESCRIPTION

You can use the default application association-servicing commands to import, export, list, and remove the settings
that specify which application opens a file based on the file name extension or protocol.

The base syntax for servicing a Windows image using DISM is:

DISM.exe {/Image:<path_to_ image_directory> | /Online} [dism_global_options] {servicing_option}
[<servicing_argument>]

The following default application servicing options are available for an offline image.

DISM.exe /image:<path_to_image_directory> [/Get-DefaultAppAssociations | /Import-
DefaultAppAssociations | /Remove-DefaultAppAssociations]

The following default application association servicing options are available for a running operating system.

DISM.exe /Online [/Export-DefaultAppAssociations | /Get-DefaultAppAssociations | Import-
DefaultAppAssociations | Remove-DefaultAppAssociations]

The following table provides a description of how each default application association servicing option can be
used. These options are not case sensitive.

/Get-Help

/?

When used immediately after a default application
association servicing command-line option, information
about the option and the arguments is displayed.
Additional topics might become available when an image
is specified.

Examples:

Dism /image:C:\test\offline /Import-
DefaultAppAssociations /?

Dism /online /Get-DefaultAppAssociations /?

/Export-DefaultAppAssociations:<path_to_export_file> Exports the default application associations from a
running operating system to an .xml file.

Example:

Dism.exe /Online /Export-
DefaultAppAssociations:C:\AppAssoc.xml

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-default-application-association-servicing-command-line-options.md


OPTION DESCRIPTION

Related topics

/Get-DefaultAppAssociations Displays the list of default application associations that
have been set in the specified Windows image. You can
use this option to verify that default application
associations were successfully imported to the image.

Examples:

Dism.exe /Image:C:\test\offline /Get-
DefaultAppAssociations

Dism.exe /Online /Get-DefaultAppAssociations

/Import-DefaultAppAssociations:<path_to_xml_file> Imports a set of default application associations to a
specified Windows image from an .xml file. The default
application associations will be applied for each user
during their first logon.

Examples:

Dism.exe /Image:C:\test\offline /Import-
DefaultAppAssociations:C:\AppAssoc.xml

Dism.exe /Online /Import-
DefaultAppAssociations:C:\AppAssoc.xml

/Remove-DefaultAppAssociations Removes the default application associations from the
specified Windows image.

Examples:

Dism.exe /Image:C:\test\offline /Remove-
DefaultAppAssociations

Dism.exe /Online /Remove-DefaultAppAssociations

What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options



DISM Languages and International Servicing
Command-Line Options
6/13/2018 • 9 minutes to read • Edit Online

OPTION/ARGUMENT DESCRIPTION

The international commands can be used to change international settings in Windows and Windows
Preinstallation Environment (WinPE) images. You can also query existing settings in an offline or online
Windows image.

The base syntax for servicing a Windows image using the Deployment Image Servicing and Management
(DISM.exe) tool is:

DISM.exe {/Image:<path_to_offline_image_directory> | /Online} [dism_global_options]
{servicing_option} [<servicing_argument>]

There are three types of international servicing commands:

Get commands. Retrieves a report of the international settings for an offline image or a running operating
system.
Set commands. Sets the different international settings for an offline image.
Gen-LangIni commands. Generates the Lang.ini file that is used during Setup.

The following international servicing options are available for an offline image:

DISM.exe /Image:<path_to_offline_image_directory> [/Get-Intl] [/Set-UILang | /Set-UILangFallback |
/Set-SysLocale | /Set-UserLocale | /Set-InputLocale | /Set-AllIntl | /Set-Timezone | /Set-
SKUIntlDefaults | /Set-LayeredDriver] [/Gen-Langini | /Set-SetupUILang | /Distribution]

The following international servicing options are available for a running operating system:

DISM.exe /Online /Get-Intl

The following table provides a description of how each international servicing option can be used. These
options are not case-sensitive.

Option: /Get-Help /? When used immediately after an international servicing
command-line option, information about the option and
the arguments is displayed. Additional topics might
become available when an image is specified.

Examples:

Dism /image:C:\test\offline /Set-UILang /?

Dism /online /Get-intl /?

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-languages-and-international-servicing-command-line-options.md


Note

Note

OPTION/ARGUMENT DESCRIPTION

Option: /Get-Intl Displays information about international settings and
languages.

Use the /Online option to display information about
international settings and languages in the running
operating system.

Use the /Image:<path_to_offline_image_directory>
option to display information about international
settings and languages in the offline image.

When used with the /Distribution options, information
about international settings and languages in the
distribution is displayed. The name of the folder in the
distribution share is not validated. It will be reported as
…\Langpacks&lt;locale_name>\Lp.cab. Where
<locale_name> is the name of the folder.

The user locale is reported only for offline images.
The report does not include this setting for running
operating systems.

Examples:

Dism /online /Get-Intl

Dism /image:C:\test\offline /Get-Intl

Dism /image:C:\test\offline
/distribution:C:\windows_distribution /Get-Intl

Option: /Set-UILang:

Argument: <language_name>

Sets the default system user interface (UI) language. If
the language is not installed in the Windows image, the
command will fail.

<language_name> specifies the name of the language
to set as the default; for example, ja-JP.

If you install a Language Interface Pack (LIP) and
specify its language as the default UI language, the LIP
language will be set as the system default UI language
(or Install language) and the parent language will be
set as the default UI language.

Example:

Dism /image:C:\test\offline /Set-UILang:fr-FR



Important

OPTION/ARGUMENT DESCRIPTION

Option: /Set-UILangFallback:

Argument: <language_name>

Sets the fallback default language for the system UI in
the offline Windows image. This setting is used only
when the language specified by the /Set-UILang option
is a partially localized language.

<language_name> specifies the name of the language
to set as the default fallback; for example, en-US.

Example:

Dism /image:C:\test\offline /Set-UILangFallBack:fr-
FR

Option: /Set-Syslocale:

Argument: <locale_name>

Sets the language for non-Unicode programs (also
called system locale) and font settings in the offline
Windows image.

<locale_name> specifies the name of the language and
locale to set as the default language for non-Unicode;
for example, en-US.

You cannot set Unicode-only languages as the system
locale. If you try, the /Set-SysLocale option will fail
and the language for non-Unicode programs will not
be changed.

Example:

Dism /image:C:\test\offline /Set-SysLocale:fr-FR

Option: /Set-UserLocale:

Argument: <locale_name>

Sets the "standards and formats" language (also called
user locale) in the offline Windows image. The
"standards and formats" language is a per-user setting
that determines default sort order and the default
settings for formatting dates, times, currency, and
numbers.

Example:

Dism /image:C:\test\offline /Set-UserLocale:fr-FR



Dism /image:C:\test\offline /Set-
InputLocale:fr-fr

Dism /image:C:\test\offline /Set-
InputLocale:0410:00010410

OPTION/ARGUMENT DESCRIPTION

Option: /Set-InputLocale:

Argument: <input_locale>:<keyboard_layout>

Sets the input locales and keyboard layouts to use in
the offline Windows image.

The value of the <input_locale>:<keyboard_layout>
pair can be one of the following:

<language_id:keyboard_layout>

For example, 0409:00000409

<locale_name>

For example, if you specify en-US as the local
name, The Set-InputLocale: option also sets the
default keyboard layout defined for this locale.

You can specify more than one value by using
semicolons as separators. This is useful when you want
to include support for multiple keyboards on a single
computer. The first value will be set as the default
keyboard.

The valid keyboard layouts that can be configured on
your computer are listed in the following registry key.

HKEY_LOCAL_MACHINE
\SYSTEM\CurrentControlSet\Control\Keyboard
Layouts

For a list of the values, see Default Input Locales and
Default Keyboard Settings.

Use the hexadecimal value of the language ID and
keyboard layout that you intend to configure.

This parameter is optional.

Example:



OPTION/ARGUMENT DESCRIPTION

Option: /Set-AllIntl:

Argument: <language_name>

Sets the default system UI language, the language for
non-Unicode programs, the "standards and formats"
language, and the input locales and keyboard layouts to
the specified language in the offline Windows image.
This option specifies the language value for the
following:

UI language

System locale

User locale

Input locale

If used with any of the options that specify the
individual language or locales, then the individual
settings take precedence.

<language_name> specifies the language name and
locale code; for example, en-US, es-ES, or fr-FR.

Example:

Dism /image:C:\test\offline /Set-AllIntl:fr-FR

Option: /Set-TimeZone:

Argument: <timezone_name>

Sets the default time zone in a Windows image. Before
setting the time zone, DISM verifies that the specified
time zone string is valid for the image.

<timezone_name> specifies the name of the time zone
to use; for example, Pacific Standard Time. For a
complete list of time-zone strings, see the Windows®
Unattended Setup Reference. On a computer that is
running Windows 7, you can use the tzutil command-
line tool to list the time zone for that computer. The
tzutil tool is installed by default on Windows 7.

The name of the time zone must exactly match the
name of the time zone settings in the registry in
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Time Zones.

If you add a custom time zone to your computer, you
can specify that custom time-zone string.

Example:

Dism /image:C:\test\offline /Set-TimeZone:"W.
Europe Standard Time"



OPTION/ARGUMENT DESCRIPTION

Option: /Set-SKUIntlDefaults:

Argument: <language_name>

Sets the default system UI language, the language for
non-Unicode programs, the "standards and formats"
language, and the input locales, keyboard layouts, and
time zone values in an offline Windows image to the
default value specified by <language_name>. The /Set-
SKUIntlDefaults option does not change the keyboard
driver for Japanese and Korean keyboards. You must use
the /Set-LayeredDriver option to change this.

Use / Set-SKUIntlDefaults to change all the
international settings in an offline Windows image to
match the default values that are set during retail
installations. For more information about the default
values of each language pack, see Default Input Locales
for Windows Language Packs.

This parameter is optional. If combined with one of the
settings earlier in this section, the individual setting
takes priority.

If the language passed matches a Unicode-only locale
setting, the system locale will not be changed but the
command will not fail.

Example:

Dism /image:C:\test\offline /Set-SKUIntlDefaults:fr-
FR

Option: /Set-LayeredDriver:

Arguments: <1-6>

Specifies a keyboard driver to use for Japanese or
Korean keyboards.

In Japan, many retail users have 106-key keyboards,
whereas others have 101- or 102-key keyboards. In
Korea, there are several different types of keyboards,
some with different numbers of keys.

The possible values for these settings are [1-6]:

1. Specifies the PC/AT Enhanced Keyboard
(101/102-Key).

2. Specifies the Korean PC/AT 101-Key Compatible
Keyboard/MS Natural Keyboard (Type 1).

3. Specifies the Korean PC/AT 101-Key Compatible
Keyboard/MS Natural Keyboard (Type 2).

4. Specifies the Korean PC/AT 101-Key Compatible
Keyboard/MS Natural Keyboard (Type 3).

5. Specifies the Korean Keyboard (103/106 Key).

6. Specifies the Japanese Keyboard (106/109 Key).

Example:

Dism /image:C:\test\offline /Set-LayeredDriver:1



Note

OPTION/ARGUMENT DESCRIPTION

Limitations

Option: /Gen-LangINI: Generates a new Lang.ini file, which is used by Setup to
define the language packs inside the image and outside
in the distribution. It also defines the default UI
language for Setup.

The new Lang.ini file will be added to the Sources folder
of the Windows distribution.

You will not be prompted for permission to overwrite
an existing Lang.ini file. The existing Lang.ini file will be
overwritten automatically.

You must specify an offline Windows image
(/Image:<path_to_offline_image.wim> and a
distribution
(/Distribution:<path_to_distribution_directory>).

Example:

Dism /image:C:\test\offline /Gen-LangINI
/distribution:C:\windows_distribution

Option: /Set-SetupUILang:

Argument: <language_name>

Defines the default language that will be used by Setup.
If this language cannot be used, Setup automatically
uses English.

This is an optional command. If not used, the default UI
language in the image will be used. If the language is
not present, the first language in the list of present
languages will be used.

Example:

Dism /image:C:\test\offline /Set-SetupUILang:fr-FR
/distribution:C:\windows_distribution

Option: /Distribution:

Argument: <path_to-distribution_directory>

Specifies the path to the Windows distribution. The
Windows distribution is a copy of the content that
releases on the Windows product DVD. This option is
only for use with the /Get-Intl and /Gen-LangINI
option if there are external language packs.

Example:

Dism /image:C:\test\offline /Gen-LangINI
/distribution:C:\windows_distribution

The DISM International servicing commands cannot be used on a Windows Vista or a Windows Server
2008 image. For information about servicing Windows Vista and Windows Server 2008 images, see the
Windows Vista SP1 release of the Windows OEM Preinstallation Kit (Windows OPK) or Windows
Automated Installation Kit (Windows AIK).
You cannot use other servicing commands on the same command line with international servicing
commands.
You cannot set a Unicode-only language as the system locale.



The following languages are Unicode-only (Languages are listed in the table in the format: Language -
Country/Region):

Amharic - Ethiopia

Kazakh - Kazakhstan

Odia - India (Odia Script)

Armenian - Armenia

Khmer - Cambodia

Pashto - Afghanistan

Assamese - India

Konkani - India

Punjabi - India (Gurmukhi Script)

Bangla - Bangladesh

Lao - Lao PDR

Sanskrit - India

Bangla - India (Bengali Script)

Malayalam - India (Malayalam Script)

Sinhala - Sri Lanka

Divehi - Maldives

Maltese - Malta

Syriac - Syria

Georgian - Georgia

Maori - New Zealand

Tamil - India

Gujarati - India (Gujarati Script)

Marathi - India

Telugu - India (Telugu Script)

Hindi - India

Mongolian (Mongolian) - PRC

Tibetan - PRC

Inuktitut (Syllabics) - Canada

Nepali - Federal Democratic Republic of Nepal

Yi - PRC

Kannada - India (Kannada Script)

Do not install a language pack after an update.



Related topics

If you are servicing an international image, and your host environment does not support the language in
that image, you might not be able to read an error message that originates from the international image.

If you install an update (hotfix, general distribution release [GDR], or service pack [SP]) that contains
language-dependent resources before you install a language pack, the language-specific changes
contained in the update are not applied. Always install language packs before installing updates.

When specifying a time zone by using /Set-TimeZone:<timezone_name> you must use straight
quotation marks for multiple words. For example, /Set-TimeZone:"Pacific Standard Time". If you
copy and paste the time zone name, including quotation marks, from a Microsoft® Word document, the
quotation marks might not be recognized and the command line might fail.

What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options



DISM Capabilities Package Servicing Command-Line
Options
5/11/2018 • 2 minutes to read • Edit Online

DISM Command-Line Options

OPTIONS DESCRIPTION

Adds a capability to an image.

Note DISM checks for the source files in the following
order :

Windows 10 for desktop editions (Home, Pro, Enterprise, and Education) only. Use Deployment Image Servicing
and Management (DISM.exe) to service Windows capabilities. Capabilities are a Windows package type allows
you to request services like .NET or languages without specifying the version. Use DISM to search multiple
sources like Windows Update or your corporate servers to find and install the latest version.

To see the available capabilities, go to Features On Demand.

Here's how each DISM option can be used. These options are not case sensitive.

Note, each of these commands requires either the /Online or /Image:<path_to_offline_image_file> argument.

/Add-Capability

/CapabilityName:<capability_name>
[/Source:<source>] [/LimitAccess]

Example:

Dism /Online /Add-Capability
/CapabilityName:Language.Basic~~~en-US~0.0.1.0

1. If /Source is specified, DISM looks in the specified
locations first.

2. If /Source is not specified, or if the source files are
not found in the specified locations, DISM checks to
see if a group policy is set. If it is, DISM checks the
locations specified by the group policy.

3. If the files still aren't found, and if DISM is working
against an online image, and if /LimitAccess is not
specified, it looks for the files on Windows Update.

/Source: Allows you to choose a location, such as a
server, where the capability source files are located. You
can use multiple /Source arguments.

Example:

Dism /Online /Add-Capability
/CapabilityName:Language.Basic~~~en-US~0.0.1.0
/Source:\server\share /Source:\server2\share

/LimitAccess: Tells DISM to not check Windows Update
or Windows Server Update Services for the capability
source files.

Example:

Dism /Online /Add-Capability
/CapabilityName:Language.Basic~~~en-US~0.0.1.0
/Source:\server\share /LimitAccess

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-capabilities-package-servicing-command-line-options.md


/Get-Capabilities

OPTIONS DESCRIPTION

Related topics

Get capabilities in the image.

Example:

DISM /Online /Get-Capabilities

/Get-CapabilityInfo

/CapabilityName:<capability_name>

Get information about a specific capability.

Example:

DISM /Online /Get-CapabilityInfo
/CapabilityName:Language.Basic~~~en-US~0.0.1.0

/Remove-Capability

/CapabilityName:<capability_name>

Example:

Dism /Online /Remove-Capability
/CapabilityName:Language.Basic~~~en-US~0.0.1.0

Example:

Dism /Image:C:\test\offline /Remove-Capability
/CapabilityName:Language.Basic~~~en-US~0.0.1.0

Features On Demand

DISM - Deployment Image Servicing and Management Technical Reference for Windows

What is DISM?

DISM Global Options for Command-Line Syntax

DISM Operating System Package Servicing Command-Line Options

DISM Languages and International Servicing Command-Line Options



DISM Windows Edition-Servicing Command-Line
Options
5/11/2018 • 3 minutes to read • Edit Online

Command-line Syntax

OPTION DESCRIPTION

You can use the Windows edition-servicing commands to change one edition of Windows to a higher edition in
the same edition family. The edition packages for each potential target edition are staged in a Windows image.
This is referred to as an edition-family image. Because the target editions are staged, you can service a single
image, and the updates will be applied appropriately to each edition in the image. This can help reduce the
number of images that you have to manage, but it might increase the factory time or end-user time that must be
spent in the specialize configuration pass.

Offline changes do not require a product key. If you change to a higher edition using offline servicing, you can
add the product key using one of the following methods:

Enter the product key during the out-of-box experience (OOBE).

Use an unattended answer file to enter the product key during the specialize configuration pass.

Use Deployment Image Servicing and Management (DISM) and the Windows edition-servicing
command-line option /Set-ProductKey after you set the edition offline.

The base syntax for servicing a Windows image using DISM is:

DISM.exe {/Image:<path_to_image_directory> | /Online} [dism_global_options] {servicing_option}
[<servicing_argument>]

You can use the following edition-servicing options on an offline image to list editions or to change a Windows
image to a higher edition:

DISM.exe /Image:<path_to_image_directory> {/Get-CurrentEdition | /Get-TargetEditions | /Optimize-
Image /WIMBoot | /Set-Edition | /Set-ProductKey:<product_key>}

The following edition-servicing options are available for a running Windows operating system:

DISM.exe /Online {/Get-CurrentEdition | /Get-TargetEditions | /Set-ProductKey:<product_key> | /Set-
Edition:<target_edition> {/GetEula:< path> | /AcceptEula /ProductKey:<product_key>}}

The following table provides a description for how each edition-servicing option can be used. These options are
not case-sensitive.

/Get-Help

/?

When used immediately after an edition-servicing
command-line option, information about the option and
the arguments is displayed. Additional Help topics might
become available when an image is specified.

Examples:

Dism /Image:C:\test\offline /Get-CurrentEdition /?

Dism /Online /Get-CurrentEdition /?

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-windows-edition-servicing-command-line-options.md


Important

OPTION DESCRIPTION

/Get-CurrentEdition Displays the edition of the specified image.

Examples:

Dism /Image:C:\test\offline /Get-CurrentEdition

Dism /Online /Get-CurrentEdition

/Get-TargetEditions Displays a list of Windows editions that an image can be
changed to.

Examples:

Dism /Image:C:\test\offline /Get-TargetEditions

Dism /Online /Get-TargetEditions

/Set-Edition:<target_edition_ID> [{/GetEula:<path |
/AcceptEula /ProductKey:<product_key>}]

Use the /Set-Edition option with no arguments to
change an offline Windows image to a higher edition.

To change an online Windows Server operation system to
a higher edition, you must use the /Set-Edition option
with the /AcceptEula and /ProductKey arguments.

You should not use the /Set-Edition option on an
image that has already been changed to a higher
edition. It is recommended that you use this option on
the lowest edition available in the edition family.

Use /GetEula on an online image to copy the end-user
license agreement to a specified path.

The /AcceptEula argument accepts the end-user license
agreement and is required in order to change the
Windows edition on an online image.

Example:

Dism /Image:C:\test\offline /Set-Edition:<edition
name>

On a running Windows Server operating system only:

Dism /online /Set-Edition:<edition name>
/GetEula:c:\eulapath

Dism /online /Set-Edition:<edition name>
/AcceptEula /ProductKey:12345-67890-12345-
67890-12345

Where <edition name> is the higher edition that you
want to change to.



OPTION DESCRIPTION

Limitations

Related topics

/Set-ProductKey:<productKey> The /Set-ProductKey option can only be used to enter
the product key for the current edition in an offline
Windows image after you change an offline Windows
image to a higher edition using the /Set-Edition option.

Example:

Dism /Image:C:\test\offline /Set-ProductKey:12345-
67890-12345-67890-12345

If you do not enter the product key when you set the edition of your offline image, you must either enter
the product key during OOBE, or use an unattended answer file to enter the product key during the
specialize configuration pass.

You cannot use edition-servicing commands on a Windows Preinstallation Environment (Windows PE)
image.

To maintain edition-specific customizations, you should apply edition-specific answer files after the edition
upgrade.

If you want to run the /Set-Edition option against a 64-bit image with more than 30 language packs, you
must run it from a 64-bit computer. Otherwise, you might receive an out-of-memory error. This limitation
only exists if you are manipulating a 64-bit image from a 32-bit computer. This limitation does not exist
when you run this option on a computer that matches the architecture of the image.

You cannot set a Windows image to a lower edition. The lowest edition will not appear when you run the
/Get-TargetEditions option.

You should not use the /Set-Edition option on an image that has already been changed to a higher
edition.

What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options

Change the Windows Image to a Higher Edition Using DISM



DISM Driver Servicing (.inf) Command-Line Options
5/11/2018 • 3 minutes to read • Edit Online

OPTION/ARGUMENT DESCRIPTION

Use DISM with INF-style drivers to add, remove, or list drivers to an online or offline Windows image (.wim).
Microsoft Windows Installer or other driver package types (such as .exe files) are not supported.

You can specify a directory where the driver INF files are located, or you can point to a driver by specifying the
name of the INF file.

The base syntax for servicing a Windows image using DISM is:

DISM.exe {/Image:<path_to_ image_directory> | /Online} [dism_global_options] {servicing_option}
[<servicing_argument>]

The following driver servicing options are available for an offline image.

DISM.exe /image:<path_to_image_directory> [/Get-Drivers | /Get-DriverInfo | /Add-Driver | /Remove-
Driver | /Export-Driver]

The following driver servicing options are available for a running operating system.

DISM.exe /Online [/Get-Drivers | /Get-DriverInfo | /Export-Driver]

The following table provides a description of how each driver servicing option can be used. These options are
not case sensitive.

Option: /Get-Help /? When used immediately after a driver servicing
command-line option, information about the option and
the arguments is displayed. Additional topics might
become available when an image is specified.

Examples:

Dism /image:C:\test\offline /Add-Driver /?

Dism /online /Get-Drivers /?

Option: /Get-Drivers

Arguments:

/All

/Format:{Table | List}

Displays basic information about driver packages in the
online or offline image.

By default, only third-party drivers will be listed. Use the
/all argument to display information about default
drivers and third-party drivers. Use the /Format:Table
or /Format:List argument to display the output as a
table or a list.

If you point to an image, you can determine what drivers
are in the image, in addition to the state of the drivers
(installed or staged).

Example:

Dism /image:C:\test\offline /Get-Drivers

Dism /online /Get-Drivers

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-driver-servicing-command-line-options-s14.md


OPTION/ARGUMENT DESCRIPTION

Option: /Get-DriverInfo

Arguments:

/Driver:<installed_INF_FileName>

/Driver:<path_to_driver.inf>

Displays detailed information about a specific driver
package.

You can point to an INF file installed in the image, or one
that is not yet installed. You can specify the name of the
uninstalled driver or the third-party driver in the device
driver store. Installed third-party drivers in the driver
store will be named Oem0.inf, Oem1.inf, and so on. This
is referred to as the published name.

You can specify multiple drivers on the command line by
using the /driver option multiple times.

Example:

First, use the /Get-Drivers option so that you can
identify a driver INF file. Then run the following
command:

Dism /image:C:\test\offline /Get-DriverInfo /driver:
<path_to_driver.inf>

Dism /online /Get-DriverInfo
/driver:C:\test\drivers\usb\usb.inf

Option: /Add-Driver

Arguments:

/Driver:<folder_containing_INF>

/Driver:<path_to_driver.inf>

/Recurse

/ForceUnsigned

Adds third-party driver packages to an offline Windows
image.

When you use the /Driver option to point to a folder,
INF files that are not valid driver packages are ignored.
These files are reported on the console when the
command runs, and a warning is included in the log file.
You will not receive an error message.

If you point to a path and use the /Recurse option, all
subfolders are queried for drivers to add.

For testing purposes you can use /ForceUnsigned to
add unsigned drivers and override the requirement that
drivers installed on X64-based computers must have a
digital signature. For more information about driver
signing requirements, see Device Drivers and
Deployment Overview.

Examples:

Dism /image:C:\test\offline /Add-Driver
/driver:C:\test\drivers\

Dism /image:C:\test\offline /Add-Driver
/driver:C:\test\drivers /recurse

Dism /image:C:\test\offline /Add-Driver
/driver:C:\test\drivers\mydriver.inf

Dism /image:C:\test\offline /Add-Driver
/driver:C:\test\drivers\mydriver.inf /ForceUnsigned



Warning

OPTION/ARGUMENT DESCRIPTION

Limitations

Related topics

Option: /Remove-Driver

Arguments:

/Driver:<published_name>

Removes third-party drivers from an offline image.

When third-party drivers are added, they are named
Oem0.inf, Oem1.inf, and so on. You must specify the
<published name> (for example, Oem1.inf) to remove
the driver. You cannot remove default drivers.

Removing a boot-critical driver package can make the
offline Windows image unbootable.

You can specify multiple drivers on the command line by
using the /Driver option multiple times.

Examples:

Dism /image:C:\test\offline /Remove-Driver
/driver:oem1.inf

Dism /image: C:\test\offline /Remove-Driver
/driver:oem1.inf /driver:oem2.inf

Option: /Export-Driver

Arguments:

/Destination:<path_to_destination_folder>

Exports all third-party driver packages from a Windows
image to a destination path. The exported drivers can
then be injected to an offline image by running the
DISM Add-Driver command. This command is new for
Windows 8.1 Update.

Examples:

DISM /Online /Export-Driver
/Destination:C:\destpath

DISM /Image:C\test\offline /Export-Driver
/Destination:C:\destpath

The driver servicing command supports only .inf files. Windows Installer or other driver package types (such
as .exe files) are not supported.

Dism /Image:C:\test\offline /Add-Driver /Driver:C:\test\drivers\1.inf /Driver:C:\test\drivers\2.inf 
/Driver:C:\test\drivers\3.inf

Drivers are installed in the order that they are listed in the command line. In the following example, 1.inf,
2.inf, and 3.inf will be installed in the order that they are listed in the command line.

What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options



DISM Unattended Servicing Command-Line
Options
5/11/2018 • 2 minutes to read • Edit Online

OPTION DESCRIPTION

If you are installing multiple packages to a Windows® image, use DISM to apply an unattend.xml answer file to
the image. Some packages require other packages to be installed first. If there is a dependency requirement, the
best way to ensure the correct order of the installation is by using an answer file. When you use DISM to apply
an unattend.xml answer file to an image, the unattended settings in the offlineServicing configuration pass are
applied to the Windows image.

The base syntax for servicing a Windows image using DISM is:

DISM.exe {/Image:<path_to_ image_directory> | /Online} [dism_global_options] {servicing_option}
[<servicing_argument>]

The following servicing options are available to apply an unattend.xml answer file to an offline Windows image:

DISM.exe /Image:<path_to_ image_directory> /Apply-Unattend:<path_to_unattend.xml>

The following servicing options are available to apply an unattend.xml answer file to a running operating system:

DISM.exe /Online /Apply-Unattend:<path_to_unattend.xml>

The following table provides a description of how an unattended servicing option can be used. These options are
not case sensitive.

/Get-Help

/?

When used immediately after an unattended servicing
command-line option, information about the option and
the arguments is displayed. Additional topics might
become available when an image is specified.

Examples:

Dism /online /Apply-Unattend /?

Dism /image:C:\test\offline /Apply-Unattend /?

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-unattended-servicing-command-line-options.md


OPTION DESCRIPTION

Limitations

Related topics

/Apply-Unattend:<path_to_unattend.xml> Applies an Unattend.xml file to an image.

If you are updating device drivers using an unattended
answer file, you must apply the answer file to an offline
image and specify the settings in the offlineServicing
configuration pass.

If you are updating packages or other settings using an
unattended answer file, you can apply the answer file to
an offline or online image. Specify the settings in the
offlineServicing configuration pass.

Example:

Dism /image:C:\test\offline /Apply-
Unattend:C:\test\answerfiles\myunattend.xml

Dism /online /Apply-
Unattend:C:\test\answerfiles\myunattend.xml

You cannot use other servicing commands on the same command line with unattended servicing
commands.

Only a single unattend.xml answer file can be specified on any command line.

When you add packages to an image using an unattended answer file, the applicability of the package will
not be checked. The answer file will be applied, and the operation will complete even if there are packages
specified in the answer file which do not apply to the image. If you have to check the applicability of a
package when you add it to an image, use the DISM command together with the /Add-Package option
without the /ignorecheck option. For more information, see DISM Operating System Package Servicing
Command-Line Options.

If you are updating device drivers using an unattended answer file, you must apply the answer file to an
offline image.

When you use DISM.exe to apply an answer file to a running operating system, the answer file should
only contain elements in the offlineServicing configuration pass. This is because some settings in the
Specialize configuration pass might be applied to the operating system. We recommend that the answer
file that you use with DISM only contain settings in the offlineServicing configuration pass.

The recommended way to author answer files is to create them in Windows System Image Manager
(Windows SIM). However, if you use a manually authored answer file, you must validate the answer file in
Windows SIM to verify that it works. For more information, see Best Practices for Authoring Answer
Files.

When you apply an answer file by using DISM, the answer file is not cached on the target computer.

What is DISM?

DISM Image Management Command-Line Options

DISM Languages and International Servicing Command-Line Options

DISM Operating System Package Servicing Command-Line Options

https://msdn.microsoft.com/library/windows/hardware/dn915073


DISM Windows Edition-Servicing Command-Line Options

DISM Driver Servicing Command-Line Options



DISM Windows PE Servicing Command-Line
Options
5/11/2018 • 2 minutes to read • Edit Online

OPTION DESCRIPTION

You can mount a Windows Preinstallation Environment (Windows PE) image and add or remove packages,
drivers, and language packs using the appropriate driver, package, or international-servicing commands. There
are also commands that are specific to a Windows PE image, which can be used to prepare the Windows PE
environment, enable profiling, list packages and prepare the Windows PE image for deployment.

Important
Windows PE profiling functionality is removed beginning with Windows 8.1.

The base syntax for servicing a Windows PE image is:

DISM.exe /Image:<path_to_image_directory> [dism_global_options] {servicing_option}
[<servicing_argument>]

In addition to the Deployment Image Servicing and Management (DISM) options, the following Windows PE
servicing options are available for an offline image.

DISM.exe /Image: <path_to_image_directory> [/Get-PESettings | /Get-Profiling | /Get-ScratchSpace |
/Get-TargetPath | /Set-ScratchSpace:<size_of_ScratchSpace> | /Set-TargetPath :<target_path> | /Enable-
Profiling | /Disable-Profiling | /Apply-Profiles:<path_to_myprofile.txt>]

Important
These options cannot be used with an online, running version of Windows PE. You must specify a Windows PE
image using the /Image:<path_to_image_directory> option.

The following table provides a description for how each Windows PE servicing option can be used on a Windows
PE image. These options are not case sensitive.

/Get-PESettings Displays a list of Windows PE settings in the Windows PE
image. The list includes current profiling state, scratch
space settings and target path settings. For example:

Dism /image:C:\test\offline /Get-PESettings

/Get-Profiling Retrieves the enabled/disabled state of the Windows PE
profiling tool. For example:

Dism /image:C:\test\offline /Get-Profiling

/Get-ScratchSpace Retrieves the configured amount of Windows PE system
volume scratch space. This setting represents the amount
of writeable space available on the Windows PE system
volume when booted in ramdisk mode. For example:

Dism /image:C:\test\offline /Get-ScratchSpace

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-windows-pe-servicing-command-line-options.md


OPTION DESCRIPTION

/Get-TargetPath Retrieves the target path of the Windows PE image. The
target path represents a path to the root of the Windows
PE image at boot time. For example:

Dism /image:C:\test\offline /Get-TargetPath

/Set-ScratchSpace:<size_of_ScratchSpace> Sets the available scratch space, in megabytes. Valid
values are 32, 64, 128, 256 and 512. For example:

Dism /image:C:\test\offline /set-ScratchSpace:128

/Set-TargetPath :<target_path> For hard disk boot scenarios, this option sets the location
of the Windows PE image on the disk.

Note the following limitations when setting the target
path:

The path must be at least three characters and no
longer than 32 characters

The path must start with a letter (any letter from
C to Z)

The drive letter must be followed by *:*

The remainder of the path must not contain any
invalid characters, such as Unicode characters

The path must be absolute, no "." or ".." elements

The path must not contain any blank spaces or "\"

For example:

Dism /image:C:\test\offline /Set-TargetPath:X:
</strong>

/Enable-Profiling Enables profiling (file logging) so you can create your own
profiles. By default, profiling is disabled. For example:

Dism /image:C:\test\offline /Enable-profiling

/Disable-Profiling Turns off the file logging that is used to create a profile.

Dism /image:C:\test\offline /Disable-Profiling

/Apply-Profiles:<path_to_myprofile.txt> <path_to_myprofiles.txt> must be a comma separated
list of profile file names.

Removes any files from the Windows PE image that are
not part of the custom profiles. It also checks the custom
profile against the CORE profile to ensure that custom
application files and boot-critical files are not deleted. A
Windows PE image that has been customized using any
profile is not serviceable. However, /Get-Profiling, /Get-
TargetPath and /Get-PESettings will work. For example:

Dism /image:C:\test\offline /Apply-
Profiles:C:\test\profiles\myprofile.txt



Limitations

Related topics

The Windows PE commands can be used to change international settings only in Windows PE 3.0 and Windows
PE 4.0 images.

Windows PE for Windows 10

Wpeutil Command-Line Options

What is DISM?

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options



DISM operating system uninstall command-line
options
4/30/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

/Get-OSUninstallWindow

DISM /Online /Get-OSUninstallWindow

/Initiate-OSUninstall

DISM /Online /Initiate-OSUninstall

/Remove-OSUninstall

DISM /Online /Remove-OSUninstall

/Set-OSUninstallWindow

OEMs shouldn't use this setting in imaging or manufacturing scenarios. This setting is for IT administrators.

Windows gives a user the ability to uninstall and roll back to a previous version of Windows. You can use DISM to:

Find out how many days after an upgrade that an OS can be uninstalled
Initiate an uninstall
Remove the ability for a user to uninstall a Windows upgrade
Set the number of days that a user has to uninstall a Windows upgrade

Run this command against an online image to see how many days after an upgrade that an uninstall can be
initiated.

Syntax:

Run this command against an online image to revert a PC to a previous Windows installation.

Syntax:

Run this command against an online image to remove the ability to roll back a PC to a previous installation of
Windows.

Syntax:

Run this command against an online image to set the number of days after an upgrade that an uninstall can be
initiated.

Syntax:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-uninstallos-command-line-options.md


DISM /Online /Set-OSUninstallWindow /Value:<days>

DISM /Online /Set-OSUninstallWindow /Value:30

Related topics

Example:

DISM Image Management Command-Line Options

Deployment Image Servicing and Management (DISM) Command-Line Options



DISM Reference (Deployment Image Servicing and
Management)
5/11/2018 • 2 minutes to read • Edit Online

In This Section

Related topics

Deployment Image Servicing and Management (DISM) is a command-line tool that is used to service Windows®
images offline before deployment. You can use it to install, uninstall, configure, and update Windows features,
packages, drivers, and international settings. Subsets of the DISM servicing commands are also available for
servicing a running operating system. For more information, see What is DISM?.

Deployment Image Servicing and Management (DISM)
Command-Line Options

Lists the command-line options for managing and
servicing a Windows image with the Dism.exe tool.

DISM Configuration List and WimScript.ini Files Describes how to create a configuration list to exclude
files and folders from an image capture or compression.

Deployment Image Servicing and Management (DISM)
Best Practices

Describes some best practices related to servicing a
Windows image. We recommend that you implement
these practices wherever possible.

Service a Windows PE Image with DISM Describes information specific to using DISM to configure
a Windows PE image.

DISM Supported Platforms Describes the different operating systems and
architectures supported by DISM.

Configure a Windows Repair Source Describes how to configure and maintain a Windows
image repair source to use within your network. The
repair source can be used to restore Windows features or
to repair a corrupted Windows image.

What is DISM?

DISM How-to Topics (Deployment Image Servicing and Management)

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-reference--deployment-image-servicing-and-management.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/service-a-windows-pe-image-with-dism
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-how-to-topics--deployment-image-servicing-and-management


DISM Configuration List and WimScript.ini Files
5/11/2018 • 2 minutes to read • Edit Online

Creating a Configuration List File

SECTION DESCRIPTION

Note

Default Exclusion ListDefault Exclusion List

The Deployment Image Servicing and Management (DISM) tool is a command-line tool that you can use to
capture and apply Windows images. You can create a configuration list file to determine the following:

Which files and folders must be excluded from the capture process when you use the /Capture-Image
option with the DISM tool.

Which folders, files, and file types must be excluded from the compression process when you use the
/Compress argument.

The /ConfigFile argument enables you to customize specific compression, capture, and boundary alignment
actions for each file and folder when you capture an image using DISM.exe. You can create a configuration list
(.ini) file by using a text editor, such as Notepad.

The following sections appear in the DISM configuration list file.

[ExclusionList] Enables you to define the files and folders to exclude
when you use the /Capture-Image option.

[ExclusionException] Enables you to override the default exclusion list when
you use the /Capture-Image option.

[CompressionExclusionList] Enables you to define the specific files and folders, and
also to specify file types, to exclude when you use the
/Compress argument.

You can use file or folder matching to exclude a file
from compression. You can provide a full path match,
or you can use wildcard characters (*). For example, you
can use \WINDOWS\inf*.pnf to match a specific type
of file, or \WINDOWS\inf* to match a whole folder.

By default, the DISM.exe tool will exclude the following files.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-configuration-list-and-wimscriptini-files-winnext.md


[ExclusionList]
\$ntfs.log
\hiberfil.sys
\pagefile.sys
\swapfile.sys
"\System Volume Information"
\RECYCLER
\Windows\CSC

[CompressionExclusionList]
*.mp3
*.zip
*.cab
\WINDOWS\inf\*.pnf

Exclusion List GuidelinesExclusion List Guidelines

Using the Configuration File

myfolder\*.txt

\myfolder
\folder\subfolder

C:\myfolder
C:\folder\subfolder

C:\main\myfolder
C:\data\folder\subfolder

[ExclusionException]
\pagefile.sys
"\System Volume Information"

You can only use wildcard characters in the last component in a file path that does not begin with a
backslash. For example:

You can use a preceding backslash to limit file-matching and directory-matching relative to the root
directory. For example, you can use this exclusion list:

This list will exclude the following files and directories when you capture the "C:\" drive:

However, DISM will not exclude files or directories that are contained in the following example.

You can override the default exclusion list by using the [ExclusionException]  section. For example:

If an explicit [ExclusionException]  section is provided in the WIM configuration file, it will always take
precedence over the [Exclusion List]  section.

You cannot override the default compression exclusion list by using the [ExclusionException]  section.

If you create a custom-named configuration file and store it outside the DISM directory, you can use the DISM
command to run the file. At a command prompt, open the DISM directory. For example:



Dism /Capture-Image /ImageFile:install.wim /CaptureDir:D:\ /Name:Drive-D /ConfigFile:<configuration list>

Dism /Append-Image /ImageFile:install.wim /CaptureDir:D:\ /Name:Drive-D /ConfigFile:<configuration list>

Related topics

or

where <configuration list> provides the complete directory location for the configuration file. For example, 
c:\imaging\configuration_list.ini . You must use either the /Capture-Image option to create a new .wim file or

the /Append-Image option to append an existing .wim file.

DISM Image Management Command-Line Options



Deployment Image Servicing and Management
(DISM) Best Practices
5/11/2018 • 6 minutes to read • Edit Online

Elevate Permissions for Command-Line Tools

Disable Antivirus Tools

Servicing an Image

Changing International Settings

Use Log Files

This section describes some best practices related to servicing a Windows® image. We recommend that you
implement these practices wherever possible.

Many deployment command-line tools, including Deployment Image Servicing and Management (DISM),
require elevated permissions.

Make sure that you have elevated permissions. Click Start, and type deployment. Right-click Deployment and
Imaging Tools Environment and then select Run as administrator.

This must be done even if you are logged on as an administrator.

Some DISM commands may be blocked by antivirus or antimalware tools. Before servicing an image, disable
antivirus or antimalware tools on the technician computer.

The best way to service a Windows image is offline with the DISM tool. DISM can be used to install, uninstall,
configure, and update drivers, features, and packages in Windows images and Windows Preinstallation
Environment (WinPE) images without booting the image. For more information, see DISM - Deployment Image
Servicing and Management Technical Reference for Windows.

You can use the /Commit-Image option at any point during servicing to save the changes that you have made so
far. You can recover a corrupted image more easily with the /Cleanup-Image /RestoreHealth option if you have
committed your changes often.

You can mount and modify multiple images on a single computer. However, performance may slow down on
some functions, such as /Unmount-Image, depending on the memory available on the computer. As a best
practice, you should not mount more than 20 images at the same time.

Note
If you have split a .wim file into smaller files for spanning across multiple media, you cannot mount the image for
servicing.

To change the international settings in Windows 10, Windows 8.1, Windows 8, Windows Server 2016 Technical
Preview, Windows Server 2012 R2, Windows Server 2012, Windows 7, and Windows Server 2008 R2 images,
you must use DISM. For more information, see DISM Languages and International Servicing Command-Line
Options.

DISM will log verbose information to %WINDIR%\Logs\Dism\Dism.log by default. You can also specify a name

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deployment-image-servicing-and-management--dism--best-practices.md


Package Locations

Storing Files on a Network Share

Servicing a Windows Image from WinPE

Booting WinPE from a Hard DriveBooting WinPE from a Hard Drive

Add Page-File Support to Your WinPE ImageAdd Page-File Support to Your WinPE Image

Create a Temporary Directory in Which to Store Update FilesCreate a Temporary Directory in Which to Store Update Files

and location of your choice for the log file, and set the /loglevel parameters so that only the information you are
interested in is logged. When an error occurs, the console will display the error code, error message, and the
location of the log file.

Important
If you specify a log path on a network share from a computer that is not joined to a domain, use net-use with
domain credentials to set access permissions before you set the log path for the DISM log.

The log file will automatically be archived. The archived log file will be saved with .bak appended to the file name,
and a new log file will be generated. Each time the log file is archived, the .bak file will be overwritten.

The log file gives you the history of the operations that have been performed, which can help you troubleshoot
problems.

Do not put a package that you intend to install directly at the root of a partition on a Windows installation.

Although DISM supports network paths for images and packages, most operations will perform faster on files
that are copied to the local hard-drive.

You can service Windows images from WinPE. However, you must consider certain factors while planning your
servicing strategy. Review the following requirements for servicing an image from WinPE.

For better performance, you can allocate additional memory when you boot WinPE from a hard disk drive. You
can also create temporary folders to store update files to accommodate large updates.

Make sure you have sufficient memory to load and run your custom WinPE image. In addition to the image size,
you should have at least 256 MB of available working memory. If you have limited memory, define a page file
(Pagefile.sys) to improve memory management. For more information on implementing a page file, see Wpeutil
Command-Line Options.

You should use the /ScratchDir option with DISM to create a temporary directory on a different drive when you
create or service a Windows image. A temporary directory is used for many DISM operations including capturing
an image, installing language packs, installing updates, or installing or removing Windows features in a Windows
image. Some files are expanded to this temporary directory before they are applied to a Windows image.

There must be sufficient space in the partition to accommodate large updates. The specific size of the free space
that is required depends on the size of the updates that you intend to install. When adding a language pack, the
scratch directory must have at least 1 GB of space for temporary files.

If you do not set a temporary directory path using the /ScratchDir option, WinPE creates a 32-MB temporary
directory by default. You can allocate additional temporary storage to this default location using the DISM /Set-
ScratchSpace option. Valid sizes include 32, 64, 128, 256, and 512 MB. This feature is available only offline and
you cannot adjust this setting while a WinPE session is running. As a best practice, you should use the
/ScratchDir option to instead specify a directory on another partition that has sufficient space to support any
image management and servicing operations you perform.

After installation is complete, the contents of this directory are no longer needed and can be deleted. For more



Booting WinPE from a CD-ROM/DVDBooting WinPE from a CD-ROM/DVD

Scan for Corruption and Verify the Integrity of System Files

Improving Security for Windows Images

Related topics

information, see DISM Image Management Command-Line Options.

Servicing a Windows image requires additional temporary storage space. For WinPE RAM disks, you might need
additional RAM. In addition to the RAM requirements of your WinPE image, additional RAM is required to
process updates. The amount of RAM that is required depends on the size of the updates that you intend to apply.
Ensure that your computer has sufficient RAM.

Before you deliver a computer to an end user, you should verify the integrity of Windows system files. You can use
the /Cleanup-Image option to identify file corruption and perform repair operations on the image. For more
information about the /Cleanup-Image option in DISM, see DISM Operating System Package Servicing
Command-Line Options.

You can also use System File Checker (Sfc.exe) on an online or offline reference image. System File Checker is
released with all versions of Windows.System File Checker requires elevated permissions, and you must be an
Administrator to run it. It scans all protected files to verify the file versions. To verify only the integrity of the
Windows system files, run the sfc.exe /verifyonly option. For complete command-line syntax, at an elevated
command prompt, type sfc.exe /?.

Running Sfc.exe can take a significant amount of time. The expected result is that there are no system integrity
violations. However, if there are problems with Windows system files, you should investigate the issues. We do
not recommend that you use the Sfc.exe scan options to automatically fix Windows system files.

Your Windows images contain custom configuration data, custom applications, and other intellectual property.
There are several ways to improve the security of your Windows images, both online and offline.

Restrict access to Windows images. Depending on your environment, you can edit the access control
lists (ACLs) or permissions on a file. Only approved accounts can have access to Windows images.

Update your Windows images with the latest fixes and software updates. There are many ways you
can service a Windows image. After servicing your Windows image, test the validity and stability of the
computer.

During Windows installation, configure the computer to automatically download and install
Windows updates. This extends installation time, but ensures that the Windows image that you are
installing contains the latest updates. For more information, see the DynamicUpdate  setting in the
Microsoft-Windows-Setup component in the Unattended Windows Setup Reference.

DISM - Deployment Image Servicing and Management Technical Reference for Windows

Understanding Servicing Strategies



DISM Supported Platforms
5/11/2018 • 3 minutes to read • Edit Online

Supported Platforms

HOST DEPLOYMENT
ENVIRONMENT

TARGET IMAGE:
WINDOWS 10 OR
WINPE FOR WINDOWS
10

TARGET IMAGE:
WINDOWS 8.1,
WINDOWS SERVER
2016, WINDOWS
SERVER 2012 R2, OR
WINPE 5.0 (X86 OR
X64)

TARGET IMAGE:
WINDOWS 8,
WINDOWS SERVER
2012, OR WINPE 4.0
(X86 OR X64)

TARGET IMAGE:
WINDOWS 7,
WINDOWS SERVER
2008 R2, OR WINPE 3.0
(X86 OR X64)

The Windows 10 version of Deployment Image Servicing and Management (DISM) is available in Windows 10
for desktop editions (Home, Pro, Enterprise, and Education), Windows Server 2016, and Windows
Preinstallation Environment (WinPE) for Windows 10.

To service Windows 10 images, you’ll need the Windows 10 version of DISM, otherwise the image may become
corrupted.

To use the Windows 10 version of DISM onto a previous version of Windows, install the Windows Assessment
and Deployment Kit (ADK) from this website, and install the Deployment Tools. Then, start the Deployment
and Imaging Tools Environment to run DISM commands.

To use the Windows 10 version of DISM with a previous version of Windows PE, see Install Windows 10 using a
previous version of Windows PE.

Note, newer DISM features don’t always work when servicing images of previous versions of Windows. To learn
more, see the DISM Reference.

The host deployment environment is the operating system where DISM runs. The target image is the image that
is being serviced.

Windows 10 (x86
or x64)

Supported Supported Supported Supported

Windows Server
2016 (x86 or
x64)

Supported Supported Supported Supported

Windows 8.1
(x86 or x64)

Supported, using
the Windows 10
version of DISM

Supported Supported Supported

Windows Server
2012 R2 (x86 or
x64)

Supported, using
the Windows 10
version of DISM

Supported Supported Supported

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism-supported-platforms.md
http://go.microsoft.com/fwlink/p/?LinkId=526803


Supported: X64
target image only

HOST DEPLOYMENT
ENVIRONMENT

TARGET IMAGE:
WINDOWS 10 OR
WINPE FOR WINDOWS
10

TARGET IMAGE:
WINDOWS 8.1,
WINDOWS SERVER
2016, WINDOWS
SERVER 2012 R2, OR
WINPE 5.0 (X86 OR
X64)

TARGET IMAGE:
WINDOWS 8,
WINDOWS SERVER
2012, OR WINPE 4.0
(X86 OR X64)

TARGET IMAGE:
WINDOWS 7,
WINDOWS SERVER
2008 R2, OR WINPE 3.0
(X86 OR X64)

Windows 8(x86
or x64)

Supported, using
the Windows 10
version of DISM

Supported, using
the Windows 8.1
version of DISM
or later

Supported Supported

Windows Server
2012 (x86 or
x64)

Supported, using
the Windows 10
version of DISM

Supported, using
the Windows 8.1
version of DISM
or later

Supported Supported

Windows 7 (x86
or x64)

Supported, using
the Windows 10
version of DISM

Supported, using
the Windows 8.1
version of DISM
or later

Supported, using
the Windows 8
version of DISM
or later

Supported

Windows Server
2008 R2 (x86 or
x64)

Supported, using
the Windows 10
version of DISM

Supported, using
the Windows 8.1
version of DISM
or later

Supported, using
the Windows 8
version of DISM
or later

Supported

Windows Server
2008 SP2 (x86 or
x64)

Not supported Supported, using
the Windows 8.1
version of DISM
or later

Supported, using
the Windows 8
version of DISM
or later

Supported

WinPE for
Windows 10 x86

Supported Supported Supported Supported

WinPE for
Windows 10 x64

Supported: X64
target image only

Supported: X64
target image only

Supported: X64
target image
only

WinPE 5.0 x86 Supported, using
the Windows 10
version of DISM

Supported Supported Supported

WinPE 5.0 x64 Supported, using
the Windows 10
version of DISM:
X64 target image
only

Supported: X64
target image only

Supported: X64
target image only

Supported: X64
target image
only



HOST DEPLOYMENT
ENVIRONMENT

TARGET IMAGE:
WINDOWS 10 OR
WINPE FOR WINDOWS
10

TARGET IMAGE:
WINDOWS 8.1,
WINDOWS SERVER
2016, WINDOWS
SERVER 2012 R2, OR
WINPE 5.0 (X86 OR
X64)

TARGET IMAGE:
WINDOWS 8,
WINDOWS SERVER
2012, OR WINPE 4.0
(X86 OR X64)

TARGET IMAGE:
WINDOWS 7,
WINDOWS SERVER
2008 R2, OR WINPE 3.0
(X86 OR X64)

Related topics

WinPE 4.0 x86 Supported, using
the Windows 10
version of DISM

Supported, using
the Windows 8.1
version of DISM
or later

Supported Supported

WinPE 4.0 x64 Supported, using
the Windows 10
version of DISM:
X64 target image
only

Supported, using
the Windows 8.1
version of DISM
or later: X64
target image only

Supported: X64
target image only

Supported: X64
target image
only

WinPE 3.0 x86 Supported, using
the Windows 10
version of DISM

Supported, using
the Windows 8.1
version of DISM
or later

Supported, using
the Windows 8
version of DISM
or later

Supported

WinPE 3.0 x64 Supported, using
the Windows 10
version of DISM:
X64 target image
only

Supported, using
the Windows 8.1
version of DISM
or later: X64
target image only

Supported, using
the Windows 8
version of DISM
or later: X64
target image only

Supported: X64
target image
only

Resilient File System (REFS) is not supported.

Install the Windows 10 Assessment and Deployment Kit (ADK)

DISM Reference (Deployment Image Servicing and Management)

Install Windows 10 using a previous version of Windows PE

http://go.microsoft.com/fwlink/p/?LinkId=526803


Deployment Image Servicing and Management
(DISM) API
12/15/2017 • 2 minutes to read • Edit Online

In This Section
TOPIC DESCRIPTION

Related topics

Purpose

The Deployment Image Servicing and Management (DISM) API allows you to build customized solutions on the
DISM platform. You can use the DISM API to install, uninstall, configure, and update Windows features, packages,
and drivers in a Windows image.

Developer Audience

The DISM API is designed for use by C/C++ programmers.

Run-Time Requirements

DISM API can be used on any operating system supported by the Windows® Assessment and Deployment Kit
(Windows ADK). For more information, see the Windows ADK Technical Reference.

For more information, see Using the DISM API.

Additional Reference

The DISM platform also includes a command-line tool and Windows PowerShell cmdlets. For more information
about the DISM tool, see DISM Platform Technical Reference. For more information about DISM PowerShell
cmdlets, see DISM PowerShell Reference.

Using the DISM API Review requirements, best practices, and other
considerations for using the DISM API.

Creating a DISM Application Set up a development environment and learn about
required functions.

DISM API Troubleshooting Use the DISM API log file to troubleshoot your custom
application.

DISM API Reference Find a function or object defined by the DISM API.

DISM API Samples Look at sample usage of DISM API functions.

DISM Platform Technical Reference

DISM PowerShell Reference

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/dism/deployment-image-servicing-and-management--dism--api.md
http://go.microsoft.com/fwlink/?LinkId=206587
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism/using-the-dism-api
http://go.microsoft.com/fwlink/?LinkId=200687
http://go.microsoft.com/fwlink/?LinkId=237612
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism/using-the-dism-api
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism/creating-a-dism-application
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism/dism-api-troubleshooting
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism/dism-api-reference
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism/dism-api-samples
http://go.microsoft.com/fwlink/?LinkId=200687
http://go.microsoft.com/fwlink/?LinkId=237612




Windows PE (WinPE)
5/11/2018 • 4 minutes to read • Edit Online

Where do I download it?

Support for many Windows features

Windows PE (WinPE) for Windows 10 is a small operating system used to install, deploy, and repair
Windows 10 for desktop editions (Home, Pro, Enterprise, and Education), Windows Server 2016, and other
Windows operating systems. From Windows PE, you can:

Set up your hard drive before installing Windows.
Install Windows by using apps or scripts from a network or a local drive.
Capture and apply Windows images.
Modify the Windows operating system while it's not running.
Set up automatic recovery tools.
Recover data from unbootable devices.
Add your own custom shell or GUI to automate these kinds of tasks.

To get Windows PE, use the installer built into the Windows Assessment and Deployment Kit (Windows
ADK). For more info, see WinPE: Create USB Bootable drive, WinPE: Create a Boot CD, DVD, ISO, or VHD,
or see the Demo: Installing Windows PE on a USB Drive.

Windows PE runs the Windows command line environment, and supports these Windows features:

Batch files and scripts, including support for Windows Script Host (WSH), and ActiveX Data Objects
(ADO), and optional support for PowerShell.
Applications, including Win32 application programming interfaces (APIs) and optional support for
HTML Applications (HTA).
Drivers, including a generic set of drivers that can run networking, graphics, and mass storage devices.
Image capturing and servicing, including Deployment Image Servicing and Management (DISM).
Networking, including connecting to file servers using TCP/IP and NetBIOS over TCP/IP via L AN.
Storage, including NTFS, DiskPart, and BCDBoot.
Security tools, including optional support for BitLocker and the Trusted Platform Module (TPM), Secure
Boot, and other tools.
Hyper-V , including VHD files, mouse integration, mass storage and network drivers that allow Windows

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-intro.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-a-boot-cd-dvd-iso-or-vhd
http://go.microsoft.com/fwlink/?LinkId=279081


Hardware requirements

Limitations

PE to run in a hypervisor.

Windows PE has the same requirements as Windows with these exceptions:

No hard drive is required. You can run Windows PE entirely from memory.
The base version requires only 512MB of memory. (If you add drivers, packages, or apps, you'll need
more memory.)
In order to boot Windows PE directly from memory (also known as RAM disk boot), a contiguous
portion of physical memory (RAM) which can hold the entire Windows PE (WIM) image must be
available. To optimize memory use, manufacturers should ensure that their firmware reserves memory
locations either at the beginning or at the end of the physical memory address space.

The 32-bit version of Windows PE can boot 32-bit UEFI and BIOS PCs, and 64-bit BIOS PCs.

The 64-bit version of Windows PE can boot 64-bit UEFI and BIOS PCs.

Windows PE is not a general-purpose operating system. It may not be used for any purpose other than
deployment and recovery. It should not be used as a thin client or an embedded operating system. There are
other Microsoft products, such as Windows Embedded CE, which may be used for these purposes.

To prevent its use as a production operating system, Windows PE automatically stops running the shell and
restarts after 72 hours of continuous use. This period is not configurable.

When Windows PE reboots, all changes are lost, including changes to drivers, drive letters, and the
Windows PE registry. To make lasting changes, see WinPE: Mount and Customize.

The default Windows PE installation uses the FAT32 file format, which poses its own limitations, including a
maximum 4GB file size and maximum 32GB drive size. To learn more, see WinPE: Use a single USB key for
WinPE and a WIM file (.wim).

Windows PE does not support any of the following:

File server or Terminal Server use.
Joining to a network domain.
Connecting to an IPv4 network from Windows PE on an IPv6 network.
Remote Desktop.
.MSI installation files.
Booting from a path that contains non-English characters.
Running 64-bit apps on the 32-bit version of Windows PE.
Adding bundled app packages through DISM (.appxbundle packages).

Note In general, use the latest version of WinPE to deploy Windows. If you are using customized WinPE for
Windows 10 images, you may prefer to continue using your existing Windows PE image and run the latest
version of DISM from a network location. To learn more, see Copy DISM to Another Computer.

Notes on running Windows Setup in Windows PE:

You can use the 32-bit versions of Windows PE and Windows Setup to install 64-bit versions of
Windows. For more information, see Windows Setup Supported Platforms and Cross-Platform
Deployments.
Although Windows PE supports dynamic disks, Windows Setup does not. If you install Windows to a
dynamic disk created in Windows PE, the dynamic disks won't be available in Windows.



See also
CONTENT TYPE REFERENCES

For UEFI-based PCs that support both UEFI and legacy BIOS modes, Windows PE needs to be booted
in the correct mode in order to correctly install Windows. For more info, see WinPE: Boot in UEFI or
legacy BIOS mode.

Product evaluation What's New in Windows PE

Deployment WinPE: Create USB Bootable drive | Demo: Installing
Windows PE on a USB Drive | WinPE: Create a Boot
CD, DVD, ISO, or VHD | WinPE: Install on a Hard Drive
(Flat Boot or Non-RAM) | WinPE: Boot in UEFI or
legacy BIOS mode | Boot to UEFI Mode or Legacy
BIOS mode | WinPE: Use a single USB key for WinPE
and a WIM file (.wim)

Operations WinPE: Mount and Customize | WinPE: Add drivers |
WinPE: Storage Area Network (SAN) Policy | WinPE:
Create Apps | WinPE: Optimize and shrink the image

Troubleshooting WinPE Network Drivers: Initializing and adding drivers
| WinPE: Debug Apps |

Tools and settings Copype Command-Line Options | Drvload Command-
Line Options | Makewinpemedia Command-Line
Options | Wpeinit and Startnet.cmd: Using WinPE
Startup Scripts | WinPE: Identify drive letters with a
script | Wpeutil Command-Line Options | WinPE: Add
packages (Optional Components Reference)

Technologies based on Windows PE Windows Setup | Windows Recovery Environment |
Diagnostic and Recovery Toolset

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode
http://go.microsoft.com/fwlink/?LinkId=279081
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-a-boot-cd-dvd-iso-or-vhd
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-add-drivers
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-optimize
http://go.microsoft.com/fwlink/?LinkId=294156


What's New in Windows PE
5/11/2018 • 5 minutes to read • Edit Online

New and Changed Functionality

FEATURE
WINDOWS PE FOR
WINDOWS 10 WINDOWS PE 5.0 WINDOWS PE 4.0 WINDOWS PE 3.X WINDOWS PE 2.X

This topic describes the new and changed functionality of the Windows Preinstallation Environment (Windows
PE/WinPE) and compares it with previous versions of Windows PE and MS-DOS.

This table compares the features and functionality with those of previous versions of Windows PE:

Operating
systems
deployed

Windows 10,
Windows 8.1,
Windows
Server 2012
R2, Windows
8, Windows
Server 2012,
Windows 7,
or Windows
Server 2008
R2.

Windows 8.1,
Windows
Server 2012
R2, Windows
8, Windows
Server 2012,
Windows 7,
or Windows
Server 2008
R2.

Doesn’t
support:
Windows
Vista or
Windows
Server 2008.

Windows 8,
Windows
Server 2012,
Windows 7,
Windows
Server 2008
R2, Windows
Vista, or
Windows
Server 2008.

Windows 7,
Windows
Server 2008
R2, Windows
Vista, or
Windows
Server 2008.

Windows
Vista or
Windows
Server 2008

Scripts used
to deploy
Windows PE

No change. No change. CopyPE
updated for
use with the
Windows
ADK.

MakeWinPE
Media added
to make
creation of
USB flash
drives or ISO
files easier.

CopyPE and
Oscdimg
tools
included.

CopyPE and
Oscdimg
tools
included.

Windows PE
2.1: Oscdimg
tool updated
to support
larger
images.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/whats-new-in-windows-pe-s14.md


FEATURE
WINDOWS PE FOR
WINDOWS 10 WINDOWS PE 5.0 WINDOWS PE 4.0 WINDOWS PE 3.X WINDOWS PE 2.X

Scripting
tools

No change. .NET
Framework
optional
component
renamed to
WinPE_NetFx.

PowerShell
optional
component
renamed to
WinPE_Power
Shell.

Winpeshl.ini
allows you to
launch apps
with
command-
line
parameters in
quotes. For
more info,
see
Winpeshl.ini
Reference:
Launching an
app when
WinPE starts.

.NET
Framework
4.5 optional
component
added
(WinPE_NetFx
4).

PowerShell
3.0 optional
component
added
(WinPE_Powe
rShell3).

Command-
line scripting
tools
included.

Command-
line scripting
tools
included.



FEATURE
WINDOWS PE FOR
WINDOWS 10 WINDOWS PE 5.0 WINDOWS PE 4.0 WINDOWS PE 3.X WINDOWS PE 2.X

Image
capturing
and servicing
tools

DISM
supports
Windows 10
and Windows
Imaging and
Configuration
Designer
(ICD)
features.

DISM
supports
Windows 8.1
and Windows
Server 2012
R2 images
but doesn’t
support
Windows
Vista or
Windows
Server 2008
images. For
more info,
see DISM -
Deployment
Image
Servicing and
Management
Technical
Reference for
Windows.

Image
capturing
tools
included with
new 
dism
/Capture-
image

and 
dism
/Apply-
image

commands.

Doesn't
support
servicing
Windows 8.1
or Windows
Server 2012
R2 images.

DISM -
Deployment
Image
Servicing and
Management
Technical
Reference for
Windows
added. DISM
is a
command-
line tool that
you can use
to customize
a Windows
or a
Windows PE
image.

The PEImg
and Pkgmgr
tools are not
supported in
Windows PE
3.0.

ImageX
available as
an optional
application
for capturing
and applying
images.

Doesn't
support
servicing
Windows 8.1
or Windows
Server 2012
R2 images.

PEImg is
used to
service
Windows PE
images.

After you run
PEImg
/prep
against the
Windows PE
2.0 image,
the image
can't be
modified.

ImageX is
available as
an optional
application
for capturing
and applying
images.

Pkgmgr is
used to
install,
remove, or
update
Windows
packages in
offline
images.

Doesn't
support
servicing
Windows 8.1
or Windows
Server 2012
R2 images.



FEATURE
WINDOWS PE FOR
WINDOWS 10 WINDOWS PE 5.0 WINDOWS PE 4.0 WINDOWS PE 3.X WINDOWS PE 2.X

Optimizing
Windows PE

No change. The profiling
feature is
removed.

The default
amount of
scratch space
is 512 MB for
PCs that
have more
than 1 GB of
RAM.

No change. Smaller
default size.
The Windows
PE 3.0
default image
contains only
the minimum
resources to
support
most
deployment
scenarios.
You can add
optional
components
by using
Deployment
Image
Servicing and
Management
(DISM).

The new 
dism
/apply-
profiles

command
allows you to
further
reduce the
contents of a
Windows PE
3.0 image to
only those
files
necessary to
support a
given set of
apps.

Windows PE
2.1: Supports
booting
directly from
the hard
disk, not into
RAM disk.

Windows PE
2.1: Writable
RAM drive:
when
booting from
read-only
media,
Windows PE
automatically
creates a
writable RAM
disk (drive X)
and allocates
32
megabytes
(MB) of the
RAM disk for
general-
purpose
storage. You
can
customize
the size, in
megabytes,
by using
PEImg
/scratchspac
e. Valid
values are
32, 64, 128,
256, and
512.

File
management

No change. No change. File
Management
optional
component
added for
discovering
and restoring
deleted files
from
unencrypted
volumes.

Windows PE
3.1: base
image
contains
improvement
s that are
related to
4k/512e
drive
support.

No 4k/512e
drive
support.



FEATURE
WINDOWS PE FOR
WINDOWS 10 WINDOWS PE 5.0 WINDOWS PE 4.0 WINDOWS PE 3.X WINDOWS PE 2.X

Memory No change. Maximum
supported:

x86:
64 GB

x64: 4
TB

No change. No change. Maximum
supported:

x86: 4
GB

x64:
128
GB

Virtualization No change. No change. No change. Windows PE
3.0 includes
all Hyper-V
drivers
except
display
drivers. This
enables
Windows PE
to run in
Hypervisor.
Supported
features
include mass
storage,
mouse
integration,
and network
adapters.

Not
supported.

Networking No change. No change. Optional
Remote
Network
Driver
Interface
Specification
(RNDIS)
feature
added for
enabling
network
devices that
implement
the RNDIS
specification
over USB.

The Windows
PE 3.1 base
image
contains
RNDIS
binaries.

Windows PE
3.0: Hotfix
available for
802.1X (LAN)
support.

Windows PE
3.1 includes
802.1X
binaries as an
optional
component.
The file name
of this
package is
WinPE-
Dot3Svc.cab.

Supports
IPv4 and
IPv6. Doesn't
support
other
protocols,
like
Internetwork
Packet
Exchange/Se
quenced
Packet
Exchange
(IPX/SPX).

http://support.microsoft.com/kb/972831


FEATURE
WINDOWS PE FOR
WINDOWS 10 WINDOWS PE 5.0 WINDOWS PE 4.0 WINDOWS PE 3.X WINDOWS PE 2.X

Comparison with MS-DOS

Recovery No change. No change. WinRE
Configuration
utility added
(winrecfg.exe)
to support
configuring
Windows RE
in an offline
operating
system.

No change. Supports
Windows
Recovery
Environment
(Windows
RE).

Security No change. No change. Secure
Startup
optional
component
added for
provisioning
and
managing
BitLocker and
the Trusted
Platform
Module.

No change. Supports
BitLocker and
Trusted
Platform
Module.

Architectures No change. No change. Supports
x86, x64, and
ARM-based
PCs.

No change. Supports
x86, x64, and
Itanium-
based PCs.

To see which version of Windows PE you’re running, type regedit  and locate this registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinPE .

Windows PE is similar to MS-DOS. It also includes support for the following features:

The NTFS 5.x file system, including dynamic volume creation and management.

TCP/IP networking and file sharing (client only).

32-bit or 64-bit Windows device drivers.

A subset of the Windows application programming interface (API).

CD, DVD, and USB flash drives.

Windows Deployment Services server.

Image management and servicing (DISM).

Hyper-V drivers (all drivers except for display drivers). This enables Windows PE to run in a hypervisor.
Supported features include mass storage, mouse integration, and network adapters.

Optional support for PowerShell, Windows Management Instrumentation (WMI), Windows Data Access
Components (Windows DAC), and HTML Applications (HTAs).



Where is WinPE.wim?

Related topics

In Windows 7, the main Windows PE boot file was renamed from winpe.wim to boot.wim. This file is in Windows
PE in the \sources folder. It can be modified in the same way as WinPE.wim.

WinPE for Windows 10



WinPE Optional Components (OC) Reference
5/25/2018 • 12 minutes to read • Edit Online

Where to get WinPE Optional Components

How to add Optional Components

IMPORTANTIMPORTANT

WinPE Optional Components

Add feature packages, also known as optional components, to Windows PE (WinPE).

WinPE optional components become available when you choose the Windows Preinstallation Environment
option when you install the Windows Assessment and Deployment Kit (ADK).

Optional components are available in 32- and 64-bit architectures. The OCs you add to your WinPE image must
be from the same ADK build and have the same architecture as your WinPE image. You can find WinPE optional
components in the following locations after you install the ADK:

64-bit 
C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation
Environment\amd64\WinPE\_OCs\

32-bit 
C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment Kit\Windows Preinstallation
Environment\x86\WinPE\_OCs\

WinPE OCs are .cab packages that can be added to an offline Windows image.

Some optional components have prerequisites that must be installed in order. The table below includes information about
prerequisites.

Before adding OCs to a WinPE image, you need a WinPE image (boot.wim). See WinPE: Create bootable media
to learn how to make a set of WinPE working files that include a WinPE image. You'll find boot.wim at 
sources\boot.wim  in your working files.

Once you have a WinPE image to work with, you can add packages to it with DISM /add-package . To learn more
about using DISM to add packages to a Windows image, see Add or remove packages offline using DISM.

Many WinPE optional components come split into two parts, a language-neutral package, and a set of language-
specific packages. When installing an OC that has language-specific packages, you need to first add the
language-neutral OC, and then add at least one of its associated language-specific packages. The language-
specific and language-neutral resources must be of the same version. You can find OCs in the following folders:

Language-neutral - 
...\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\

Language-specific - 
...\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\xx-xx\

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-add-packages--optional-components-reference.md
https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install


 

 

 

AREA/OPTIONAL COMPONENT NAME DESCRIPTION

Database/WinPE-MDAC WinPE-MDAC supports Microsoft Open Database
Connectivity (ODBC), OLE DB, and Microsoft ActiveX Data
Objects (ADO). This set of technologies provides access to
various data sources, such as Microsoft SQL Server. For
example, this access enables queries to Microsoft SQL Server
installations that contain ADO objects. You can build a
dynamic answer file from unique system information.
Similarly, you can build data-driven client or server
applications that integrate information from a variety of data
sources, both relational (SQL Server) and non-relational.

File management/WinPE-FMAPI WinPE-FMAPI provides access to the Windows PE File
Management API (FMAPI) for discovering and restoring
deleted files from unencrypted volumes. The FMAPI also
provides the ability to use a password or recovery key file for
the discovery and recovery of deleted files from Windows
BitLocker Drive Encryption encrypted volumes.

Fonts/WinPE-Fonts-Legacy WinPE-Fonts-Legacy contains 32 font files for various
languages/writing scripts. Some of these fonts are no longer
used as UI fonts. For example, scripts such as Bangla,
Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Odia,
Tamil, Telugu, and Sinhalese were covered by Mangal, Latha,
Vrinda, Gautami, Kalinga, artika, Raavi, Shruti, and Tunga, but
in Windows 8, they were all unified under Nirmala UI, a
single, pan-Indian font. The following list shows the fonts and
languages included in this optional component:

estre.ttf Estrangelo Edessa (Syriac)
mvboli.ttf MV Boli (Thaana)
KhmerUI.ttf Khmer UI (Khmer UI)
KhmerUIB.ttf Khmer UI Bold (Khmer UI)
Laoui.ttf Lao UI (Lao)
Laouib.ttf Lao UI Bold (Lao)
daunpenh.ttf DaunPenh (Khmer)
moolbor.ttf MoolBoran (Khmer)
dokchamp.ttf DokChampa (Lao)
Himalaya.ttf Microsoft Himalaya (Tibetan)
monbaiti.ttf Mongolian Baiti (Mongolian)
MSYI.ttf Microsoft Yi Baiti (Yi Syllables)
nyala.ttf Nyala (Ethiopic)
sylfaen.ttf Sylfaen (Armenian & Georgian)
euphemia.ttf Euphemia (Unified Canadian Aboriginal
Syllabics)
plantc.ttf Plantagenet Cherokee (Cherokee)



 

 

 

 

Fonts/WinPE-Font Support-JA-JP WinPE-Font Support-JA-JP contains two Japanese font
families that are packaged as TrueType Collection (TTC) files.
MS Gothic is the Windows Japanese user interface font in
versions of Windows before Windows Vista. MS Gothic
contains a large character set and embedded bitmaps to
ensure legible rendering at small sizes. Meiryo, a font that
was introduced in Windows Vista, is designed specifically for
use in a Microsoft ClearType® rendering environment.
Meiryo does not include embedded bitmaps. Instead, Meiryo
relies on hinting instructions to produce legible characters at
small sizes. In addition, the module contains two Japanese
bitmap fonts, App932.fon and Vga932.fon. The module also
contains a bitmap-only TrueType font, Jpn_font.ttf. This font is
used on boot screens.

Fonts/WinPE-Font Support-KO-KR WinPE-Font Support-KO-KR contains three core Korean font
families: Gulim, Batang and Malgun Gothic. Gulim is the
legacy UI font and, as a TTC file, contains Gulim, GulimChe,
Dotum and DotumChe. Batang is the legacy text font and is
also a TTC file, containing Batang, BatangChe, GungSuh and
GungSuhChe. Malgun Gothic, a font that was introduced in
Windows Vista, is designed specifically for use in a ClearType
rendering environment. Malgun Gothic does not include
embedded bitmaps and instead relies on hinting instructions
to produce legible characters at small sizes.

Fonts/WinPE-Font Support-ZH-CN WinPE-Font Support-ZH-CN contains two Chinese font
families that are packaged as TTC files. Simsun is the
Simplified Chinese user interface font in Windows versions
before Windows Vista. Simsun contains embedded bitmaps
to ensure legible rendering at small sizes. The other TTC font
is MingLiu. MingLiu has embedded bitmaps and provides
support for the Hong Kong Supplementary Character Set
(HKSCS). YaHei, a font that was introduced in Windows Vista,
is designed specifically for use in a ClearType rendering
environment. YaHei does not include embedded bitmaps.
YaHei relies on hinting instructions to produce legible
characters at small sizes. In addition, the module contains
one bitmap-only TrueType font, Chs_boot.ttf. This font is used
on boot screens.

Fonts/WinPE-Font Support-ZH-HK The Hong Kong and Taiwan optional components contain
two Chinese font families that are packaged as TTC files.
Simsun is the Simplified Chinese user interface font in
Windows versions before Windows Vista. Simsun contains
embedded bitmaps to ensure legible rendering at small sizes.
MingLiu has embedded bitmaps and provides support for
the HKSCS. JhengHei, a font that was introduced in Windows
Vista, is designed specifically for use in a ClearType rendering
environment. JhengHei does not include embedded bitmaps.
JhengHei relies on hinting instructions to produce legible
characters at small sizes. In addition, the module contains
one bitmap-only TrueType font, Cht_boot.ttf. This font is used
on boot screens.

AREA/OPTIONAL COMPONENT NAME DESCRIPTION

and

WinPE-Font Support-ZH-TW



 

 

 

 

 

 

HTML/WinPE-HTA WinPE-HTA provides HTML Application (HTA) support to
create GUI applications through the Windows Internet
Explorer script engine and HTML services. These applications
are trusted and display only the menus, icons, toolbars, and
title information that you create.

Input/WinPE-GamingPeripherals WinPE-GamingPeripherals adds support for Xbox wireless
controllers in WinPE.

Microsoft .NET/WinPE-NetFX WinPE-NetFX contains a subset of the .NET Framework 4.5
that is designed for client applications.

Network/WinPE-Dot3Svc Adds support for the IEEE 802.X authentication protocol on
wired networks. For more info, see WinPE Network Drivers:
Initializing and adding drivers.

Network/WinPE-PPPoE WinPE-PPPoE enables you to use Point-to-Point Protocol
over Ethernet (PPPoE) to create, connect, disconnect, and
delete PPPoE connections from Windows PE. PPPoE is a
network protocol for encapsulating Point-to-Point Protocol
(PPP) frames inside Ethernet frames. PPPoE enables Windows
users to remotely connect their computers to the web. By
using PPPoE, users can virtually dial from one computer to
another over an Ethernet network, to establish a point-to-
point connection between the computers. The computers can
use this point-to-point connection to transport data packets.

Network/WinPE-RNDIS WinPE-RNDIS contains Remote Network Driver Interface
Specification (Remote NDIS) support. WinPE-RNDIS enables
network support for devices that implement the Remote
NDIS specification over USB. Remote NDIS defines a bus-
independent message set and a description of how this
message set operates over various I/O buses. Therefore,
hardware vendors do not have to write an NDIS miniport
device driver. Because this Remote NDIS interface is
standardized, one set of host drivers can support any
number of bus-attached networking devices.

AREA/OPTIONAL COMPONENT NAME DESCRIPTION

Not all Windows binaries are present in Windows PE, and
therefore not all Windows APIs are present or usable.
Due to the limited API set, the following .NET Framework
features have no or reduced functionality in Windows PE:

Windows Presentation Foundation (WPF) (not
supported)
Windows Runtime
.NET Framework Fusion APIs
Windows Control Library event logging
.NET Framework COM Interoperability
.NET Framework Cryptography Model

Dependencies:

Install WinPE-WMI before you install WinPE-NetFX.



 

 

 

 

 

Network/WinPE-WDS-Tools WinPE-WDS-Tools includes APIs to enable the Image Capture
tool and a multicast scenario that involves a custom
Windows Deployment Services client. It must be installed if
you intend to run the Windows Deployment Services client
on a custom Windows PE image.

Network/WinPE-WiFi-Package WinPE-WiFi-Package is used by Windows Recovery
Environment (Windows RE) for built-in recovery functions.
This package is included in the base winre.wim file.

Note: Windows PE and Windows RE don't support general
wireless networking functions.

Windows PowerShell/WinPE-PlatformID WinPE-PlatformID contains the Windows PowerShell cmdlets
to retrieve the Platform Identifier of the physical machine. 

Dependencies: Install WinPE-WMI and WinPE-
SecureStartup before you install WinPE-PlatformID.

Windows PowerShell/WinPE-PowerShell WinPE-PowerShell contains Windows PowerShell–based
diagnostics that simplify using Windows Management
Instrumentation (WMI) to query the hardware during
manufacturing. You can create Windows PowerShell–based
deployment and administrative Windows PE–based tools. In
addition to deployment, you can use Windows PowerShell for
recovery scenarios. Customers can boot in Windows RE and
then use Windows PowerShell scripts to resolve issues.
Customers are not limited to the toolsets that run in
Windows PE. Similarly, you can build scripted offline solutions
to recover some computers from no-boot scenarios.

WinPE-PowerShell has the following known limitations:

Windows PowerShell/WinPE-DismCmdlets WinPE-DismCmdlets contains the DISM PowerShell module,
which includes cmdlets used for managing and servicing
Windows images.

For more info, see Deployment Imaging Servicing
Management (DISM) Cmdlets in Windows PowerShell.

AREA/OPTIONAL COMPONENT NAME DESCRIPTION

To use the Windows PowerShell cmdlet to retrieve the
Platform Identifier, you will need install WinPE-
PowerShell package.

Windows PowerShell remoting is not supported. Any
cmdlets that have remoting functionality will return
an error.
The Windows PowerShell Integrated Scripting
Environment (ISE) is not supported.
Windows PowerShell 2.0 is not supported.

Dependencies: Install WinPE-WMI > WinPE-NetFX >
WinPE-Scripting before you install WinPE-PowerShell.

Dependencies: Install WinPE-WMI > WinPE-NetFX >
WinPE-Scripting > WinPE-PowerShell before you
install WinPE-DismCmdlets.



 

 

 

 

 

 

Windows PowerShell/WinPE-SecureBootCmdlets WinPE-SecureBootCmdlets contains the PowerShell cmdlets
for managing the UEFI (Unified Extensible Firmware Interface)
environment variables for Secure Boot.

Dependencies: Install WinPE-WMI > WinPE-NetFX >
WinPE-Scripting > WinPE-PowerShell before you install
WinPE-SecureBootCmdlets.

Windows PowerShell/WinPE-StorageWMI WinPE-StorageWMI contains PowerShell cmdlets for storage
management. These cmdlets use the Windows Storage
Management API (SMAPI) to manage local storage, such as
disk, partition, and volume objects. Or, these cmdlets use the
Windows SMAPI together with array storage management
by using a storage management provider. WinPE-
StorageWMI also contains Internet SCSI (iSCSI) Initiator
cmdlets for connecting a host computer or server to virtual
disks on external iSCSI-based storage arrays through an
Ethernet network adapter or iSCSI Host Bus Adapter (HBA).

Dependencies: Install WinPE-WMI > WinPE-NetFX >
WinPE-Scripting > WinPE-PowerShell before you install
WinPE-StorageWMI.

Recovery/WinPE-Rejuv WinPE-Rejuv is used by Windows Recovery Environment
(Windows RE). This package is included in the base winre.wim
file.

Recovery/WinPE-SRT WinPE-SRT is used by Windows RE. This package is included
in the base winre.wim file.

Recovery/WinPE-WinReCfg WinPE-WinReCfg contains the Winrecfg.exe tool, and it
enables the following scenarios:

Scripting/WinPE-Scripting WinPE-Scripting contains a multiple-language scripting
environment that is ideal for automating system
administration tasks, such as batch file processing. Scripts
that run in the Windows Script Host (WSH) environment can
call WSH objects and other COM-based technologies that
support Automation, such as WMI, to manage the Windows
subsystems that are central to many system administration
tasks.

Dependencies: Install WinPE-Scripting to make sure that full
scripting functionality is available when you are using WinPE-
NetFX and WinPE-HTA. The installation order is irrelevant.

AREA/OPTIONAL COMPONENT NAME DESCRIPTION

Boot from x86-based Windows PE to configure
Windows RE settings on an offline x64-based
operating system image.
Boot from x64-based Windows PE to configure
Windows RE settings on an offline x86-based
operating system image.



 

 

 

 

 

 

 

Scripting/WinPE-WMI WinPE-WMI contains a subset of the Windows Management
Instrumentation (WMI) providers that enable minimal system
diagnostics. WMI is the infrastructure for management data
and operations on Windows-based operating systems. You
can write WMI scripts or applications to automate
administrative tasks on remote computers. Additionally, WMI
supplies management data to other parts of the operating
system and products.

Setup/Winpe-LegacySetup Winpe-LegacySetup contains all Setup files from the \Sources
folder on the Windows media. Add this optional component
when you service Setup or the \Sources folder on the
Windows media. You must add this optional component
together with the optional component for the Setup feature.
To add a new Boot.wim file to the media, add the parent
WinPE-Setup, either of the children (WinPE-Setup-Client or
WinPE-Setup-Server), and Media optional components.
Media Setup is required to support Windows Server 2008 R2
installation.

Setup/WinPE-Setup WinPE-Setup is the parent of WinPE-Setup-Client and
WinPE-Setup-Server. It contains all Setup files from the
\Sources folder that are common to the client and the server.

Setup/WinPE-Setup-Client WinPE-Setup-Client contains the client branding files for the
parent WinPE-Setup optional component.

Dependencies: Install WinPE-Setup before you install
WinPE-Setup-Client.

Setup/WinPE-Setup-Server WinPE-Setup-Server includes the server branding files for the
parent WinPE-Setup optional component.

Dependencies: Install WinPE-Setup before you install
WinPE-Setup-Server.

Startup/WinPE-SecureStartup WinPE-SecureStartup enables provisioning and management
of BitLocker and the Trusted Platform Module (TPM). It
includes BitLocker command-line tools, BitLocker WMI
management libraries, a TPM driver, TPM Base Services (TBS),
the Win32_TPM class, the BitLocker Unlock Wizard, and
BitLocker UI libraries. The TPM driver provides better support
for both BitLocker and the TPM in this preboot environment.

Dependencies: Install WinPE-WMI before you install
WinPE-SecureStartup.

Storage/WinPE-EnhancedStorage WinPE-EnhancedStorage enables Windows to discover
additional functionality for storage devices, such as
encrypted drives, and implementations that combine Trusted
Computing Group (TCG) and IEEE 1667 ("Standard Protocol
for Authentication in Host Attachments of Transient Storage
Devices") specifications. This optional component enables
Windows to manage these storage devices natively by using
BitLocker.

AREA/OPTIONAL COMPONENT NAME DESCRIPTION

Windows RE optional components



INCLUDED OPTIONAL COMPONENT

WinPE-EnhancedStorage

WinPE-Rejuv

WinPE-Scripting

WinPE-SecureStartup

WinPE-Setup

WinPE-SRT

WinPE-WDS-Tools

WinPE-WMI

Add more languages to images that include optional components

The default Windows RE image contains the following built-in optional components:

Dism /Get-Packages /Image:"C:\WinPE_amd64\mount"

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-
fr\lp.cab"

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\fr-fr\WinPE-
HTA_fr-fr.cab"

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-Font 
Support-JA-JP.cab"

Dism /Get-Packages /Image:"C:\WinPE_amd64\mount"

1. On a mounted image, list the optional components in the Windows PE image:

2. Review the resulting list of packages, and add the corresponding language packs for each package in the
image, including the base Windows PE language pack.

where … WinPE_OCs\fr-fr\lp.cab represents the base Windows PE language pack.

3. If you're adding language packs for Japan, Korea, or China, add the font packages for these languages.
Here's an example for Japan:

4. Verify that the language packs are part of the image:

Review the resulting list of packages and verify that the for each optional component, including the base
Windows PE image, that there is an associated language pack.



Related topics

Dism /Set-AllIntl:en-US /Image:"C:\WinPE_amd64\mount"

5. Change the regional settings to the language you'd like to use:

To switch languages while in Windows PE, use wpeutil setmuilanguage .

WinPE: Optimize and shrink the image

WinPE for Windows 10

WinPE: Mount and Customize

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-optimize


WinPE: Mount and Customize
4/24/2018 • 6 minutes to read • Edit Online

Common customizations:

Get the Windows Assessment and Deployment Kit with Windows
PE tools

Create a set of either 32-bit or 64-bit Windows PE files

Mount the Windows PE boot image

WinPE ships as a .wim file. Mounting and customizing a WinPE image is the same process as any other
Windows image. WinPE also has some customizations that are specific to it. This topic covers the common
ways to customize a WinPE image.

Device drivers (.inf files). You can customize device drivers, such as drivers that support network cards or
storage devices.
Packages (.cab files, also known as WinPE optional components) Add languages, hotfixes, or support for
features like PowerShell and the HTML Application Language (HTA).
Languages. To run WinPE in multiple languages, add the packages (optional components) for those
languages.
Add files and folders. These can be added directly to the WinPE image.
DISM: Use a newer version. When new versions of Windows require features from the latest version of
DISM, you can add DISM directly into WinPE.
Startup scripts. Examples include setting up a network connection, or adding a custom application, such as
diagnostic software.
Apps. Note, WinPE only supports legacy apps.
Temporary storage (scratch space). If your application requires temporary file storage, you can reserve
extra memory space in RAM.
Background image
Power scheme
WinPE settings
Windows updates

Install the Windows Assessment and Deployment Kit (Windows ADK) Technical Reference, including the
Windows PE  feature.

Before you can customize WinPE, you need to have a WinPE image to work with. If you need to get a WinPE
image, see WinPE: Create USB bootable drive to learn how.

Dism /Mount-Image /ImageFile:"C:\WinPE_amd64\media\sources\boot.wim" /index:1 
/MountDir:"C:\WinPE_amd64\mount"

Use DISM to mount the WinPE image into a temporary location on your technician PC:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-mount-and-customize.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-add-drivers
http://go.microsoft.com/fwlink/p/?LinkId=526803


  

  

Add customizations
Add device drivers (.inf files)Add device drivers (.inf files)

Add packages/languages/optional components/.cab filesAdd packages/languages/optional components/.cab files

Add files and foldersAdd files and folders

Add a startup scriptAdd a startup script

Add an appAdd an app

Dism /Add-Driver /Image:"C:\WinPE_amd64\mount" /Driver:"C:\SampleDriver\driver.inf"

Use DISM /add-driver  to add a device driver to your WinPE image.

You can add multiple drivers to an image by using one command, but it's often easier to troubleshoot
problems if you add each driver package individually.

To learn more about drivers, see Add device drivers (.inf files). To see all available DISM driver
servicing options, see DISM driver servicing command-line options.

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"C:\Program Files\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
HTA.cab"  

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"C:\Program Files\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-
us\WinPE-HTA_en-us.cab"

WinPE has packages that you can add with DISM to enable additional features and languages. Use 
DISM /add-package  to add optional components to your image. When you add a WinPE optional

component, make sure that you add both the optional component and its associated language packs.

To learn more about available optional components and languages, see WinPE: Add packages
(Optional Components Reference).

Copy files and folders into the C:\WinPE_amd64\mount folder. These files will show up in the X:\
folder in WinPE.

Don't add too many files, as these will slow down WinPE and can fill up the available memory in the
default RAMDisk environment.

Modify Startnet.cmd to include your customized commands. This file is located in your mounted
image at C:\WinPE_amd64\mount\Windows\System32\Startnet.cmd .

You can also call other batch files or command line scripts from this file.

For Plug and Play or networking support, make sure that you include a call to wpeinit in your
customized Startnet.cmd script. For more info, see Wpeinit and Startnet.cmd: Using WinPE Startup
Scripts.

md "C:\WinPE_amd64\mount\windows\<MyApp>"

1. Create an app directory inside the mounted WinPE image.

2. Copy the necessary app files to the local WinPE directory.

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-add-drivers


  

  

          

  

Add temporary storage (scratch space)Add temporary storage (scratch space)

Replace the background imageReplace the background image

Set the power scheme to high performanceSet the power scheme to high performance

Add answer file settingsAdd answer file settings

Xcopy C:\<MyApp> "C:\WinPE_amd64\mount\windows\<MyApp>"

X:\Windows\System32> X:\Windows\<MyApp>

3. Test the app later by booting WinPE and running the application from the X: directory.

If your app requires temporary storage, or if WinPE becomes unresponsive when it runs an app, you
may need to increase the amount of temporary storage (scratch space) allocated to WinPE.

4. To automatically launch a shell or application that runs when WinPE starts, add the path location to the
Winpeshl.ini file. For more info, see Winpeshl.ini Reference: Launching an app when WinPE starts.

Dism /Set-ScratchSpace:256 /Image:"C:\WinPE_amd64\mount"

WinPE reserves memory on the X: drive to unpack the WinPE files, plus additional temporary file
storage, known as scratch space, that can be used by your applications. By default, this is 512MB for
PCs with more than 1GB of RAM, otherwise the default is 32MB. Valid values are 32, 64, 128, 256, or
512.

If you've got multiple versions of WinPE, you can set the background image so you can instantly tell which
version of WinPE is running.

Change the security permissions of the WinPE background image file ( \windows\system32\winpe.jpg ). This
allows you to modify or delete the file.

1. In Windows Explorer, navigate to C:\WinPE_amd64\mount\windows\system32 .

2. Right-click the C:\WinPE_amd64\mount\windows\system32\winpe.jpg  file, and select Properties > Security
tab > Advanced.

3. Next to Owner, select Change. Change the owner to Administrators.

4. Apply the changes, and exit the Properties window to save changes.

5. Right-click the C:\WinPE_amd64\mount\windows\system32\winpe.jpg  file, and select Properties > Security
tab > Advanced.

6. Modify the permissions for Administrators to allow full access.

7. Apply the changes, and exit the Properties window to save changes.

8. Replace the winpe.jpg  file with your own image file.

Note: Using the high performance power scheme can make the device run hotter than usual.

wpeinit
powercfg /s 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c 

1. In Notepad, edit the file: C:\WinPE_amd64\mount\windows\system32\startnet.cmd , adding a command to
set the power scheme to High Performance.



  Add updates to WinPE (if needed)Add updates to WinPE (if needed)

Unmount the Windows PE image and create media

Troubleshooting

To delete a working directory:To delete a working directory:

Some WinPE settings can be managed by using an answer file, such as firewall, network, and display
settings. Create an answer file, name it unattend.xml, and add it to the root of the WinPE media to process
these settings. For more information, see Wpeinit and Startnet.cmd: Using WinPE Startup Scripts.

You can apply updates to your WinPE image, but you'll only need to for certain situations.

If you've been instructed to apply an update to your WinPE image, you'll have to first download the latest
update for your WinPE version from the Microsoft update catalog. Updates for WinPE are included in
updates for the matching version of Windows 10. You can find information about the latest available updates
for Windows 10 at Windows 10 update history.

Dism /Add-Package /Image:"C:\WinPE_amd64\mount" /PackagePath:"E:\windows10.0-kbxxxxx.msu"

dism /cleanup-image /image:C:\WinPE_amd64\mount\windows /startcomponentcleanup /resetbase 
/scratchdir:C:\temp

1. Download the latest update.

2. Apply the update to your mounted WinPE image.

Where Windows10.0-kbxxxxx.msu is the name of the update file

3. Lock in the update:

Dism /Unmount-Image /MountDir:"C:\WinPE_amd64\mount" /commit

MakeWinPEMedia /UFD C:\WinPE_amd64 F:

1. Unmount the WinPE image, committing changes.

2. Create bootable media, such as a USB flash drive.

3. Boot the media. WinPE starts automatically. After the WinPE window appears, the wpeinit command
runs automatically. This may take a few minutes. Verify your customizations.

WinPE won’t boot? See the troubleshooting tips at the end of the topic: WinPE: Create USB Bootable
drive
For tips on connecting to a network, see WinPE Network Drivers: Initializing and adding drivers.
If the WinPE image becomes unserviceable, you may need to clean up the images before you can mount
the image again. For information, see Repair a Windows Image.

In some cases, you may not be able to recover the mounted image. DISM protects you from accidentally
deleting the working directory, so you may have to try the following steps to get access to delete the
mounted directory. Try each of the following steps:

1. Try remounting the image:

https://www.catalog.update.microsoft.com/Search.aspx?q=cumulative update for Windows 10
https://support.microsoft.com/en-us/help/4018124/windows-10-update-history


Related topics

dism /Remount-Image /MountDir:C:\mount

dism /Unmount-Image /MountDir:C:\mount /discard

dism /Cleanup-Mountpoints

2. Try unmounting the image, discarding the changes:

3. Try cleaning up the resources associated with the mounted image:

WinPE: Optimize and shrink the image

WinPE for Windows 10

WinPE: Create USB Bootable drive

WinPE: Create a Boot CD, DVD, ISO, or VHD

WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)

WinPE: Boot in UEFI or legacy BIOS mode

WinPE: Add packages (Optional Components Reference)

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-optimize
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-a-boot-cd-dvd-iso-or-vhd
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode


WinPE: Adding Windows PowerShell support to
Windows PE
4/16/2018 • 2 minutes to read • Edit Online

Sample script

The following sample script creates a version of Windows PE with Windows PowerShell and its DISM and
Storage cmdlets, which can be used to help automate Windows deployment.

Prepare a local copy of the Windows PE files

copype amd64 C:\WinPE_amd64_PS

1. Install the Windows Assessment and Deployment Kit (ADK), adding the Deployment Tools and
Windows PE  features.

2. Start the Deployment and Imaging Tools Environment as an administrator.

3. Create a working copy of the Windows PE files. Specify either x86, amd64, or arm:

Use the following script to mount the Windows image, add the Windows PE optional components for Windows
PowerShell, and to unmount the image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-adding-powershell-support-to-windows-pe.md
http://go.microsoft.com/fwlink/p/?LinkID=526803


Dism /Mount-Image /ImageFile:"C:\WinPE_amd64_PS\media\sources\boot.wim" /Index:1 
/MountDir:"C:\WinPE_amd64_PS\mount"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-WMI.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-WMI_en-
us.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-NetFX.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-
NetFX_en-us.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-Scripting.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-
Scripting_en-us.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
PowerShell.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-
PowerShell_en-us.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
StorageWMI.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-
StorageWMI_en-us.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\WinPE-
DismCmdlets.cab"
Dism /Add-Package /Image:"C:\WinPE_amd64_PS\mount" /PackagePath:"C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Windows Preinstallation Environment\amd64\WinPE_OCs\en-us\WinPE-
DismCmdlets_en-us.cab"
Dism /Unmount-Image /MountDir:C:\WinPE_amd64_PS\mount /Commit

Install this version of Windows PE to a USB key
MakeWinPEMedia /UFD C:\WinPE_amd64_PS F:

Start Windows PowerShell in Windows PE

X:\Windows\system32\WindowsPowerShell\v1.0\powershell

Related topics

After you boot a PC to Windows PE using this USB key, start Windows PowerShell:

WinPE for Windows 10

WinPE: Add packages (Optional Components Reference)

WinPE: Create USB Bootable drive

WinPE: Create a Boot CD, DVD, ISO, or VHD

WinPE: Mount and Customize

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-a-boot-cd-dvd-iso-or-vhd


  

WinPE: Store or split images to deploy Windows
using a single USB drive
7/13/2017 • 2 minutes to read • Edit Online

Option 1: Create a multiple partition USB drive

Option 2: Store the image on a separate USB drive

How can you deploy Windows to PCs with just one USB port?

The default Windows Preinstallation Environment (WinPE) drive format, FAT32, is used to boot UEFI-based PCs,
but that's too small to store most Windows images:

FAT32 has a maximum file size of 4GB in size. Most customized Windows images are over 4GB.
FAT32 has a maximum partition size of 32GB. Some Windows images are larger than 32GB.

(You can still use a 64GB or 128GB USB key, but you have to format it to use only uses 32GB of its space.)

Here's a few ways around these limitations:

Starting with Windows 10, Version 1703, you can create multiple partitions on USB drives. To work with a USB
drive with multiple partitions, both your technician PC and WinPE have to be Windows 10, Version 1703.

Create a USB drive with WinPE and data partitions

List disk
select disk X    (where X is your USB drive)
clean
create partition primary size=2048
active
format fs=FAT32 quick label="WinPE"
assign letter=P
create partition primary
format fs=NTFS quick label="Images"
assign letter=I  
Exit

copype amd64 C:\WinPE_amd64
xcopy C:\WinPE_amd64\media P:\ /s

xcopy C:\Images\install.wim I:\install.wim

1. Start the Deployment and Imaging Tools Environment as an administrator.

2. Type diskpart and press Enter.

3. Use Diskpart to reformat the drive and create two new partitions for WinPE and for your images:

4. Copy the WinPE files to the WinPE partition:

5. Copy the Windows image file to the Images partition:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe--use-a-single-usb-key-for-winpe-and-a-wim-file---wim.md


Option 3: Store the image on a network location

Option 4: Split the image

If you are using Windows 10, Version 1607 or earlier and your PC only has one USB port, you can still deploy
Windows using two separate USB keys.

1. Boot to WinPE.
2. Remove the WinPE drive. (After booting, WinPE runs in memory.)
3. Plug in a separate storage drive with your image and apply it to the device.

net use N: \\server\share

Dism /apply-image /imagefile:N:\install.wim /index:1 /applydir:D:\

1. Copy the image to a server on your network, for example, \\server\share\install.wim

2. Boot to WinPE.

3. Connect a network drive using a drive letter, for example, N.

4. Apply the image from the network.

Limitations:

Windows Setup doesn't support installing from a split .wim file for Windows 10.
You can't modify a split .wim file.
To use a 64GB or 128GB key, format it to only use 32GB of space.
For images larger than 32GB, you need a second USB key because of the FAT32 partition size limitation.

Dism /Split-Image /ImageFile:C:\install.wim /SWMFile:C:\images\install.swm /FileSize:4000

Dism /apply-image /imagefile:install.swm /swmfile:install*.swm /index:1 /applydir:D:\

1. From your technician PC, create your WinPE key. See WinPE: Create USB Bootable drive.

2. Open the Deployment and Imaging Tools Environment as an adminstrator.

3. Split the Windows image into files smaller than 4GB each:

where:

C:\images\install.wim  is the name and the location of the image file that you want to split.

D:\images\install.swm  is the destination name and the location for the split .wim files.

4000  is the maximum size in MB for each of the split .wim files to be created.

In this example, the /split option creates an install.swm file, an install2.swm file, an install3.swm file, and so
on, in the D:\Images directory.

4. Copy the files to the WinPE key.

5. On the destination PC, boot to WinPE, and then apply an image using DISM /Apply-Image /SWMFile
command.



Related topics
WinPE: Identify drive letters with a script

Split a Windows image file (.wim) for FAT32 media or to span across multiple DVDs

DISM Image Management Command-Line Options



WinPE: Identify drive letters with a script
5/11/2018 • 2 minutes to read • Edit Online

@echo Find a drive that has a folder titled Images.
@for %%a in (C D E F G H I J K L M N O P Q R S T U V W X Y Z) do @if exist %%a:\Images\ set IMAGESDRIVE=%%a
@echo The Images folder is on drive: %IMAGESDRIVE%
@dir %IMAGESDRIVE%:\Images /w

Related topics

WinPE drive letter assignments change each time you boot, and can change depending on which hardware is
detected.

You can use a script to figure out which drive letter is which by searching for a file or folder.

This sample script looks for a drive that has a folder titled Images, and assigns it to a system variable:
%IMAGESDRIVE%.

WinPE for Windows 10

Wpeinit and Startnet.cmd: Using WinPE Startup Scripts

WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-identify-drive-letters.md


WinPE: Storage Area Network (SAN) Policy
5/11/2018 • 3 minutes to read • Edit Online

Configuring the SAN policy on a Windows PE image

Storage area network (SAN) functionality enables a computer to mount disks and other storage devices
automatically from other computers. By configuring the SAN policy on a Windows Preinstallation Environment
(Windows PE) image, you can control whether or not disks are automatically mounted and which disks can be
mounted. You can also disable the policy to automatically mount disks.

For Windows PE images that are available in the Windows Assessment and Deployment Kit (Windows ADK), the
default SAN policy is to mount available disks automatically. But if the SAN environment has many available disks,
automatically mounting them might reduce the performance of Windows PE. The container ID determines the
external and internal disk status. If the device container ID of a disk is the same as the root container ID, the disk is
internal. Otherwise, it's an external disk. You can use the Setsanpolicy.cmd file in the Windows PE tools path to
configure the SAN policy on a Windows PE image.

To configure the SAN policy on a Windows PE image

Dism /mount-image /imagefile:C:\winpe_x86\ISO\sources\boot.wim /index:<image_index> 
/mountdir:C:\winpe_x86\mount

Setsanpolicy.cmd <image_path> <policy_number>

SAN POLICY NUMBER DESCRIPTION

1. Mount the Windows PE image to an available mount point. For example:

where <image_index> is the number of the selected image in the .wim file.

2. Run the setsanpolicy command. For example:

where <image_path> is the path of a mounted Windows PE image, and <policy_number> is the SAN
policy number.

These values are valid <policy_number> values:

1 Mounts all available storage devices.

This is the default value.

2 Mounts all storage devices except those on a shared
bus.

3 Doesn't mount storage devices.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-storage-area-network--san--policy.md


Configuring the SAN Policy on a Windows Image

Related topics

Note

SAN POLICY NUMBER DESCRIPTION

Setsanpolicy C:\winpe_x86\mount <2>

Dism /unmount-image /mountdir:C:\winpe_x86\mount /commit

4 New for Windows 8. Makes internal disks offline.

All external disks and the boot disk are online.

This example shows how to configure the SAN policy on a Windows PE image to mount all disks except
those disks on a shared bus:

where <2> is the SAN policy number that mounts all storage device except those on a shared bus.

3. Unmount the image and commit the changes. For example:

You can change the default SAN policy of a Windows image by using Windows System Image Manager (Windows
SIM) to customize the Microsoft-Windows-PartitionManager component. You use the SanPolicy  setting to
configure the Windows image during an unattended installation.

To configure the SAN policy by using an answer file

1. On your technician computer, open Windows System Image Manager (Windows SIM). Click Start, type
Windows System Image Manager, and then select Windows System Image Manager.

2. Create a new answer file, or update an existing answer file. For more information, see Create or Open an
Answer File and Best Practices for Authoring Answer Files.

3. On the Insert menu, click RunSynchronous.

4. Select the configuration pass where you want to install the command. This can be the auditUser or
oobeSystem configuration pass.

Note
Don't use the RunSynchronousNetsh advfirewall command during the specialize configuration pass.

The Create Synchronous Command dialog box appears.

5. Enter the Netsh advfirewall firewall commands to add them to the answer file, and then click OK.

For more information, see the Network Shell (Netsh) Technical Reference. You can convert Netsh
commands to Windows PowerShell® commands. For more information, see the Netshell to Powershell
Conversion Guide.

6. In the SynchronousCommand Properties pane, in the Settings section next to Description, enter a
description like Enable Windows Messenger.

WinPE for Windows 10

https://msdn.microsoft.com/library/windows/hardware/dn915085
https://msdn.microsoft.com/library/windows/hardware/dn915073
http://go.microsoft.com/fwlink/?LinkId=234733
http://go.microsoft.com/fwlink/?LinkId=234734


WinPE: Mount and Customize

WinPE Network Drivers: Initializing and adding drivers

DISM Image Management Command-Line Options

Configure Network Settings in an Unattended Installation

Windows Deployment Options

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/configure-network-settings-in-an-unattended-installation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-deployment-options


WinPE Network Drivers: Initializing and adding
drivers
5/11/2018 • 3 minutes to read • Edit Online

The Wpeutil command initializes the Windows PE (WinPE) network drivers as soon as WinPE boots. The default
WinPE image includes support for many popular network adapters, and supports many of the same networking
commands as in Windows. Windows PE includes a basic set of network drivers for many popular network
adapters, and supports many of the same networking commands as in Windows.

Networking in WinPE has the following limitations:

The supported methods of connecting to file servers are TCP/IP and NetBIOS over TCP/IP. Other methods,
like the Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX) network protocol are not
supported.
Distributed File System (DFS) name resolution is supported for stand-alone namespaces only. It doesn't
support domain namespaces. Stand-alone DFS namespaces allow for a DFS namespace that exists only on
the local PC and therefore doesn't use Active Directory Domain Services (AD DS).
General wireless networking functionality is not supported in WinPE.
Connecting to an IPv4 network from Windows PE on an IPv6 network is not supported.
Starting with WinPE for Windows 10, version 1709, SMB1 protocol is disabled by default. You can enable
SMB1 support by running dism.exe /enable-feature /featurename=SMB1Protocol-client .

To connect to another PC or shared folder on a network

net use n: \\server\share

1. While in Windows PE, you can connect (or map) to a shared network folder by using the net use
command. If you’re connecting to a domain-joined PC, Windows PE prompts for a username and
password.

2. You can also host Windows PE from a network by using Preboot Execution Environment (PXE), which is
part of Windows Deployment Services.

Troubleshooting networking problems

1. Try adding a driver for your network device.

We recommend WinPE: Mount and Customize, especially for any driver that requires a reboot during the
installation process.

You may also be able to use the Drvload Command-Line Options to load some drivers while Windows PE
is running. However, any updates made to the registry during the installation process will not persist after
a reboot, even when Windows PE is running in a WinPE: Install on a Hard Drive (Flat Boot or Non-RAM).

2. Run Wpeinit and Startnet.cmd: Using WinPE Startup Scripts to initialize the network. By default, wpeinit
runs when Windows PE starts.

3. In some cases, you may need to configure firewall settings on the PC that you are trying to connect to.
Windows PE supports IPSec configuration.

4. Note, you cannot join Windows PE to a domain, or run Windows PE as a server. For more information, see

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-network-drivers-initializing-and-adding-drivers.md
http://technet.microsoft.com/library/bb490717.aspx
http://technet.microsoft.com/library/hh831764
http://go.microsoft.com/fwlink/p/?linkid=81713


WinPE for Windows 10.

To connect to a wired network using 802.1x authentication protocols

net start dot3svc

netsh lan add profile="G:\EthernetLANProfile.xml"

1. Create a custom Windows PE image that includes the WinPE-Dot3Svc optional component.

2. Boot a PC to Windows PE.

3. Start the dot3svc service.

4. Add a L AN profile. For example:

Sample L AN Profile:



<?xml version="1.0"?>
<!-- Sample LAN profile: EthernetLANProfile.xml" -->
<LANProfile xmlns="http://www.microsoft.com/networking/LAN/profile/v1">
  <MSM>
    <security>
      <OneXEnforced>false</OneXEnforced>
      <OneXEnabled>true</OneXEnabled>
      <OneX xmlns="http://www.microsoft.com/networking/OneX/v1">
        <cacheUserData>true</cacheUserData>
        <authMode>user</authMode>
        <EAPConfig><EapHostConfig 
          xmlns="http://www.microsoft.com/provisioning/EapHostConfig"><EapMethod><Type 
          xmlns="http://www.microsoft.com/provisioning/EapCommon">25</Type><VendorId 
          xmlns="http://www.microsoft.com/provisioning/EapCommon">0</VendorId><VendorType 
          xmlns="http://www.microsoft.com/provisioning/EapCommon">0</VendorType><AuthorId 
          xmlns="http://www.microsoft.com/provisioning/EapCommon">0</AuthorId></EapMethod><Config 
          xmlns="http://www.microsoft.com/provisioning/EapHostConfig"><Eap 
          xmlns="http://www.microsoft.com/provisioning/BaseEapConnectionPropertiesV1">
        <Type>25</Type><EapType 
          xmlns="http://www.microsoft.com/provisioning/MsPeapConnectionPropertiesV1">
        <ServerValidation>
          <DisableUserPromptForServerValidation>false</DisableUserPromptForServerValidation>
          <ServerNames></ServerNames>
          <TrustedRootCA>1a 2b 3c 4d 56 78 90 aa bb cc dd ee ff 1a 2b 3c 4d 5e 6f</TrustedRootCA>
          </ServerValidation><FastReconnect>true</FastReconnect>
          <InnerEapOptional>false</InnerEapOptional><Eap 
            xmlns="http://www.microsoft.com/provisioning/BaseEapConnectionPropertiesV1">
          <Type>26</Type><EapType 
            xmlns="http://www.microsoft.com/provisioning/MsChapV2ConnectionPropertiesV1">
          <UseWinLogonCredentials>false</UseWinLogonCredentials></EapType></Eap>
          <EnableQuarantineChecks>false</EnableQuarantineChecks>
          <RequireCryptoBinding>false</RequireCryptoBinding><PeapExtensions>
          <PerformServerValidation 
            xmlns="http://www.microsoft.com/provisioning/MsPeapConnectionPropertiesV2">false
          </PerformServerValidation><AcceptServerName 
            xmlns="http://www.microsoft.com/provisioning/MsPeapConnectionPropertiesV2">false
            </AcceptServerName><PeapExtensionsV2 
            xmlns="http://www.microsoft.com/provisioning/MsPeapConnectionPropertiesV2">
          <AllowPromptingWhenServerCANotFound 
            xmlns="http://www.microsoft.com/provisioning/MsPeapConnectionPropertiesV3">true
          </AllowPromptingWhenServerCANotFound></PeapExtensionsV2></PeapExtensions></EapType>
        </Eap></Config></EapHostConfig></EAPConfig>
      </OneX>
    </security>
  </MSM>
</LANProfile>

netsh lan set eapuserdata filename="g:\EAP_UserData.xml" alluser=yes Interface="ethernet"

5. Link the EAP User Data with the profile. For example:

Sample EAP User Data file:



Related topics

<?xml version="1.0"?>
<!-- Sample EAP user data: EAP_UserData.xml" -->
<EapHostUserCredentials 
  xmlns="http://www.microsoft.com/provisioning/EapHostUserCredentials" 
  xmlns:eapCommon="http://www.microsoft.com/provisioning/EapCommon" 
  xmlns:baseEap="http://www.microsoft.com/provisioning/BaseEapMethodUserCredentials">
  <EapMethod>
    <eapCommon:Type>25</eapCommon:Type>
    <eapCommon:AuthorId>0</eapCommon:AuthorId>
  </EapMethod>
  <Credentials
    xmlns:eapUser="http://www.microsoft.com/provisioning/EapUserPropertiesV1" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns:baseEap="http://www.microsoft.com/provisioning/BaseEapUserPropertiesV1" 
    xmlns:MsPeap="http://www.microsoft.com/provisioning/MsPeapUserPropertiesV1" 
    xmlns:MsChapV2="http://www.microsoft.com/provisioning/MsChapV2UserPropertiesV1">
    <baseEap:Eap>
      <baseEap:Type>25</baseEap:Type>
      <MsPeap:EapType>
        <MsPeap:RoutingIdentity>onex\administrator</MsPeap:RoutingIdentity>
        <baseEap:Eap>
          <baseEap:Type>26</baseEap:Type>
          <MsChapV2:EapType>
            <MsChapV2:Username>actualuser</MsChapV2:Username>
            <MsChapV2:Password>actualpassword</MsChapV2:Password>
            <MsChapV2:LogonDomain>actualdomain</MsChapV2:LogonDomain>
          </MsChapV2:EapType>
        </baseEap:Eap>
      </MsPeap:EapType>
    </baseEap:Eap>
  </Credentials>
</EapHostUserCredentials>

6. For more info, see How to enable computer-only authentication for an 802.1X-based network in Windows
Vista, in Windows Server 2008, and in Windows XP Service Pack 3.

WinPE for Windows 10

WinPE: Mount and Customize

Wpeinit and Startnet.cmd: Using WinPE Startup Scripts

Drvload Command-Line Options

http://support.microsoft.com/kb/929847


WinPE: Create Apps
5/11/2018 • 6 minutes to read • Edit Online

Extensibility

Winpeshl.exe, Wpeinit.exe, wpeutil.exe, and wpeutil.dll

HKEY_LOCAL_MACHINE
   System
      Setup
         CmdLine

Windows PE (WinPE) is licensed to independent software vendors (ISVs) and original equipment manufacturers
(OEMs) to create customized deployment and recovery utilities. This topic provides guidelines for ISVs and OEMs
to develop deployment and recovery apps that run in Windows PE.

Note
Windows PE is not a general-purpose operating system. It may not be used for any purpose other than
deployment and recovery. It should not be used as a thin client or an embedded operating system. There are other
Microsoft® products, such as Windows Embedded CE, which may be used for these purposes.

The majority of Windows PE apps are fixed-function shell apps that provide their own GUI. Two examples are the
Windows Setup app and the Windows Recovery Environment (Windows RE).

If it is acceptable to show a command prompt, then modify Startnet.cmd – this is the most convenient way
to automatically start an app. See WinPE: Mount and Customize.

To have your app bypass the command line and start in your GUI, use Winpeshl.exe, Wpeinit.exe,
wpeutil.exe, and wpeutil.dll.

By default, Winpeshl.exe is the first process run when Windows PE is booted. This is specified by the following
registry value of type REG_SZ.

Winpeshl.exe searches for a file called Winpeshl.ini. If the file does not exist, Winpeshl.exe starts a Cmd.exe process
that executes the Startnet.cmd script. If Winpeshl.ini does exist and it contains apps to launch, these apps are
executed instead of Cmd.exe.

Wpeinit.exe installs Plug and Play (PnP) devices, starting the networking stack, and processing Unattend.xml
settings when Windows PE starts. For more information, see Wpeinit and Startnet.cmd: Using WinPE Startup
Scripts.

Networking can be started at any time by running either by allowing Wpeinit.exe to run when Windows PE starts,
or by running the Wpeutil Command-Line Options command.

Customized shell apps can call directly into Wpeutil.dll with the LoadLibrary and GetProcAddress functions. For
related information, see INFO: Alternatives to Using GetProcAddress() With LoadLibrary().

Each of the functions exported by Wpeutil.dll has the same function signature as WinMain Function, as illustrated
in the following code sample.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-create-apps.md
http://go.microsoft.com/fwlink/?LinkId=203026
http://go.microsoft.com/fwlink/?LinkId=203027
http://go.microsoft.com/fwlink/?LinkId=203028
http://go.microsoft.com/fwlink/?LinkId=203029


int InitializeNetworkingW(
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow
);

The following code sample illustrates how to initialize networking.



#include <windows.h>
#include <tchar.h>
#include <stdio.h>
typedef int (*WpeutilFunction)( 
HINSTANCE hInst, 
HINSTANCE hPrev, 
LPTSTR lpszCmdLine, 
int nCmdShow 
);
int __cdecl _tmain( int argc, TCHAR *argv[] )
{

HMODULE         hWpeutil          = NULL;

WpeutilFunction InitializeNetwork = NULL;

int             result            = 0;

TCHAR           szCmdLine[]       = _T("");

hWpeutil = LoadLibrary( _T("wpeutil") );

if( NULL == hWpeutil )

{
        _tprintf( _T("Unable to load wpeutil.dll \ n") );

return GetLastError();
}

InitializeNetwork = (WpeutilFunction)GetProcAddress( 
hWpeutil, 
"InitializeNetworkW" 
);

if( NULL == InitializeNetwork )

{

FreeLibrary( hWpeutil );

return GetLastError();

}

result = InitializeNetwork( NULL, NULL, szCmdLine, SW_SHOW );

if( ERROR_SUCCESS == result )

{
        _tprintf( _T("Network initialized. \ n") );

}

else

{
        _tprintf( _T("Initialize failed: 0x%08x"), result );

}

FreeLibrary( hWpeutil );

return result;}

For a complete list of Wpeutil.dll exports, see Wpeutil Command-Line Options.



Visual Studio project settings

API Compatibility reference

Supported APIs in Windows PESupported APIs in Windows PE

Some basic Visual Studio project settings may be different from the defaults created by the Visual Studio Project
Wizard. Ensure that you set up your project’s build settings to produce apps and DLLs that are compatible with
Windows PE, as follows:

1. You must develop Windows PE apps with native C or C++ code that does not use MFC or ATL. Therefore, if
you use the Visual Studio Project Wizard, choose a Win32 project and make sure that neither MFC nor ATL
are checked.

2. Set your project options to link to the static C/C++ runtime libraries, not the .dll version of Msvcrt.dll.

3. Open your project properties and set Configuration Properties \ C/C++ RunTime Library to Multi-
threaded or Multi-threaded debug, not one of the .dll versions. If you do not perform this step, your app
might not run on Windows PE.

4. If you plan to host your app on the 64-bit version of Windows PE, set the project build options to compile
all binaries with the x64 compiler in Visual Studio.

5. If you plan to host your app on the 32-bit version of Windows PE, set the project options to compile with
the x86 compiler.

6. Ensure that your project does not have the /clr : compiler option set. This option produces managed C++
code, which will not run on Windows PE.

Warning
Your app can use customized .dll files that you write or license from a third party. Add these .dll files to your app for
Windows PE. However, do not use Msvcrt.dll and do not include additional Windows .dll files that are not part of
Windows PE.

Windows PE is a lightweight, bootstrap operating system based on a subset of components from the Windows
operating system. It is designed to host deployment and recovery apps. As such, it contains many Windows
binaries that are needed to host the APIs that are most important to these classes of app. Due to size and other
design constraints, not all Windows binaries are present in Windows PE, and therefore not all Windows APIs are
present or usable.

The following APIs are supported in Windows PE:

1. Windows API sets (Mincore.lib).

2. Deployment Image Servicing and Management (DISM) API (Dismapi.lib).

3. Imaging APIs for Windows (Wimgapi.lib).

If an API behaves the same as it does on the full Windows operating system and as documented in the Windows
SDK for Windows operating system, it will be considered supported and can be used by apps unless otherwise
noted. Because Windows PE is based on components from Windows, it contains a significant subset of Windows
APIs that are published in the Windows SDK for Windows operating system. The parameters, calling conventions,
and behaviors of these supported APIs will be the same or nearly the same as on the full Windows operating
system, unless they are affected by the unique Windows PE environment. Apps using only these APIs should be
portable between the full Windows operating system and Windows PE.

In some cases, a subset of the possible parameter values will be usable on Windows PE. This may be due to
conditions unique to the runtime environment, such as running on a read-only medium, not having access to
persistent state, or other design limitations. In this case, the API may not be supported, but may still be used to

http://go.microsoft.com/fwlink/?LinkId=330240
http://go.microsoft.com/fwlink/?LinkId=330239
http://go.microsoft.com/fwlink/?LinkId=330241


Related topics

accomplish a specific task if there is no other alternative.

In general, if an API works incorrectly or not at all on Windows PE, it is not supported and must not be used, even
if it resides in a binary that is included in Windows PE. The API may be failing because Windows PE is a subset of
the Windows operating system, or because of the runtime design considerations unique to Windows PE. Such
failures are not considered bugs in Windows PE.

Because many Windows components are not present in Windows PE, many APIs are not available. They may be
completely missing because the Windows binary in which they reside is not present. Alternatively, they may be
only partially present because although the Windows binary in which they reside is present, one or more binaries
they depend on are not. In addition, some APIs that are present in Windows PE do not work correctly and behave
differently than they do in Windows. These APIs are unsupported and must not be used, because their behavior on
Windows PE is undefined.

Sometimes, there may be no suitable API to accomplish a specific task. To find an alternate solution, you would
require different app logic, different algorithm design, or redefinition of the underlying problem.

WinPE for Windows 10

WinPE: Debug Apps



WinPE: Debug Apps
5/11/2018 • 3 minutes to read • Edit Online

wpeutil disablefirewall

User-mode debugging

You can use Windows Debuggers, such as Ntsd.exe, Cdb.exe, and Windbg.exe, and supporting tools to debug
applications on Windows PE and to debug the Windows PE kernel. Debugging tools are included in the Windows
10 SDK. You must make the debugging tools available on the Windows PE computer by either copying them
locally or using them from a share.

To debug Windows PE remotely, you may need to turn off the built-in firewall on the PC:

The easiest user-mode debugging method is to run a process server on the Windows PE computer, and connect to
it by using a debugger on another computer. The process server is included with the debugging tools in the
Windows 10 SDK.

To run a process server in user-mode

wpeutil disablefirewall

dbgsrv.exe -t tcp:port=1234

windbg -premote tcp:server=Server, port=1234

1. Copy the Windows Debugging Process Server tool: dbgsrv.exe, from the Windows 10 SDK debugging
tools folder (example: C:\Program Files (x86)\Windows Kits\10.0\Debuggers\x64), to the Windows PE
computer.

2. At the Windows PE command prompt, disable the firewall.

3. Start the Windows Debugging Process Server, specifying a connection method to the PC, for example, a
TCP port:

For more information, see Activating a Process Server (Windows Debuggers).

4. From the remote computer, use the process server to attach to or start processes on the Windows PE
destination computer :

For more information, see Activating a Smart Client (Windows Debuggers).

It is also possible to run the debugger directly on the Windows PE computer. However, doing so requires setting
up symbol and source paths after every reboot of the Windows PE computer. We recommend that you perform
debugging from a computer running a full version of Windows, as described in this procedure.

The following debugging procedure is useful when you want to bypass startnet.cmd or setup.exe, and proceed
directly to a command prompt for debugging purposes. This procedure bypasses all initialization, including setup,
and runs no commands, such as Wpeinit.exe. This procedure must be performed online on an online operating

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpe-debug-apps.md
http://go.microsoft.com/fwlink/?LinkId=526807
http://go.microsoft.com/fwlink/?LinkId=526807
http://go.microsoft.com/fwlink/?LinkId=526807
http://go.microsoft.com/fwlink/p/?LinkId=698645
http://go.microsoft.com/fwlink/p/?LinkId=698646


Kernel-mode debugging

identifier              {dbgsettings} 
debugtype               Serial 
debugport               1 
baudrate                115200

Related topics

system.

To enable user-mode debugging prior to any initialization

1. Delete the winpeshl.ini file, if it exists. If the winpeshl.ini file does not exist, then user-mode debugging can
be accessed by default.

2. Hold down the Ctrl key during boot before the command prompt is shown. A command prompt appears.

3. Proceed with debugging.

To debug in kernel-mode, you must enable kernel-mode debugging before the system is booted. The boot
configuration file has a setting for kernel mode debugging, which is enabled by using the bcdedit.exe command-
line tool to modify the Boot Configuration Data (BCD) store. Kernel debugging can only be performed by using
bcdedit.exe. Bcdedit.exe is located in the \Windows\System32 directory of the Windows partition.

The default debugger settings are as follows:

For creating ISOs for VM environments, enable the kernel with BCD entries before creating the ISO.

For information about how to modify the default BCD store (default.bcd), see How to Modify the BCD Store Using
Bcdedit.

To enable kernel-mode debugging

bcdedit /store <path to winpe>/boot/bcd /set {default} debug on

1. Locate the BCD store, which is contained in a file named bcd. This file is located within the boot directory in
the root of the media containing the Windows PE image.

2. At the command prompt, type the following bcdedit command to set the debug flag of the BCD store used
to boot the image to debug on :

The {default}  might need to be replaced by the unique identifier (UID) of the boot option for Windows
PE.

Alternatively, you can also enable kernel debugging by pressing F8 during boot and selecting the debug
option.

Note
To use a symbol server from within Windows PE, use the net use  command on the server ’s symbols and
file shares.

For more information about command-line options that control debugging, see BCDEdit Command-Line Options.

WinPE for Windows 10

WinPE: Mount and Customize

http://go.microsoft.com/fwlink/p/?LinkId=698647
http://go.microsoft.com/fwlink/p/?LinkId=526808


Wpeutil Command-Line Options

Winpeshl.ini Reference: Launching an app when WinPE starts

BCDEdit Command-Line Options

http://go.microsoft.com/fwlink/p/?LinkId=526808


Copype Command-Line Options
5/11/2018 • 2 minutes to read • Edit Online

Copype Command-Line Options

COMMAND-LINE OPTION DESCRIPTION

copype amd64 C:\winpe_amd64

<WorkingDirectory>
<WorkingDirectory>\media
<WorkingDirectory>\mount

Related topics

The Copype tool creates a working directory that contains a standard set of Windows Preinstallation
Environment (Windows PE) files. You use these files to customize images and (together with the
Makewinpemedia script) to create bootable media. For more information, see Makewinpemedia Command-Line
Options.

Copype uses the following command-line options.

Copype.cmd architecture WorkingDirectory

architecture Copies the boot files and the Windows PE base image
(Winpe.wim) to <WorkingDirectory>\Media.

Values include amd64, x86, or arm.

The x86 version of Windows PE can boot 32-bit UEFI, 32-
bit BIOS, or 64-bit BIOS-based PCs.

The amd64 version of Windows PE can boot either 64-bit
BIOS-based or 64-bit UEFI-based PCs.

The arm version of Windows PE can boot ARM-based
PCs.

For more information about running Windows PE on PCs
with different architectures, see Windows Setup
Supported Platforms and Cross-Platform Deployments.

WorkingDirectory Specifies the name of the working directory where
Copype creates the directory structure and copies the
Windows PE files. For example:

Copype creates the following directory structure.

When Copype copies the Windows PE base image to the
<WorkingDirectory>\Media\Sources folder, it renames
the base image from Winpe.wim to Boot.wim.

WinPE for Windows 10

WinPE: Create USB Bootable drive

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/copype-command-line-options.md


Makewinpemedia Command-Line Options



Makewinpemedia Command-Line Options
5/11/2018 • 2 minutes to read • Edit Online

Makewinpemedia Command-Line Options

COMMAND-LINE OPTION DESCRIPTION

Makewinpemedia /ufd C:\winpe_amd64 F:

Makewinpemedia /iso C:\winpe_amd64 
C:\winpe_x64\winpe_amd64.iso

Makewinpemedia /ufd /f C:\winpe_amd64 F:

C:\winpe_amd64

The Makewinpemedia tool is new for Windows 8. You can use Makewinpemedia to create bootable Windows
Preinstallation Environment (Windows PE) media. Running the Copype tool is a prerequisite for creating
bootable media. Copype creates a directory structure for Windows PE files and copies the necessary Windows
PE media files. For more information, see Copype Command-Line Options and WinPE: Create USB Bootable
drive.

The Makewinpemedia tool uses the following command-line options.

Makewinpemedia {/ufd | /iso} [/f] <WorkingDirectory> <DestinationLocation>

/ufd Specifies a USB flash drive as the type of media to create.
For example:

where F is the drive letter of the USB flash drive.

/iso Specifies a .iso file (CD or DVD) as the type of media to
create. For example:

/f Optional. Suppresses the confirmation message that
appears before you format the USB flash drive or
overwrite an existing .iso file. For example:

where F is the drive letter of the USB flash drive.

<WorkingDirectory> Specifies the name of the working directory where the
Copype tool creates the Windows PE directory structure
and copies the necessary files for creating bootable
media. For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/makewinpemedia-command-line-options.md


COMMAND-LINE OPTION DESCRIPTION

Related topics

<DestinationLocation> Specifies the drive letter of the USB flash drive if you are
using the /ufd option, or the name of the .iso file if you
are using the /iso option.

WinPE for Windows 10

WinPE: Create USB Bootable drive

WinPE: Mount and Customize

Oscdimg Command-Line Options



Drvload Command-Line Options
5/11/2018 • 2 minutes to read • Edit Online

Drvload Command-Line Options

OPTION DESCRIPTION

Related topics

The Drvload tool adds out-of-box drivers to a booted Windows Preinstallation Environment (Windows PE) image.
It takes one or more driver .inf files as inputs. To add a driver to an offline Windows PE image, use the
Deployment Image Servicing and Management (DISM) tool. For more information, see Add and Remove Drivers
to an Offline Windows Image.

If the driver .inf file requires a reboot, Windows PE will ignore the request. If the driver .sys file requires a reboot,
then the driver cannot be added with Drvload. For more information, see Device Drivers and Deployment
Overview and DISM Driver Servicing Command-Line Options.

Drivers added using the Drvload tool are marked as the preferred driver for that device. If you add an updated
driver during Windows Setup, the driver that you added with Drvload takes precedence.

The following command-line options are available for Drvload.

drvload inf_path [,inf_path [...]] [/?]

/? Displays usage information.

inf_path Specifies the path to the driver .inf file. The path can
contain environment variables.

If any drivers were not installed, then Drvload will return a non-zero status (%errorlevel%).

WinPE for Windows 10

WinPE: Mount and Customize

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/drvload-command-line-options.md


Winpeshl.ini Reference: Launching an app when
WinPE starts
5/11/2018 • 2 minutes to read • Edit Online

Example
[LaunchApp]
AppPath = %SYSTEMDRIVE%\Fabrikam\shell.exe
[LaunchApps]
%SYSTEMDRIVE%\Fabrikam\app1.exe
%SYSTEMDRIVE%\Fabrikam\app2.exe, /s "C:\Program Files\App3"

LaunchApp

LaunchApps

Related topics

Use the Winpeshl.ini file in Windows Preinstallation Environment (Windows PE) to replace the default command
prompt with a shell application or other app. For example, your shell app might provide a GUI for deployment
engineers to choose a method of installing Windows.

To add a customized app, create a file named Winpeshl.ini and place it in %SYSTEMROOT%\System32 a
customized Windows PE image. For more information, see WinPE: Mount and Customize.

The Wpeshl.ini file may have either or both of the sections: [LaunchApp] and [LaunchApps]. The apps listed in
[LaunchApp] and [LaunchApps] run in order of appearance, and don’t start until the previous app has terminated.

Set the AppPath  entry to the path to your app. You can use a fully qualified path, or you can include environment
variables, such as %SYSTEMDRIVE%  to describe the path.

Note

The [LaunchApp] entry may only include one app.

You can’t specify a command that is greater than 250 characters.

You can’t specifiy any command-line options with LaunchApp.

Use the [LaunchApps]  section to run apps with command-line options.

Note

LaunchApps supports running apps, but does not support common scripting commands. To run
commands, add a startup script instead (startnet.cmd). For more information, see WinPE: Mount and
Customize.

You can’t specify a command that is greater than 250 characters.

To add command-line options to an app: add a comma (,) after the app name: 
%SYSTEMDRIVE%\Fabrikam\app2.exe, <option>

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/winpeshlini-reference-launching-an-app-when-winpe-starts.md


WinPE for Windows 10

WinPE: Debug Apps



Wpeinit and Startnet.cmd: Using WinPE Startup
Scripts
5/11/2018 • 2 minutes to read • Edit Online

Startnet.cmd

Wpeinit Command-Line Options

Wpeinit -unattend:"C:\Unattend-PE.xml"

Supported Unattend settings

Related topics

Use Wpeinit and Startnet.cmd to run startup scripts when Windows PE (WinPE) first runs.

Wpeinit outputs log messages to C:\Windows\system32\wpeinit.log.

You can add customized command-line scripts in Windows PE by using Startnet.cmd. By default, Windows PE
includes a Startnet.cmd script located at %SYSTEMROOT%\System32 of your customized Windows PE image.

Startnet.cmd starts Wpeinit.exe. Wpeinit.exe installs Plug and Play devices, processes Unattend.xml settings, and
loads network resources.

For more info, see WinPE: Mount and Customize.

The following command-line option is available for Wpeinit:

Wpeinit [-unattend:<path_to_answer_file>]

Example:

You can create an answer file and include any of the following settings for use with Windows PE:

Microsoft-Windows-Setup/Display

Microsoft-Windows-Setup/EnableFirewall

Microsoft-Windows-Setup/EnableNetwork

Microsoft-Windows-Setup/LogPath

Microsoft-Windows-Setup/PageFile

Microsoft-Windows-Setup/Restart

Microsoft-Windows-Setup/RunAsynchronous

Microsoft-Windows-Setup/RunSynchronous

WinPE: Identify drive letters with a script

WinPE for Windows 10

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/wpeinit-and-startnetcmd-using-winpe-startup-scripts.md
https://msdn.microsoft.com/library/windows/hardware/dn915285
https://msdn.microsoft.com/library/windows/hardware/dn915375
https://msdn.microsoft.com/library/windows/hardware/dn915383
https://msdn.microsoft.com/library/windows/hardware/dn915490
https://msdn.microsoft.com/library/windows/hardware/dn915671
https://msdn.microsoft.com/library/windows/hardware/dn915783
https://msdn.microsoft.com/library/windows/hardware/dn915800
https://msdn.microsoft.com/library/windows/hardware/dn915804


Winpeshl.ini Reference: Launching an app when WinPE starts

WinPE: Mount and Customize

Unattended Windows Setup Reference

http://go.microsoft.com/fwlink/?LinkId=206281


Wpeutil Command-Line Options
5/11/2018 • 4 minutes to read • Edit Online

Wpeutil Command-Line Options

Wpeutil Shutdown
Wpeutil Enablefirewall
Wpeutil SetMuiLanguage de-DE

COMMAND DESCRIPTION

Wpeutil CreatePageFile /path=C:\pagefile.sys

Wpeutil CreatePageFile /path=C:\pagefile.sys 
/size=128

Important

The Windows® PE utility (Wpeutil) is a command-line tool that enables you to run commands during a Windows
PE session. For example, you can shut down or restart Windows PE, enable or disable a firewall, set language
settings, and initialize a network.

Wpeutil uses the following conventions.

Wpeutil {command} [argument]

For example:

Note
Wpeutil can only accept one command per line.

CreatePageFile [/path=<path>] [/size=<size>] Creates a page file to a specified path and size. The
default path is C:\pagefile.sys and default size is 64
megabytes. At least one option must be specified. For
example:

-or-

If a page file exists, the /CreatePageFile option must
be set equal to or greater than the current size of the
page file or the command will fail.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/wpeutil-command-line-options.md


Wpeutil DisableExtendedCharactersForVolume C:
</code>

Wpeutil DisableFirewall

Wpeutil EnableExtendedCharactersForVolume C:
</code>

Note

Wpeutil EnableFirewall

Wpeutil InitializeNetwork

COMMAND DESCRIPTION

DisableExtendedCharactersForVolume
<path_on_target_volume>

Disables extended character support for DOS-compatible
file names (8.3 format) for the volume that contains path
on target volume. This command only applies to NTFS
volumes. The path on target volume must specify the
root of the volume. For example:

If disabled, all files that have been created with extended
characters will be converted to a short file name.

DisableFirewall Disables a firewall. For example:

EnableExtendedCharactersForVolume
<path_on_target_volume>

Allows 8.3 format file names to contain extended
characters on the volume that contains path on target
volume. This command only applies to NTFS volumes.
The path on target volume must specify the root of the
volume. For example:

If you are installing an operating system in a language
that has extended characters that are enabled by
default, such as ja-JP or ko-KR, or using a copy of
Windows PE in a language that doesn't have extended
characters enabled, such as en-US, the installation will
cause a Chkdsk error during first boot. Enabling this
option before you install to that volume will prevent
Chkdsk command from running.

EnableFirewall Enables a firewall. For example:

InitializeNetwork Initializes network components and drivers, and sets the
computer name to a randomly-chosen value. For
example:



Wpeutil ListKeyboardLayouts 0x0409

Wpeutil ListKeyboardLayouts 1033

Wpeutil Reboot

Wpeutil SaveProfile profile_file_name "short 
description"

ListKeyboardLayouts LCID

Wpeutil SetKeyboardLayout 0409:00000409

Wpeutil SetMuiLanguage de-DE;en-US

COMMAND DESCRIPTION

ListKeyboardLayouts <LCID> Lists the supported keyboard layouts (Name and ID) for
a given Locale ID (LCID) value. The keyboard layouts will
also be updated in the registry under the key:
HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\WinPE\KeyboardLayouts. For
example:

-or-

For a list of valid Locale IDs, see Locale ID (LCID) Chart.

Reboot Restarts the current Windows PE session. For example:

SaveProfile Stops logging and saves the custom profile to the
location the user specified earlier with the Dism /enable-
profiling command. For more information about the
/enable-profiling command-line option, see DISM
Windows PE Servicing Command-Line Options. For
example:

SetKeyboardLayout <keyboard_layout_ID> Sets the keyboard layout in the current Windows PE
session. This will take effect for processes after the
command succeeds. To obtain a list of supported
keyboard layouts, enter:

To set the keyboard for en-US, for example:

SetMuiLanguage <language-name>[;<language-
name>]

Sets the language. <language-name> uses the
international language code format (for example, en-US
for the U.S. English language). You can specify multiple
languages in priority order, by separating them with a
semicolon. For example:

http://go.microsoft.com/fwlink/?LinkId=209839


Wpeutil SetUserLocale de-DE;en-US

Wpeutil Shutdown

Note

COMMAND DESCRIPTION

SetUserLocale <language-name>[;<language-name>] Sets the user locale. <language-name> uses the
international language code format (for example, en-US
for the U.S. English language). You can specify multiple
languages in priority order, by separating them with a
semicolon. For example:

Shutdown Shuts down the current Windows PE session. For
example:

You can also do the following in the Command Prompt
window:

Click the Close button

Type EXIT



wpeutil UpdateBootInfo
reg query HKLM\System\CurrentControlSet\Control 
/v PEBootType

Wpeutil WaitForRemovableStorage

Note

COMMAND DESCRIPTION

Related topics

UpdateBootInfo Populates the registry with information about how
Windows PE boots.

After you run this command, query the registry. For
example:

The results of this operation might change after loading
additional driver support.

To determine where Windows PE is booted from, examine
the following:

PEBootType: Error, Flat, Remote,
Ramdisk:SourceIdentified Ramdisk:SourceUnidentified,
Ramdisk:OpticalDrive
PEBootTypeErrorCode: HRESULT code
PEBootServerName: Windows Deployment Services
server name
PEBootServerAddr: Windows Deployment Services
server IP address
PEBootRamdiskSourceDrive: Source drive letter, if
available.
PEFirmwareType: Firmware boot mode: 0x1 for
BIOS, 0x2 for UEFI.

If you are not booting Windows Deployment Services,
the best way to determine where Windows PE booted
from is to first check for PEBootRamdiskSourceDrive
registry key. If it is not present, scan the drives of the
correct PEBootType and look for some kind of tag file
that identifies the boot drive.

WaitForNetwork Waits for the network card to be initialized. Use this
command when creating scripts to make sure that the
network card has been fully initialized before continuing.

WaitForRemovableStorage During the Windows PE startup sequence, this command
will block startup until the removable storage devices,
such as USB hard drives, are initialized. For example:

This spelling of WaitForRemovableStorage is correct.

WinPE for Windows 10

WinPE: Mount and Customize



DISM Windows PE Servicing Command-Line Options



Windows Setup Technical Reference
5/11/2018 • 2 minutes to read • Edit Online

Practical applications

What's New

See also

CONTENT TYPE REFERENCES

Windows Setup is a bootable program that installs the Windows operating system.

You can install or upgrade the Windows operating system on a PC from a USB key, a mounted .ISO file,
DVD, or network device.
You can automate the Windows installation process, including the configuration of drivers, packages, files,
and Windows system settings by using answer files created from Windows System Image Manager
Technical Reference.
You can use Windows Setup as an installer for your own customized Windows images.
You can use the menus in Windows Setup to prepare the hard drives before installation.

Windows 8.1 upgrades are different from previous Windows upgrade scenarios. For more info, see
Windows 8.1 Upgrade Scenarios for OEMs.

Windows Setup cannot be used to perform automated upgrades to most editions of Windows 8.1.

For volume-licensed editions of Windows, we've added a new command-line option, setup /auto , to
help enable upgrades. Note, we only plan to use this option for upgrades to Windows 8.1, and we may
remove the option in future versions of Windows. For more info, see Windows Setup Command-Line
Options.

Settings for Automating OOBE: The NetworkLocation setting is no longer needed to automate OOBE.
The functionality of the ProtectYourPC setting has changed.

The following table contains links to resources related to this scenario.

Planning Windows Setup Scenarios and Best Practices | Windows
Setup Automation Overview

Deployment Windows Setup Installation Process | Windows 8.1
Upgrade Scenarios for OEMs | Boot from a DVD | Install
Windows from a USB Flash Drive | Deploy a Custom
Image | WinPE: Create USB Bootable drive

Operations Automate Windows Setup | Use a Configuration Set
with Windows Setup| Add Device Drivers to Windows
During Windows Setup | Add a Custom Script to
Windows Setup | Multilingual Windows Image Creation
| Boot Windows to Audit Mode or OOBE

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-technical-reference.md
https://msdn.microsoft.com/library/windows/hardware/dn922445
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-81-upgrade-scenarios-for-oems
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/settings-for-automating-oobe
https://msdn.microsoft.com/library/windows/hardware/dn923171
https://msdn.microsoft.com/library/windows/hardware/dn915741
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-81-upgrade-scenarios-for-oems
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/use-a-configuration-set-with-windows-setup


CONTENT TYPE REFERENCES

Tools and settings Windows Setup Command-Line Options | Windows
Setup Supported Platforms and Cross-Platform
Deployments | Windows Setup States | Windows Setup
Edition Configuration and Product ID Files (EI.cfg and
PID.txt) | Windows Setup Log Files and Event Logs |
Windows Setup Configuration Passes

Related technologies Windows System Image Manager Technical Reference |
Unattended Windows Setup Reference | Sysprep
(System Preparation) Overview | WinPE for Windows 10

https://msdn.microsoft.com/library/windows/hardware/dn922445
http://go.microsoft.com/fwlink/?LinkId=206281


Windows Setup Supported Platforms and Cross-
Platform Deployments
5/11/2018 • 7 minutes to read • Edit Online

Firmware considerations: BIOS vs. UEFI

Firmware: BIOS 32-bit and 64-bit

This topic describes the supported platforms and deployment scenarios for running for Windows Setup.

When you’re deploying different types of PCs, you can use Windows Setup as a way to choose between your
images through the Windows Setup user interface to select a specific image. You can include images for a
variety of hardware platforms (such as BIOS and UEFI, 32-bit and 64-bit PCs), and across different versions of
Windows (such as Windows 8.1, Windows Server 2012 R2, and Windows 7).

You can also run Windows Setup through a script. Boot the PC to Windows PE, and then use the
\sources\setup.exe file to specify your image.

For UEFI-based PCs that support booting into either UEFI or legacy BIOS modes, make sure your PC is booted
into the correct firmware mode before starting Windows Setup. Otherwise, Windows Setup may set up the
hard drive partitions incorrectly, or may abort the installation if the hard drives are preconfigured. For more
information, see WinPE: Boot in UEFI or legacy BIOS mode.

To set up a single environment or set of scripts that can deploy Windows to both 32-bit and 64-bit BIOS PCs,
use a 32-bit version of Windows PE and a 32-bit version of Windows Setup.

The 64-bit version of Windows Setup does not run on the 32-bit version of Windows PE.

To install a 64-bit version of Windows from a 32-bit version of Windows PE:

1. Boot the PC using the 32-bit version of Windows PE.

2. Use any of the following techniques to install a 64-bit version of Windows:

X:\windows\system32> D:\setup /InstallFrom:"N:\Windows_64-bit\sources\install.wim"

X:\windows\system32> D:\setup /unattend:"D:\unattend_install_64-bit.xml"

Run a 32-bit version of Windows Setup, and use the /InstallFrom command-line option to select
a 64-bit Windows image:

-or-

Run a 32-bit version of Windows Setup, and use the 
Microsoft-Windows-Setup\ImageInstall\OSImage\ InstallFrom unattend setting to select a 64-bit

Windows image.

-or-

Use image-capturing tools to apply a 64-bit version of Windows to the PC.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-supported-platforms-and-cross-platform-deployments.md
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode
http://go.microsoft.com/fwlink/?LinkId=275617


Using Windows Setup to Install Previous Versions of Windows

HOST OPERATING SYSTEM WINDOWS 8.1 SETUP SUPPORT

VERSION OF
WINDOWS SETUP

WINDOWS PE 5.0
(WINDOWS 8.1)

WINDOWS PE 4.0
(WINDOWS 8)

WINDOWS PE 3.0
(WINDOWS 7)

WINDOWS PE 2.0
(WINDOWS VISTA)

Dism /Apply-Image /ImageFile:"Fabrikam_64-bit_image.wim" /Index:1 /ApplyDir:D:\

For more information, see Apply Images Using DISM.

Warning
This procedure does not support deploying Windows 7.

You can use the Windows 8.1 and Windows Server 2012 R2 versions of Windows Setup to install previous
versions of Windows:

Windows 8.1 Yes

Windows Server 2012 R2 Yes

Windows 8 Yes

Windows Server 2012 Yes

Windows 7 Yes

Windows Server 2008 R2 Yes

Windows Vista No

Windows Server 2008 No

Windows XP with SP3 No

Windows Server 2003 R2 and previous versions No

Windows XP with SP2 and previous versions No

You can also run Windows Setup from the Windows Preinstallation Environment (Windows PE). The following
table lists the supported Windows PE environments:

Windows 8.1
Setup

Yes Yes Yes No



VERSION OF
WINDOWS SETUP

WINDOWS PE 5.0
(WINDOWS 8.1)

WINDOWS PE 4.0
(WINDOWS 8)

WINDOWS PE 3.0
(WINDOWS 7)

WINDOWS PE 2.0
(WINDOWS VISTA)

Cross-Platform Deployment

64-BIT WINDOWS 8.1
IMAGE

32-BIT WINDOWS 8.1
IMAGE

64-BIT WINDOWS 8
IMAGE

32-BIT WINDOWS 8
IMAGE

Limitations of cross-platform deploymentLimitations of cross-platform deployment

Windows 8 Setup No Yes Yes Yes

Windows 7 Setup No No Yes Yes

Windows Vista
Setup

No No No Yes

Cross-platform deployment is the process of installing a specific architecture of Windows from an environment
of a different architecture. For example, you can deploy a 64-bit edition of Windows 8.1 or Windows 8 from a
32-bit edition of Windows PE. The benefit of using a cross-platform deployment solution is that you don't have
to maintain multiple versions of Windows PE for installing different architecture editions of Windows. You can
build a single Windows PE image that you can use to install both 32-bit and 64-bit editions of Windows.

When you install a 64-bit edition of Windows from a 32-bit version of Windows PE, you must use Windows PE
2.0 or a later version. For more information about Windows PE releases, see WinPE for Windows 10.

The following table lists the different architecture types of Windows images (32-bit or 64-bit) that a specific
version of Windows 8.1 Setup is able to install.

64-bit Windows
8.1 Setup

Yes No Yes No

32-bit Windows
8.1 Setup

Yes Yes No Yes

These cross-platform deployment scenarios aren't supported:

Installing a 64-bit Windows image on a 32-bit computer.

Deploying a 32-bit Windows image from a 64-bit preinstallation environment.

Using a 32-bit version of Windows Setup to upgrade a 64-bit operating system.

Using a 32-bit version of Windows 8 Setup to deploy a 64-bit version of the Windows 7 operating
system.

For example, you must use a 64-bit version of Windows 8 Setup to deploy a 64-bit version of Windows
7. In previous releases, the version of Windows Setup version had to match the operating system that
you would deploy. For example, you had to use the Windows 7 Setup.exe to install Windows 7.

Using Microsoft Internet SCSI (iSCSI) boot disk in a cross-platform deployment scenario.

For example, installing Windows (64-bit version) from cross-platform media, such as Windows PE (32-
bit version), to an iSCSI boot disk is unsupported. You must use the same architecture for Windows PE
as the target deployment architecture when you deploy Windows to an iSCSI boot disk.



Creating a .wim file for multiple architecture typesCreating a .wim file for multiple architecture types

Installing 64-bit driversInstalling 64-bit drivers

Hardware considerations: Encrypted Hard Drives (e-Drives)

On Unified Extensible Firmware Interface (UEFI), deploying a 64-bit edition of Windows from a 32-bit
version of Windows PE. On some UEFI computers, you can't install Windows in BIOS-compatibility
mode and must switch to UEFI-compatibility mode. For more information, see Boot to UEFI Mode or
Legacy BIOS mode.

On BIOS:

Performing cross-platform deployments, except as part of a clean installation, or performing a
Windows Deployment Services deployment.

Providing cross-platform installation media to users for recovery.

To prevent users from installing the wrong edition of Windows for the architecture of their
computer, don't provide cross-platform installation media to users for recovery or reinstallation.
Also, the Windows Recovery Environment (Windows RE) feature that's included on the media
applies only to 32-bit Windows installations.

If a .wim file contains both 32-bit and 64-bit Windows editions, you must select the Windows image that you
want to install. Typically, Windows Setup uses the product key that you specify in the ProductKey  setting to
determine which Windows image to install. But if the file contains 2 editions of the same Windows version, like
Windows 8.1 Pro, you must use the MetaData  setting in an answer file to specify the edition to install.

To choose an image, specify metadata that corresponds to the image index, name, description, or architecture
type. For the metadata for architecture type, use 0 for 32-bit editions and 9 for 64-bit editions. For more info,
see the MetaData  Key setting.

The answer file must include processor-specific components. The answer-file settings in the windowsPE
configuration pass must match the architecture type of the preinstallation environment. The settings that apply
to the Windows image must match the architecture type of the image. For example, if you create an answer file
that deploys 64-bit images from a 32-bit preinstallation environment, all components in the answer file for the
windowsPE configuration pass must include the processor attribute type of x86. Settings to be applied in the
specialize, oobeSystem, or other configuration passes must include the processor attribute type of amd64.

All drivers that are included with Windows are signed. In cross-architecture deployments, you can use an out-of-
box device driver. But if you use an unsigned out-of-box device driver that's boot critical in a 64-bit installation,
the installation may become unusable.

You can install 64-bit drivers for a Windows image during Windows Setup in either of these ways:

In attended installations, you can press F6 or click the Load Driver button on the Disk Configuration
page of Windows Setup.

In unattended installations, you can use the Microsoft-Windows-PnpCustomizationsWinPE or Microsoft-
Windows-PnpCustomizationsNonWinPE component in an answer file to specify a driver path. For more
information about how to automate your installation, see Automate Windows Setup.

We added support for Encrypted Hard Drive Devices (also known as E-Drives) in Windows 8, Windows Server
2012, and Windows PE 4.0.

To install a previous version of Windows (examples: Windows 7 or Windows Vista) to an Encrypted Hard Drive
Device, use Windows PE 4.0 or later.

For more information, see Encrypted Hard Drive Device Guide.

http://go.microsoft.com/fwlink/?LinkId=320263
http://go.microsoft.com/fwlink/?LinkId=290954


Related topics
WinPE: Boot in UEFI or legacy BIOS mode

Windows Setup Scenarios and Best Practices

Windows Setup Installation Process

Windows Setup Automation Overview

Audit Mode Overview

Windows Setup Configuration Passes

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-boot-in-uefi-or-legacy-bios-mode


 

Windows Setup Scenarios and Best Practices
5/11/2018 • 5 minutes to read • Edit Online

Common Usage Scenarios

Custom InstallationsCustom Installations

UpgradesUpgrades

Windows Setup installs the Windows operating system. Windows Setup uses a technology called Image-based
Setup (IBS) that provides a single, unified process with which all customers can install Windows. IBS performs
clean installations and upgrades of Windows and is used in both client and server installations. Windows Setup
also enables you to customize Windows during installation by using Setup answer file settings.

In this topic:

Common Usage Scenarios

Windows Setup Best Practices

Windows Setup Limitations

Common installation scenarios include performing clean installations, upgrades, and unattended installations.

The most common scenario for Windows Setup is performing a custom installation. In this scenario, you install
Windows onto a computer that does not have an operating system, or has a previous version of Windows. This
scenario consists of the following stages:

1. Run Setup.exe from your Windows product DVD or network share.

2. Select the Custom installation type.

3. If you are installing from a previous installation of Windows, Windows Setup creates a local boot directory
and copies all of the required Windows Setup files to this directory.

4. Windows Setup reboots, installs and configures Windows components, and, after installation is complete,
launches Windows Welcome.

Custom installations do not migrate any settings or preferences from previously installed versions of Windows.
Files from previous Windows versions are copied to a \Windows.old directory. All data from the Windows
installation including the Users, Program Files, and Windows directories are saved to this directory.

Windows Setup can also perform upgrades from a supported operating system.

This scenario includes the following stages:

1. Run Setup.exe on the previous version of Windows.

2. Select the Upgrade installation type. Windows Setup upgrades the system and protects your files,
settings, and preferences during the installation process.

3. Windows Setup reboots and restores your protected files, settings, and preferences. Windows Setup then
launches Windows Welcome.

Notes

Upgrades are used to upgrade a single computer to Windows 10. Upgrades also support migrating user data
to a new system.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-scenarios-and-best-practices.md


 

 

Automated InstallationsAutomated Installations

Windows Setup Best Practices

Windows Setup Limitations

Windows Setup supports upgrading to an image that has the latest quality updates injected, but does not
support upgrading to an image that's been customized to add additional apps and/or settings changes.

Automated installations enable you to customize a Windows installation and remove the need for a user to
interact with Windows Setup. By using Windows System Image Manager (Windows SIM) or the Component
Platform Interface (CPI) APIs, you can create one or more customized Windows installations that can then be
deployed across many different hardware configurations.

The automated installation, also called an unattended installation, scenario includes the following stages:

1. Use Windows SIM or the CPI APIs to create an unattended installation answer file, typically called
Unattend.xml. This answer file contains all of the settings that you configure in the Windows image. For
more information, see Windows System Image Manager How-to Topics.

2. From Windows PE, a previous version of Windows, or another preinstallation environment, run Setup.exe
with the explicit path to the answer file. If you do not include the path to the answer file, Setup.exe searches
for a valid answer file in several specific locations. For more information, see Windows Setup Command-
Line Options.

3. Windows Setup then installs the operating system and configures all settings listed in the answer file.
Additional applications, device drivers, and updates can also be installed during Windows Setup. After the
operating system is installed, Setup launches Windows Welcome.

The following section describes some of the best practices to use with Windows Setup.

Verify that there is sufficient space for Windows Setup temporary files. If you run setup from a
previous version of Windows, verify that there is sufficient space on the disk for temporary Windows
Setup files. The space that is required may vary, but it can be up to 500 megabytes (MB).

Previous Windows installations are moved to a Windows.old folder. As a best practice, you should
back up your data before you upgrade. If you install Windows over a previous Windows installation, all
previous Windows files and directories are moved to a Windows.old folder, including the contents of the
Users, Program Files, and Windows directories. You can access your data in the Windows.old folder after
Windows Setup completes. If you have additional folders not in the Users, Program Files, or Windows
directories, those folders are not moved. For example, if you have a folder that is named C:\Drivers, that
folder will not be moved to the Windows.old folder.

Review the Windows Setup log files. If you experience problems during Windows Setup, review the
log files in %WINDIR%\panther. You will be able to identify and troubleshoot many issues by reviewing
the installation log files. For more information, see Deployment Troubleshooting and Log Files and
Windows Setup Log Files and Event Logs.

The following sections describe some of the limitations of Windows Setup. Review this section before you run
Windows Setup.

Enable UEFI-compatibility mode to install to an UEFI-based computer. On some UEFI computers,
you cannot install Windows in BIOS-compatibility mode. You may need to switch to UEFI-compatibility
mode.

Applications might require a consistent drive letter. If you install custom applications to your
Windows image, we recommend that you install Windows to the same drive letter on the destination

https://msdn.microsoft.com/library/windows/hardware/dn915116


Related topics

computer because some applications require a consistent drive letter. Uninstallation, servicing, and repair
scenarios might not function appropriately if the drive letter of the system does not match the drive letter
specified in the application. This limitation applies to both the Deployment Image Servicing and
Management (DISM) tool and Windows Setup.

Deploying multiple images to multiple partitions. If you capture and deploy multiple images on
multiple partitions, the following requirements must be fulfilled:

The partition structure, bus location, and number of disks must be identical on the reference and
destination computers.

The partition types (primary, extended, or logical) must match. The active partition on the reference
computer must match that of the destination computer.

Installing Custom .wim files requires a description value in the .wim file. When you create a
custom .wim file, Windows Setup requires that you always include a description value. If a .wim file does
not include a description value, the image may not install correctly. You can provide a description value
when you use the dism command with the /capture-image option. If you install a .wim file that does not
have a description value, recapture the image and provide a valid description value. For more information,
see the DISM - Deployment Image Servicing and Management Technical Reference for Windows.

Note
For Windows Preinstallation Environment (Windows PE), the version of boot files must match the computer
architecture. An x64 UEFI computer can only boot by using Windows PE x64 boot files. An x86 computer can
only boot by using Windows PE x86 boot files. This is different from legacy BIOS. In legacy BIOS, an x64
computer can boot by using x86 boot files.

Windows Setup Installation Process

Windows Setup Automation Overview

Audit Mode Overview

Windows Setup Configuration Passes

Windows Setup Supported Platforms and Cross-Platform Deployments



 

 

Windows Setup Command-Line Options
8/10/2018 • 14 minutes to read • Edit Online

Setup Command-Line Options

OPTION DESCRIPTION

/1394Debug:<channel> [BaudRate:<baudrate>] Enables kernel debugging over an IEEE 1394 (FireWire) port
while Windows is running and during the windowsPE
configuration pass of Windows Setup.

<channel> specifies the debugging channel. The default value
for <channel> is 1.

[baudrate:<baudrate>] specifies the baud to use when
Windows transfers data during debugging. The default
setting is 19200. You can also set the setting to 57600 or
115200. For example:

Setup /1394debug:1 /baudrate:115200

/AddBootMgrLast Instructs Windows Setup to add the Windows Boot Manager
as the last entry in the UEFI firmware boot order. This option
is only supported on UEFI PCs running Windows PE 4.0 or
later.

The following command-line options are available for Windows Setup. Beginning with Windows 10, version
1607, you can use a setupconfig file as an alternative to passing paramters to Windows Setup on a command line.
For more information, see Windows Setup Automation Overview.

setup.exe

The following table lists Setup command-line options:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-command-line-options.md


 

 

/Auto {Clean | DataOnly | Upgrade} Performs an automated upgrade to Windows 10 or Windows
8.1 volume license editions only.

When /auto is used, an unattend file cannot be used.

When /auto is used, Windows Setup consumes ei.cfg, and
checks compatibility issues before starting the installation. If
ei.cfg is malformed, setup exits silently and logs an exit code.

Clean: Performs an clean install of Windows.

DataOnly: Performs an upgrade of Windows, saving only
data (and not apps.) If the data-only installation option is not
available due to compatibility checks, Windows Setup will exit
silently and log an exit code.

Upgrade: Performs an upgrade of Windows saving apps and
data. If the upgrade installation option is not available, or the
user needs to resolve an app compatibility issue, Windows
Setup will exit silently and log an exit code.

Setup.exe exit codes: See table below

/noautoexit: Not used in Windows 10. In Windows 8.1, if an
error is found, Windows Setup does not exit, but instead
stops and stays on the setup screen until the user addresses
the issue. The installation from that point on is attended.

/performDU: Not used in Windows 10. In Windows 8.1,
Windows Setup checks for Dynamic Updates for Windows
Setup.

Examples:

Setup /auto clean

/BitLocker {AlwaysSuspend | TryKeepActive |
ForceKeepActive}

Specifies the BitLocker status during upgrades.

AlwaysSuspend: BitLocker is always suspended during an
upgrade. This is the default behavior if the /bitlocker option
is not specified.

TryKeepActive: Attempts an upgrade without suspending
BitLocker. If the upgrade fails, Windows Setup will suspend
BitLocker and complete the upgrade.

ForceKeepActive: Enables upgrading without suspending
BitLocker. If the upgrade can't be completed because
BitLocker is active, the upgrade will fail.

OPTION DESCRIPTION

Setup /auto dataonly

Setup /auto upgrade



 

 

/BusParams:<bus.device.function> Specifies the PCI address of a 1394, USB, or NET debug port.
The bus, device, and function numbers must be in decimal
format. Example:

/CompactOS {Enable / Disable} Specifies whether to use the Compact OS feature to save
hard drive space. By default, Windows Setup determines
whether to use this feature automatically.

Enable: Setup installs Windows using compressed system
files.

Disable: Setup installs Windows using uncompressed system
files

To learn more about Compact OS, see Compact OS, single-
instancing, and image optimization.

Setup /compactos enable

OPTION DESCRIPTION

Setup /busparams:0.29.7

For more info, see Setting Up Kernel Debugging with USB
2.0.

http://go.microsoft.com/fwlink/?LinkId=317360


 /Compat {IgnoreWarning / ScanOnly} IgnoreWarning: Setup completes installation, ignoring any
dismissible compatibility messages.

ScanOnly: Windows Setup runs through compatibility scans,
and then exits (without completing the installation) with an
exit code to indicate if any compatibility concerns are present.
Setup will return 0xC1900210 if no concerns are found. Setup
will return 0xC1900208 if compatibility concerns are found.

Example:

Setup /compat /IgnoreWarning

If you launch Setup with /Compat ScanOnly :

OPTION DESCRIPTION

If it does not find any compat issue, it will return
MOSETUP_E_COMPAT_SCANONLY (0xC1900210)
If it finds Actionable compat issues, like Apps, it will
return MOSETUP_E_COMPAT_INSTALLREQ_BLOCK
(0xC1900208)
If it finds that the Mig-Choice selected is not available,
it will return
MOSETUP_E_COMPAT_MIGCHOICE_BLOCK
(0xC1900204)
If it finds that machine is not eligible for Windows 10,
it will return MOSETUP_E_COMPAT_SYSREQ_BLOCK
(0xC1900200)
If it finds that machine does not have enough free
space to install, it will return
MOSETUP_E_INSTALLDISKSPACE_BLOCK
(0xC190020E)

This command works with other switches. For
example, to run Setup in the background without any
UI:

Setup /Auto Upgrade /Quiet /Compat ScanOnly

To ignore common disclaimers in the UI, for example,
language changes:

Setup /Auto Upgrade /Quiet /Compat ScanOnly
/Compat /IgnoreWarning

Most of the time, an Admin would like to look at the
compat XML if Setup found compat issues. For that
the admin can even use copy logs flag to collect Setup
logs:

Setup /Auto Upgrade /Quiet /Compat ScanOnly
/Compat /IgnoreWarning /CopyLogs
<folder_path>

This setting is new for Windows 10.



 

 

 

 

/CopyLogs<location> Setup will copy or upload logs(compressed) upon failure to
the specified location (assuming machine/user has permission
and network access to location).

Accepted parameters are local file paths and UNC network
paths.

Note: This runs in the system context, so it may not have
permissions to copy to locations that require user
permissions.

Example:

Setup /copylogs \\server\share\

/Debug:<port> [BaudRate:<baudrate>] Enables kernel debugging over a communications (COM)
port when Windows is running, and during the windowsPE
configuration pass of Windows Setup.

<port> specifies the debugging port. The default value for
<port> is 1.

[baudrate:<baudrate>] specifies the baud to use when
Windows transfers data during debugging. The default
setting is 19200. You can also set the <baudrate> setting to
57600 or 115200. For example:

Setup /1394debug:1 /baudrate:115200

/DiagnosticPrompt {enable | disable} Specifies that the Command Prompt is available during
Windows Setup.

Enable: The Command Prompt can be accessed by pressing
Shift+F10 during Windows setup.

Disable: The Command Prompt is not available during
Windows setup. The Command Prompt wil not be available
while offline and OOBE phases are running. This is the default
setting.
Example:

setup /DiagnosticPrompt enable

This setting is new for Windows 10, Version 1703.

/DynamicUpdate {enable | disable} Specifies whether setup will perform Dynamic Update
operations (search, download, and install updates). Example:

setup /auto upgrade /DynamicUpdate disable

OPTION DESCRIPTION



 

 

 

/EMSPort: {COM1 | COM2 | off} [/emsbaudrate:
<baudrate>]

Enables or disables Emergency Management Services (EMS)
during Windows Setup and after the server operating system
has been installed. The following arguments are used to
specify the behavior of EMS during Windows Setup.

COM1 enables EMS over COM1. Supported for x86 systems
only.

COM2 enables EMS over COM2. Supported for x86 systems
only.

usebiossettings uses the setting that the BIOS specifies. For
x86 systems, Windows uses the value from the Serial Port
Console Redirection (SPCR) table. If no SPCR table or EFI
console device path is specified in the BIOS, Windows disables
usebiossettings.usebiossettings

off disables EMS. If EMS is disabled in Windows Setup, you
can later enable EMS by modifying the boot settings.

[/emsbaudrate:<baudrate>] specifies the baud to use when
Windows transfers data during debugging. The default is
19200. You can also set the <baudrate> setting to 57600 or
115200. For example:

Setup /emsport:COM1 /emsbaudrate:115200

/InstallDrivers<location> Adds .inf-style drivers to the new Windows 10 installation.
The driver .inf can be in a folder within the specified location.
The command will recurse through the specified location.

Accepted parameters are a local file path or UNC network
path to a folder that contains .inf files. Example:

setup.exe /auto upgrade /installdrivers
C:\Fabrikam\drivers /noreboot

This setting is new for Windows 10.

/InstallFrom<path> Specifies a different Install.wim file to use during Windows
Setup. This enables you to use a single preinstallation
environment to install multiple versions of Windows images.
For example, you can use a 32-bit version of Windows Setup
to deploy a 64-bit Windows image. You can also use an
answer file for cross-platform deployments. For more
information, see “Creating a WIM for Multiple Architecture
Types” in Windows Setup Supported Platforms and Cross-
Platform Deployments.

<path> specifies the path of the .wim file to install. For
example:

Setup /installfrom D:\custom.wim

Can also be used with split image files (.swm). Select the first
split image file in the series, for example:

Setup /installfrom D:\install.swm

OPTION DESCRIPTION



 

 

/InstallLangPacks<location> Adds language packs (lp.cab) to the new Windows 10
installation.

The language packs can be in a folder within the specified
location. The command installs all lp.cab files and language
capabilities such as text-to-speech recognition, in the folder
and subfolders at the specified location.

Accepted parameters are a local file path or UNC network
path to a folder that contains .inf files.

setup /auto upgrade /installlangpacks
C:\Fabrikam\Languages\French /noreboot

This setting is new for Windows 10.

/m:<*folder_name*> Instructs Setup to copy alternate files from an alternate
location. This option instructs Setup to look in the alternate
location first, and, if files are present, to use them instead of
the files from the default location.

<folder_name> specifies the name and the location of the
folder that contains the replacement files and can be any local
drive location. UNC paths are not supported.

You must know where the files will be installed on the
Windows installation. All the additional files must be copied to
an $OEM$ folder in your installation sources or in the
<folder_name>. The $OEM$ structure provides a
representation of the destination installation disk. For
example:

$OEM$\$1

maps to %SYSTEMDRIVE%, which could be drive C.

$OEM$\$$

maps to %WINDIR%, which could be C:\windows.

$OEM$\$progs

maps to the program files directory.

$OEM$\$docs

maps to the user's My Documents folder.

For example, to copy an updated C:\Program
Files\Messenger\Msmsgs.exe file into the Windows
installation, create the following folder structure on the
Pro\Sources$OEM$$Progs\Messenger\Msmsgs.exe
installation source by using the Setup command:

Pro\sources\setup.exe /m

If you replace a file that Windows file protection protects, you
must also copy the updated file to the local sources to be
installed with Windows. For example, you may copy the file to
the C:\Windows\i386 folder. The file name must be the same
as the name that is used in Windows Setup. For example, add

OPTION DESCRIPTION



 

 

the following file and folder structure to your $OEM$
directory:

Pro\sources\$OEM$\$$\i386\msmsgs.ex_

If you use files that are not on an installation share, you must
specify the folder name. In this example the <folder_name> is
C:\additional_files:

Setup /m:C:\additional_files

where C:\additional_files is your customized $OEM$ directory.
For example:

C:\additional_files\$$\i386\msmsgs.ex_

If you change resources in your replacement files, you must
add the updated Multilanguage User Interface (MUI) files to
the installation.

/MigNEO Disable Tells Windows Setup to perform an upgrade of Windows
without additional offline phase optimizations. This option is
available in Windows 10, version 1803 and later.

/MigrateDrivers {all | none} Instructs Setup whether to migrate the drivers from the
existing installation during the upgrade. You can specify All or
None. By default, Setup decides which is best for each
individual driver based on the install choice.

You can use this switch with /installdrivers, though it's not
required.

Setup /auto upgrade /migratedrivers all

Setup /auto upgrade /migratedrivers none
/installdrivers N:\NewDrivers

OPTION DESCRIPTION



 

 

 

 

/NetDebug:hostip=<w.x.y.z>,port=<n>,key= <q.r.s.t>
[,nodhcp][,busparams=n.o.p]

Enables kernel debugging over the network.

Use hostip to identify the IP address of the host computer.

Use port to identify the port. The default start port is 49152,
and the default end port is 65535.

Use key to provide a password to set up a secure connection.

Use nodhcp to avoid using a DHCP connection. (optional)

Use busparams to select the bus number, device number, and
function number of an adapter for a specific PCI bus device.
(optional)

Examples:

setup
/netdebug:hostip=10.125.4.86,port=50000,key=0.0.0.0

setup /netdebug:hostip=10.125.4.86,port=50000,
key=abcdefg.123.hijklmnop.456,nodhcp

setup /netdebug:hostip=10.1.4.8,port=50000,
key=dont.use.previous.keys,busparams=1.5.0

For details, see Setting Up Kernel-Mode Debugging over a
Network Cable Manually.

/NoReboot Instructs Windows Setup not to restart the computer after
the down-level phase of Windows Setup completes. The
/noreboot option enables you to execute additional
commands before Windows restarts. This option suppresses
only the first reboot. The option does not suppress
subsequent reboots. For example:

Setup /noreboot

/PKey<product key> Supplies Setup with the specific product key. Example:

setup.exe /auto upgrade /pkey xxxxx-xxxxx-xxxxx-
xxxxx-xxxxx

This setting is new for Windows 10.

/Priority Normal Tells Windows Setup to increase the thread priority from low
to high for feature updates through Windows Update. This
option is available in Windows 10, version 1709 and later
Note: Media based installations already run at normal
priority.

OPTION DESCRIPTION

http://go.microsoft.com/fwlink/p/?linkid=317384


 

 

 

/PostOOBE<location> [\setupcomplete.cmd] After Setup is complete, run a script.

Accepted parameters are a local file path or UNC network
path to a file named setupcomplete.cmd or to a folder that
contains setupcomplete.cmd.

setup.exe /auto upgrade /postoobe
c:\Fabrikam\setupcomplete.cmd

Path to folder that contains a script with the name:
setupcomplete.cmd: Copies setupcomplete.cmd to
$Windows.~BT to be run after OOBE.

setup.exe /auto upgrade /postoobe c:\Fabrikam

This setting is new for Windows 10.

/PostRollback<location> [\setuprollback.cmd]
[/postrollbackcontext {system / user}]

If the feature update fails to install and rolls back the changes,
or if the user chooses to uninstall the feature update and go
back to a previous version of Windows, run a script.

Accepted parameters are a local file path or UNC network
path to a file named setuprollback.cmd, or to a folder that
contains setuprollback.cmd.

By default, updates from media run setuprollback.cmd  in
user context, which requires the first user who logs in post-
upgrade to have administrator rights. For updates from
Windows Update, setuprollback.cmd  runs in system
context, regardless of the rights of the first logged-in user.
The postrollbackcontext option allows you to specify
whether the script runs in the context of the System account
or the account of the signed in user.

setup.exe /auto upgrade /postrollback
c:\Fabrikam\setuprollback.cmd

Path to folder that contains a script with the name:
setuprollback.cmd: Copies setuprollback.cmd to
$Windows.~BT to be run after OOBE.

setup.exe /auto upgrade /postrollback \server\share

setup.exe /postrollback C:\Fabrikamsetuprollback.cmd
/postrollbackcontext user

/postrollbackcontext  is new for Windows 10, version
1803.

/Quiet This will suppress any Setup user experience including the
rollback user experience. Example:

setup /auto upgrade /quiet

This setting is new for Windows 10.

OPTION DESCRIPTION



 

 

 

 

/ReflectDrivers<location> Specifies the path to a folder that contains encryption drivers
for a computer that has third-party encryption enabled.

Setup /ReflectDrivers <folder_path>

This setting is new for Windows 10, version 1607.

Make sure that <folder_path> contains only a minimal set of
encryption drivers. Having more drivers than necessary in
<folder_path> can negatively impact upgrade scenarios.

/ResizeRecoveryPartition {Enable / Disable} Specifies whether it's OK to resize the existing Windows
Recovery Environment (Windows RE) partition or create a
new one during installation.

Enable: During installation, Windows can resize the existing
Windows RE tools partition or create a new one if needed.

Disable: Windows does not resize the existing Windows RE
tools partition or create a new one during installation.

To learn more about Windows RE partitions, see UEFI/GPT-
based hard drive partitions and BIOS/MBR-based hard drive
partitions.

Setup /resizerecoverypartition disable

/ShowOOBE {full / none} full: Requires the user to interactively complete the out of box
experience (OOBE).

none: Skips OOBE and selects the default settings.

Example:

setup.exe /auto upgrade /showoobe full

This setting is new for Windows 10.

/Telemetry {Enable / Disable} Specifies whether Windows Setup should capture and report
installation data.

Enable: Setup captures and reports installation data.

Disable: Setup does not capture and report installation data.

Setup /telemetry disable

OPTION DESCRIPTION



 

 

 

 

 

/TempDrive <drive_letter> Instructs Windows Setup to put temporary installation files
on the specified partition. For an upgrade, the /tempdrive
option affects only the placement of temporary files. The
operating system is upgraded in the partition from which you
run the Setup.exe file.

The /tempdrive parameter is available in Windows 10,
version 1607, but it is not available in earlier versions of
Windows 10.

<drive_letter> specifies the partition to copy installation files
to during Windows Setup. For example:

Setup /tempdrive H

/Unattend:<answer_file> Enables you to use an answer file with Windows Setup. This is
known as an unattended installation. You must specify a value
for <answer_file>. Windows Setup applies the values in the
answer file during installation.

<answer_file> specifies the file path and file name of the
unattended Windows Setup answer file.

When /Unattend is used, /Auto cannot be used.<br>
<br>

Setup /unattend:\server\share\unattend.xml```

/Uninstall {enable / disable} Determines whether Windows will include controls that allow
the user to go back to the previous operating system.

This setting is new for Windows 10.

Setup /uninstall disable

/USBDebug:<hostname> Sets up debugging on a USB port. Debug data is effective on
the next reboot.

<hostname> specifies the name of the computer to debug.
For example:

Setup /usbdebug:testmachine01

/WDSDiscover Specifies that the Windows Deployment Services (WDS) client
should be in discover mode.

If you do not specify /wdsserver with this option, WDS
searches for a server. For example, to start the WDS client in
this dynamic discover mode, run the following command:

Setup /wds /wdsdiscover

OPTION DESCRIPTION



 

  

/WDSServer:<servername> Specifies the name of the Windows Deployment Services
server that the client should connect to.

To use this setting, you must also use the /wdsdiscover

option.

<servername> can be an IP address, a NetBIOS name, or a
fully qualified domain name (FQDN). For example, to start the
Windows Deployment Services client in this static discover
mode, run the following command:

Setup /wds /wdsdiscover /wdsserver:MyWDSServer

OPTION DESCRIPTION

Setup.exe exit codesSetup.exe exit codes

EXIT CODE NAME EXIT CODE CAUSE

CONX_SETUP_EXITCODE_CONTINUE_R
EBOOT

0x3 This upgrade was successful.

CONX_SETUP_EXITCODE_RESUME_AT_
COMPAT_REPORT

0x5 The compatibility check detected issues
that require resolution before the
upgrade can continue.

CONX_SETUP_EXITCODE_AUTO_INSTAL
L_FAIL

0x7 The installation option (upgrade or data
only) was not available.

Related topics
Windows Setup States

Windows Setup Edition Configuration and Product ID Files (EI.cfg and PID.txt)

Windows Setup Log Files and Event Logs



Windows Setup States
5/11/2018 • 2 minutes to read • Edit Online

Windows Setup State Information

STATE NAME DESCRIPTION

There are several states assigned to a Windows® image during installation. This state information can be used to
detect automatically the different states and stages of Windows Setup.

The Windows image state is stored in two locations, in the registry and in a file.

In the registry:

KEY: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup\State

TYPE: REG_SZ

VALUE: StateName

In a file:

FILE: %WINDIR%\Setup\State\State.ini

SECTION: [State]

VALUE: StateName

The following table describes the values that exist for StateName.

IMAGE_STATE_COMPLETE The image has successfully been installed. The specialize
and oobeSystem configuration passes are complete. This
image is not deployable to a computer that has a
different hardware configuration because it is now
hardware-dependent. To deploy this image to a computer
that has a different hardware configuration, you must run
sysprep /generalize.

IMAGE_STATE _UNDEPLOYABLE This is the default state for an image in a given phase of
Windows Setup that is not yet complete. If a process
queries the IMAGE_STATE value and
IMG_UNDEPLOYABLE is returned, the image is in one of
the following states:

Setup is currently running and has not fully
completed the phase. Once a given phase is
complete, the IMAGE_STATE will be set to an
appropriate completion value.

If queried online when Setup is not running, there
was a failure when completing a Setup phase. This
image must be reinstalled.

If queried offline, the image did not finish a phase
and will never be deployable.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-states.md


STATE NAME DESCRIPTION

Related topics

IMAGE_STATE_GENERALIZE_RESEAL_TO_OOBE The image has successfully completed the generalize
configuration pass and will continue into OOBEsystem
configuration pass when Setup is initiated.

IMAGE_STATE_GENERALIZE_RESEAL_TO_AUDIT The image has successfully completed the generalize
configuration pass and will continue into audit mode
when Setup is initiated.

IMAGE_STATE_SPECIALIZE_RESEAL_TO_OOBE The image has successfully completed the specialize pass
and will continue into OOBEsystem configuration pass
when Setup is initiated.

IMAGE_STATE_SPECIALIZE_RESEAL_TO_AUDIT The image has successfully completed the specialize
configuration pass and will continue into audit mode
when Setup is initiated.

The following examples show how to access state information.

C:\>reg query HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup\State /v Imag
eState

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup\State
    ImageState    REG_SZ    IMAGE_STATE_SPECIALIZE_RESEAL_TO_OOBE

C:\>type %windir%\Setup\State\State.ini
[State]
ImageState="IMAGE_STATE_SPECIALIZE_RESEAL_TO_OOBE"

To access state information from the registry:

To access state information from a file:

Windows Setup Command-Line Options

Windows Setup Edition Configuration and Product ID Files (EI.cfg and PID.txt)

Windows Setup Log Files and Event Logs



Windows Setup Edition Configuration and Product
ID Files (EI.cfg and PID.txt)
5/11/2018 • 2 minutes to read • Edit Online

Using EI.cfg and PID.txt

EI.cfg Format

[EditionID]
{Edition ID}
[Channel]
{Channel Type}
[VL]
{Volume License}

The edition configuration (EI.cfg) file and the product ID (PID.txt) file are optional configuration files that you can
use to specify the Windows® product key and the Windows edition during Windows installation. You can use
these files to automate the product-key entry page in Windows Setup instead of using an answer file. If you use an
EI.cfg file to differentiate volume license media, but you do not include a PID.txt file, the user receives a prompt for
a product key to continue Windows Setup.

You can reuse the product key in the product ID file for multiple installations. The product key in the product ID
file is only used to install Windows. This key is not used to activate Windows. For more information, see Work
with Product Keys and Activation.

1. Create these configuration files in a text editor such as Notepad.

2. Save the files into the \Sources  folder on the installation media. Windows Setup will use these files
automatically during installation.

3. Run Windows Setup. Setup uses these files during the Windows PE configuration pass as soon as it is
launched.

Note
An answer file takes precedence over these files. If you use an answer file during installation, Windows Setup
ignores the EI.cfg and PID.txt files.

The EI.cfg file specifies the values for the edition ID, the channel, and the volume license.

The EI.cfg file has the following format:

{Edition ID} must be a valid Windows edition ID, for example, "Enterprise". To obtain the current EditionID, use the
Dism /Get-ImageInfo command or the Dism /Get-CurrentEdition command. For more information, see Take
Inventory of an Image or Component Using DISM and DISM Windows Edition-Servicing Command-Line
Options.

{Channel Type} must be either "OEM" or "Retail"

{Volume License} must be either 1, if this is a volume license, or 0, if this is not a volume license. For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-edition-configuration-and-product-id-files--eicfg-and-pidtxt.md


[EditionID]
Enterprise
[Channel]
OEM
[VL]
0

PID.txt Format

[PID]
Value=XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Troubleshooting

Related topics

The PID.txt file contains the product key for the edition of Windows that you are installing.

The PID.txt file has the following format:

where XXXXX-XXXXX-XXXXX-XXXXX-XXXXX is the product key.

"The product key entered does not match any of the Windows images available for installation. Enter a
different product key.": You may need to download a separate version of Windows. OEM versions are only
available to OEMs, and volume licenses are only available to MSDN subscribers.

Work with Product Keys and Activation

Windows Setup Command-Line Options

Windows Setup States



Windows Setup Log Files and Event Logs
5/11/2018 • 2 minutes to read • Edit Online

LOG FILE LOCATION DESCRIPTION

Windows Setup Event Logs

Cscript D:\sources\etwproviders\etwproviderinstall.vbs install D:\sources\etwproviders

To view the Windows Setup event logsTo view the Windows Setup event logs

Windows® Setup creates log files for all actions that occur during installation. If you are experiencing problems
installing Windows, consult the log files to troubleshoot the installation.

Windows Setup log files are available in the following directories:

$windows.~bt\Sources\Panther Log location before Setup can access the drive.

$windows.~bt\Sources\Rollback Log location when Setup rolls back in the event of a fatal
error.

%WINDIR%\Panther Log location of Setup actions after disk configuration.

%WINDIR%\Inf\Setupapi*.log Used to log Plug and Play device installations.

%WINDIR%\Memory.dmp Location of memory dump from bug checks.

%WINDIR%\Minidump*.dmp Location of log minidumps from bug checks.

%WINDIR%\System32\Sysprep\Panther Location of Sysprep logs.

Windows Setup includes the ability to review the Windows Setup performance events in the Windows Event Log
viewer. This enables you to more easily review the actions that occurred during Windows Setup and to review the
performance statistics for different parts of Windows Setup. You can filter the log so as to view only relevant
items that you are interested in. The Windows Setup performance events are saved into a log file that is named
Setup.etl, which is available in the %WINDIR%\Panther directory of all installations. To view the logs, you must
use the Event Viewer included with the Windows media that corresponds to the version of the customized image
that you are building.

To view the logs on a computer that does not include the corresponding kit, you must run a script from the root of
the media that installs the Event Trace for Windows (ETW) provider. From the command line, type:

where D is the drive letter of the Windows DVD media.

1. Start the Event Viewer, expand the Windows Logs node, and then click System.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-log-files-and-event-logs.md


To Export the log to a fileTo Export the log to a file

Wevtutil qe /lf C:\windows\panther\setup.etl 

Tracerpt /l C:\windows\panther\setup.etl

Related topics

2. In the Actions pane, click Open Saved Log and then locate the Setup.etl file. By default, this file is
available in the %WINDIR%\Panther directory.

3. The log file contents appear in the Event Viewer.

From the command line, use the Wevtutil or Tracerpt commands to save the log to an .xml or text file. For
information about how to use these tools, see the command-line Help. The following commands show examples
of how to use the tools:

-or-

Windows Setup Command-Line Options

Windows Setup States

Windows Setup Edition Configuration and Product ID Files (EI.cfg and PID.txt)



Windows Setup Configuration Passes
5/11/2018 • 2 minutes to read • Edit Online

In This Section

Related topics

Configuration passes are used to specify different phases of Windows® Setup. Unattended installation settings
can be applied in one or more configuration passes.

The following topics describe the configuration passes used with Windows Setup.

How Configuration Passes Work A description of the different phases of Windows Setup,
and the different configuration passes used to install and
configure a Windows installation.

auditSystem The auditSystem configuration pass is one of the
configuration passes used in audit mode.

auditUser The auditUser configuration pass is one of the
configuration passes used in audit mode.

generalize The generalize configuration pass prepares a Windows
image to be deployed across many computers.

offlineServicing The offlineServicing configuration pass is used to
install packages, drivers, and other updates to an offline
Windows image.

oobeSystem The oobeSystem configuration pass, also known as
Windows Welcome, can be used to preconfigure user
interface pages for an end user.

specialize The specialize configuration pass customizes a specific
Windows installation to a specific computer.

windowsPE The windowsPE configuration pass is used to configure
Windows PE in addition to some aspects of Windows
Setup.

Windows Setup Scenarios and Best Practices

Windows Setup Installation Process

Windows Setup Automation Overview

Audit Mode Overview

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-setup-configuration-passes.md


Windows Setup Supported Platforms and Cross-Platform Deployments



 

How Configuration Passes Work
5/11/2018 • 12 minutes to read • Edit Online

Understanding Configuration Passes

CONFIGURATION PASS DESCRIPTION CONFIGURATION PASS RUNS WHEN

Configuration passes are the phases of a Windows® installation during which you can customize an image.
Windows unattended installation settings can be applied in one or more configuration passes, depending on the
setting you use. Understanding how and when configuration passes run is very important in developing a
Windows deployment strategy.

In this topic:

Understanding Configuration Passes

Configuring Device Drivers

Configuring International Settings

Examples

The following diagram shows the relationship between the configuration passes relative to the different
deployment tools.

Not all configuration passes run in a particular installation of Windows. Some configuration passes, such as
auditSystem and auditUser, run only if you boot the computer to audit mode. Most Windows Setup unattend
settings can be added to either the specialize or the oobeSystem configuration pass. The other configuration
passes can also be useful in certain situations. The following table describes each of the configuration passes.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/how-configuration-passes-work.md


CONFIGURATION PASS DESCRIPTION CONFIGURATION PASS RUNS WHEN

windowsPE Many aspects of the installation
process can be automated during
the windowsPE configuration
pass. In this pass you can
configure:

Windows PE options

These options can include
specifying the location of
the Windows PE log file,
which enables networking
or a Windows PE page file.

Windows Setup options

These options can include
specifying the Windows
image to install and
configuring a disk on the
destination computer.

During this configuration pass, the
Windows image is copied to the
destination computer after the
settings in the windowsPE
configuration pass are processed.

If your installation of Windows PE
requires boot-critical drivers to
access the local hard disk drive or
a network, use this configuration
pass to add drivers to the
Windows PE driver store and to
reflect the required boot-critical
drivers

One of the following occurs:

Booting the Windows
Setup media

Starting Windows Setup
from a previous Windows
installation

The Windows PE options are
applied only when you are running
Windows Setup from a Windows
PE environment. The Windows
Setup options are applied when it
runs from either Windows PE or a
previous Windows installation.

offlineServicing This configuration pass is used to
apply updates, drivers, or
language packs to a Windows
image.

During Windows Setup, the
Windows image is applied to a
hard disk and any settings in the
offlineServicing section of an
answer file are then applied to that
image before the computer
reboots.

During this configuration pass,
you can add drivers to a Windows
image before the image starts.
This enables you to install and
process out-of-box device drivers
during Windows Setup.

This configuration pass is also
used to apply updates to a
Windows image during servicing
scenarios.

Automatically after the
windowsPE configuration
pass and before the
computer reboots.

During servicing scenarios
when you specify an
answer file by using the
Deployment Image
Servicing and Management
tool (Dism.exe).



CONFIGURATION PASS DESCRIPTION CONFIGURATION PASS RUNS WHEN

specialize This configuration pass is used to
create and configure information
in the Windows image, and is
specific to the hardware that the
Windows image is installing to.

After the Windows image boots
for the first time, the specialize
configuration pass runs. During
this pass, unique security IDs
(SIDs) are created. Additionally,
you can configure many Windows
features, including network
settings, international settings,
and domain information.

The answer file settings for the
specialize pass appear in audit
mode. When a computer boots to
audit mode, the auditSystem
pass runs, and the computer
processes the auditUser settings.

Automatically when the
Windows image boots for
the first time.

On the next boot after you
run the sysprep command
with the /generalize
option.

generalize During this configuration pass,
computer-specific information is
removed from the Windows
installation enabling you to
capture and reapply the Windows
image to different computers. For
example, during this pass, the
unique security ID (SID), unique
device drivers, and other
hardware-specific settings are
removed from the image.

This configuration pass enables
you to minimally configure the
sysprep /generalize command,
in addition to configuring other
Windows settings that must
persist on your master image.

After the generalize pass finishes,
the next time that Windows image
boots, the specialize
configuration pass runs. If you
want to retain the unique device
drivers that are installed to your
Windows installation, you can use
the Microsoft-Windows-
PnpSysprep | 
PersistAllDeviceInstalls

setting. If this setting is
configured, unique device drivers
are not removed from the
installation.

The following setting is
configured: Microsoft-
Windows-Deployment | 
Generalize .

- or -

Run the sysprep
/generalize command.



 

CONFIGURATION PASS DESCRIPTION CONFIGURATION PASS RUNS WHEN

Configuring Device Drivers

auditSystem During this configuration pass,
settings are processed when
Windows is running in system
context, before a user logs onto
the computer in Aaudit mode.

This pass is typically used to make
additional configurations to an
installation, such as installing out-
of-box device drivers.

This pass runs only when a
computer is configured to boot to
audit mode.

The following unattended
Setup setting is configured:
Microsoft-Windows-
Deployment | Reseal | 
Mode =Audit.

- or -

Run the sysprep
command with the /audit
option.

auditUser This pass processes unattended
Setup settings, after a user logs
onto the computer in audit mode.

This pass is typically used to run
custom commands or configure
Windows Shell options.

This pass runs only when a
computer is configured to boot to
audit mode.

The following unattended
Setup setting is configured:
Microsoft-Windows-
Deployment | Reseal | 
Mode =Audit.

- or -

Run the sysprep
command with the /audit
option.

oobeSystem During this configuration pass,
settings are applied to Windows
before Windows Welcome starts.

This pass is typically used to
configure Windows Shell options,
create user accounts, and specify
language and locale settings.

The answer file settings for the
oobeSystem pass appear in
Windows Welcome, also known as
OOBE. These settings do not
appear in audit mode.

The following setting is
configured: Microsoft-
Windows-Deployment | 
Reseal  | Mode =OOBE

- or -

Run the sysprep
command with the /OOBE
option.

For more information about Windows components and settings that can be added to an answer file, see the
Unattended Windows Setup Reference Guide. For more information about logging, see Deployment
Troubleshooting and Log Files and Windows Setup Log Files and Event Logs.

To add out-of-box, boot-critical drivers during an unattended installation, you must make sure that the boot-
critical driver is available on preinstallation media. Boot-critical drivers should be added during the windowsPE
configuration pass. All drivers are staged in the driver store, but only boot-critical drivers are reflected or
installed in the offline Windows image in addition to the Windows PE image. Non-boot-critical drivers can be
added to the offlineServicing configuration pass. This makes sure that boot-critical drivers are available and
when the computer boots, the driver will load.

For more information, see Device Drivers and Deployment Overview.



 

 

Configuring International Settings

Examples

To run Windows SetupTo run Windows Setup

International settings are available in multiple configuration passes, to enable you to customize the Windows
image based on customer requirements and different deployment scenarios.

For example, if you build a computer in the United States (which would be an en-US international setting), you
might perform all your tests in English. However, if you intend to deliver the computer to France and need
Windows to boot in French, you can add the fr-FR language pack, if the language pack is not already installed,
and then configure the Microsoft-Windows-International-Core component to apply fr-FR settings during the
specialize configuration pass. When the computer boots, the installation will display English text. However,
after the specialize configuration pass finishes, French text will be displayed.

You can use DISM to configure the language settings of a Windows image (either online or offline). For more
information, see DISM Languages and International Servicing Command-Line Options.

By default, Windows Welcome displays a Regional Settings user interface (UI) page for the end user to select
default language, locale, and input settings. You can preconfigure the settings on this UI page by specifying
language and locale settings in the oobeSystem configuration pass in the Microsoft-Windows-International-
Core component. If settings are set in oobeSystem configuration pass, the Regional Settings page is skipped. If
language settings are configured during specialize, the Regional Settings page will be displayed.

For more information, see Add Language Packs to Windows.

The following sections describe sample deployment scenarios and describe when configuration passes run.

In this scenario, you install Windows to a new computer. You start with the Windows product media and an
answer file.

1. Run Windows Setup and specify an answer file. Windows Setup starts.

2. The windowsPE  configuration pass runs. Settings in the <settings pass="windowsPE">  section of an
answer file are processed. There are two different types of settings that you can configure during the
windowsPE  configuration pass: Settings that apply to the Windows PE environment, such as the display
resolution and log file locations for Windows PE. You can also specify settings that apply to the Windows
installation, such as configuring disk partitions or enabling dynamic updates.

The Windows PE-specific settings in an answer file are applied only when you are running
Windows Setup from a Windows PE environment.

The Windows Setup options in the windowsPE  configuration pass are applied when it runs from
either Windows PE or a previous Windows installation.

3. After the Windows image is copied to the hard disk, the offlineServicing configuration pass runs. Any
settings in the <servicing>  and <settings pass="offlineServicing">  section of an answer file are applied
to the Windows image. Typically, the actions in this configuration pass install or remove packages,
language packs, or device drivers.

4. The system restarts and Windows Setup runs the specialize configuration pass. At this point, settings in
the <settings pass="specialize">  section of the answer file are processed.

5. After Windows Setup completes, the computer restarts. Then, the oobeSystem configuration pass runs
and settings in the <settings pass="oobeSystem>  section of an answer file are processed.

Note
You can create a separate content file called Oobe.xml that you can use to customize Windows Welcome,



To run the Sysprep /generalize /shutdown commandTo run the Sysprep /generalize /shutdown command

Using a Script to Deploy a Windows ImageUsing a Script to Deploy a Windows Image

To boot Windows to audit modeTo boot Windows to audit mode

Getting Started, and ISP sign up. Using Oobe.xml is useful for organizing these customizations, because
it enables you to maintain a single file that lists all of the branding, license terms, and signup
opportunities for multiple countries, regions and/or languages. For more information, see Configure
Oobe.xml. Generally, Oobe.xml is used by OEMs and System Builders. However some aspects of
Oobe.xml might also benefit corporate deployment scenarios.

6. Windows Welcome starts and you can begin using the computer.

In this scenario, you will create a reference Windows image to use throughout your environment. You start with
a customized Windows installation.

1. Run the sysprep command with the /generalize /shutdown /oobe options, to create a master image,
configure the computer to boot to Windows Welcome, and then shut down the computer.

2. The settings in the <settings pass="generalize">  section of an answer file are applied.

If you did not specify an answer file with the Sysprep command, the answer file cached to the
computer will be used. For more information about how to use answer files, see Windows Setup
Automation Overview.

If you specified an answer file with the sysprep command, that answer file is cached to the
%WINDIR%\Panther directory of the Windows installation and will be used on subsequent
configuration passes.

3. The computer shuts down, enabling you to boot to Windows PE or another operating system and
capture the image. The next time the Windows image boots, the specialize configuration pass will run
and Windows will boot the computer to Windows Welcome.

In this scenario, you boot the computer with a master image on which the sysprep /generalize /shutdown
/oobe command was run and the image was captured. You start with a master image, Windows PE and the
DISM tool.

1. Apply the master image to a computer by using the dism command with the /apply-image option.

2. Boot the computer with the master image. Windows starts.

3. The specialize configuration pass runs. Settings in the <settings pass="specialize">  section of the
answer file are processed.

4. The computer restarts.

5. The oobeSystem configuration pass runs. Settings in the <settings pass="oobeSystem">  section of the
answer file are processed.

6. Windows Welcome starts and you can begin using your computer.

In this scenario, you boot a Windows image that is configured to start in audit mode. Audit mode is useful for
adding custom applications, drivers, and other updates to a master image. You can configure a Windows image
to boot the computer to audit mode by configuring the following setting in an answer file: Microsoft-Windows-
Deployment | Reseal | Mode =Audit or, run the Sysprep command with the /audit option.

1. Configure the Windows image to boot the computer to audit mode. In this scenario, run the sysprep
command with the /audit /reboot options.

2. Windows reboots the computer.



To run DISM against an offline Windows imageTo run DISM against an offline Windows image

To use DISM on a running Windows imageTo use DISM on a running Windows image

Related topics

3. The auditSystem configuration pass runs. Settings in the <settings pass="auditSystem">  section of the
answer file are processed.

4. The Built-in administrator account is enabled.

5. The auditUser configuration pass runs. Settings in the <settings pass="auditUser">  section of the
answer file are processed.

6. The desktop appears.

The next time that you reboot the computer, it will boot to audit mode again.

To configure the computer to boot to Windows Welcome, you must use the sysprep command with the /oobe
option, or configure the Microsoft-Windows-Deployment | Reseal | Mode  setting to oobe in an answer file.

In this scenario, you run DISM against an offline Windows image.

Dism /image:C:\test\offline /Get-Packages

1. Run DISM tool against an offline Windows image and specify an answer file. For example, to list the
package in an offline Windows image, use the following command:

2. Settings in the <servicing>  and <settings pass="offlineServicing">  sections of an answer file are
applied to the Windows image. The next time that you boot your computer, the packages and settings are
processed.

For more information, see DISM Image Management Command-Line Options.

In this scenario, you run the DISM tool against a running Windows installation.

Dism /online /Get-Drivers

Run DISM against an online Windows image and specify an answer file. For example, to list driver
information in a Windows image, use the following command:

Important
When you use DISM with an answer file against an online Windows installation, the answer file should
contain only the elements in the offlineServicing configuration pass. This is because some settings in
the specialize configuration pass might be applied to the online Windows installation.

In some instances, you might be required to restart your computer. For example, if you add a language pack to
your Windows installation, you must reboot the computer.

auditSystem

auditUser

generalize

offlineServicing

oobeSystem

specialize



windowsPE



auditSystem
5/11/2018 • 2 minutes to read • Edit Online

The auditSystem configuration pass processes unattended Windows® Setup settings in system context in
audit mode. The auditSystem configuration pass runs immediately before the auditUser configuration pass,
which is used to apply settings in user context. When Windows boots to audit mode, the auditSystem
configuration pass and the auditUser unattended Windows Setup settings are processed.

Audit mode enables OEMs and corporations to install additional device drivers, applications, and other updates
to a master Windows image. By using audit mode, you can maintain fewer images because you can create a
reference image with a minimal set of drivers and applications. The reference image can then be updated with
additional drivers during audit mode. Additionally, you can then test and resolve any issues related to
malfunctioning or incorrectly installed devices on the Windows image before shipping the computer to a
customer. Audit mode is optional.

The following diagram shows when the auditSystem configuration pass is processed in audit mode.

The auditSystem configuration pass runs only when you configure Windows Setup to boot into audit mode.
You can boot to audit mode by using the sysprep command with the audit option, or the sysprep command

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/auditsystem.md


Related topics

with the generalize and audit options, or you can specify the Reseal setting in the Microsoft-Windows-
Deployment component. For more information, see Audit Mode Overview and Boot Windows to Audit Mode
or OOBE.

How Configuration Passes Work

auditUser

generalize

offlineServicing

oobeSystem

specialize

windowsPE



auditUser
5/11/2018 • 2 minutes to read • Edit Online

The auditUser configuration pass processes unattended Windows® Setup settings in user context in audit
mode. The auditUser configuration pass always runs after the auditSystem pass, which is used to apply
settings in system context. Typically, the auditUser configuration pass is used to execute RunSynchronous or
RunAsynchronous commands. These commands are used to run scripts, applications, or other executables
during audit mode. When Windows boots to audit mode, the auditSystem and auditUser settings for
unattended Windows Setup are processed.

Audit mode enables OEMs and corporations to install additional device drivers, applications, and other
updates to a master Windows® image. By using audit mode, you can maintain fewer images because you can
create a reference image with a minimal set of drivers and applications. The reference image can then be
updated with additional drivers during audit mode. Additionally, you can test and resolve any issues related to
malfunctioning or incorrectly installed devices on the Windows image before shipping the computer to a
customer. Audit mode is optional.

The following diagram illustrates when the auditUser configuration pass is processed in audit mode.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/audituser.md


Related topics

The auditUser configuration pass runs only when you configure Windows Setup to boot into audit mode. You
can boot to audit mode by using the sysprep /audit or sysprep /generalize /audit commands, or you can
specify the Reseal setting in the Microsoft-Windows-Deployment component. For more information about
audit mode, see Audit Mode Overview and Boot Windows to Audit Mode or OOBE.

How Configuration Passes Work

auditSystem

generalize

offlineServicing

oobeSystem

specialize

windowsPE



generalize
5/11/2018 • 2 minutes to read • Edit Online

Related topics

The generalize configuration pass of Windows® Setup is used to create a Windows reference image that can
be used throughout an organization. Settings in the generalize configuration pass enable you to automate the
behavior for all deployments of this reference image. In comparison, settings applied in the specialize
configuration pass enable you to override behavior for a single, specific deployment.

When a system is generalized, specific configuration data for a given installation of Windows is removed. For
example, during the generalize configuration pass, the unique security ID (S ID) and other hardware-specific
settings are removed from the image.

The generalize configuration pass runs only when you use the Sysprep command with the /generalize
option. Answer file settings in the <generalize>  section of an answer file are applied to the system before
Sysprep generalization occurs. The system then shuts down.

The following diagram shows the process of the generalize configuration pass.

The specialize configuration pass runs immediately after the next time that the system boots. When you run
Sysprep, you can decide whether Windows will boot to audit mode or Windows Welcome by specifying
/audit or /oobe. The specialize configuration pass always runs after a computer has been generalized,
regardless of whether the computer is configured to boot to audit mode or Windows Welcome.

Any method of moving or copying a Windows image to a new computer must be prepared with the sysprep
/generalize command. For more information, see Sysprep (Generalize) a Windows installation.

How Configuration Passes Work

auditSystem

auditUser

offlineServicing

oobeSystem

specialize

windowsPE

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/generalize.md


offlineServicing
5/11/2018 • 2 minutes to read • Edit Online

Related topics

Use the offlineServicing configuration pass to apply unattended Setup settings to an offline Microsoft®
Windows® image. During this configuration pass, you can add language packs, updates, device drivers, or other
packages to the offline image.

The offlineServicing configuration pass runs during Windows Setup. Setup extracts and installs the Windows
image, and then executes the Deployment Image Servicing and Management (Dism.exe) tool. Packages listed in
the <servicing>  section and settings in the <offlineServicing>  section of the answer file are applied to the
offline Windows image.

Additionally, you can use the Deployment Image Servicing and Management tool with an answer file to apply
settings in the offlineServicing pass. For more information, see Service a Windows Image Using DISM.

How Configuration Passes Work

auditSystem

auditUser

generalize

oobeSystem

specialize

windowsPE

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/offlineservicing.md


oobeSystem
5/11/2018 • 2 minutes to read • Edit Online

Related topics

The oobeSystem configuration pass configures settings that are applied during the end-user first-boot
experience, also called Out-Of-Box Experience (OOBE). The oobeSystem configuration pass settings are
processed before a user first logs on to Windows®.

Out-of-Box-Experience (OOBE) runs the first time the user starts a newly configured computer. OOBE runs
before the Windows shell or any additional software runs, and it performs a small set of tasks that are required
to configure and run Windows.

The following diagram illustrates the process that occurs when an end user first boots a newly configured
computer. The result is OOBE, or a user's first-boot experience.

You can configure Windows to boot to OOBE by running the sysprep command by using the /oobe option.
By default, after running Windows Setup, OOBE starts.

How Configuration Passes Work

auditSystem

auditUser

generalize

offlineServicing

specialize

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oobesystem.md


windowsPE



specialize
5/11/2018 • 2 minutes to read • Edit Online

Related topics

During the specialize configuration pass of Windows® Setup, computer-specific information for the image
is applied. For example, you can configure network settings, international settings, and domain information.

The specialize configuration pass is used together with the generalize configuration pass. The generalize
pass is used to create a Windows reference image that can be used throughout an organization. From this
basic Windows reference image, you can add additional customizations that apply to different divisions in an
organization or to different installations of Windows. Any method of moving or copying a Windows image to
a new computer must be prepared with the sysprep /generalize command. For more information, see
Sysprep (System Preparation) Overview and Sysprep Command-Line Options.

The following diagram illustrates how the specialize configuration pass is used to apply these specific
customizations.

For example, during the specialize configuration pass, you can specify different home pages in Internet
Explorer® for different departments or branches in your business. This setting will then override the default
home page.

How Configuration Passes Work

auditSystem

auditUser

generalize

offlineServicing

oobeSystem

windowsPE

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/specialize.md


windowsPE
5/11/2018 • 2 minutes to read • Edit Online

Related topics

The windowsPE  configuration pass is used to configure settings specific to Windows® Preinstallation
Environment (Windows PE) in addition to settings that apply to installation.

For example, you can specify the display resolution of Windows PE, where to save a log file, and other
Windows PE-related settings.

The following diagram illustrates the windowsPE  configuration pass.

The windowsPE  configuration pass also enables you to specify Windows Setup-related settings, including:

Partition and format a hard disk.

Select a specific Windows image to install, the path of that image, and any credentials required to
access that image.

Select a partition on the destination computer where you install Windows.

Apply a product key and administrator password.

Run specific commands during Windows Setup.

How Configuration Passes Work

auditSystem

auditUser

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windowspe.md


generalize

offlineServicing

oobeSystem



Deployment Troubleshooting and Log Files
5/11/2018 • 5 minutes to read • Edit Online

Windows Setup Scenario

Windows Setup-Related Log FilesWindows Setup-Related Log Files

LOG FILE DESCRIPTION LOCATION

The following section describes the relationship between common deployment scenarios and their associated log
files. Windows® deployment is a highly customizable process, which has the potential for many points of failure.
Identifying the specific point of failure you have encountered begins with understanding how the underlying
technologies work.

This scenario begins with completing Windows Setup on a new computer, so that you arrive at the desktop. This
scenario is most common when you are creating a reference image. This process is also known as the first user
experience.

As shown in the following illustration, the key to solving failures is identifying where you are in the installation
process and when a failure occurs. Because you are creating a new installation, the hard drive is not initially
available, so Windows Setup writes logs into memory, specifically in a Windows PE session (X:\Windows). After
the hard drive is formatted, Setup continues logging directly onto the new hard drive (C:\Windows). Log files
created during the Windows PE session are temporary.

When a failure occurs in Windows Setup, review the entries in the Setuperr.log file first, then the Setupact.log file
second, and then other log files as needed.

Setupact.log Primary log file for most errors that
occur during the Windows
installation process. There are
several instances of the
Setupact.log file, depending on
what point in the installation
process the failure occurs. It is
important to know which version
of the Setupact.log file to look at,
based on the phase you are in.

Setup (specialize):
X:\Windows\panther

Setup (OOBE), LogonUI, OEM
First Run:%windir%\panther

Out-Of-Box Experience (OOBE):
%windir%\panther\unattendGC

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/deployment-troubleshooting-and-log-files.md


LOG FILE DESCRIPTION LOCATION

Offline Servicing Scenario

Setuperr.log High-level list of errors that
occurred during the specialize
phase of Setup. The Setuperr.log file
does not provide any specific
details.

Setup (specialize):
%windir%\panther

Setup (specialize):
%windir%\panther

Setup (OOBE), LogonUI, OEM
First Run: %windir%\panther

Setupapi.offline.log Driver failures during the
Component Specialization sub-
phase of the Setup specialize
phase.

%windir%\inf

Cbs_unattend.log Unattended-setup servicing
failures.

%windir%\panther

Setupapi.dev.log Driver failures during the oobe
phase of Setup.

%windir%\inf

Sessions.xml An XML-based transaction log file
that tracks all servicing activity,
based on session id, client, status,
tasks, and actions. If necessary, the
Sessions.log file will point to the
DISM.log and CBS.log files for more
details.

%windir%\servicing\sessions

CBS.log Servicing log file that provides
more details about offline-servicing
failures.

%windir%\panther

This scenario involves adding and removing updates, drivers, and language packs, and configuring other settings,
without booting Windows. Offline servicing is an efficient way to manage existing images that are stored on a
server, because it eliminates the need for recreating updated images. You can perform offline servicing on an
image that is mounted or applied to a drive or directory.

The Deployment Image Servicing and Management (DISM) tool is the primary tool for all offline-servicing tasks.
DISM runs from a command prompt from Windows PE or a running Windows operating system. If a failure
occurs when executing a DISM command, the tool will provide an immediate response, and log the issue in the
DISM.log file. The Session.xml file is a transaction log file that captures all servicing activities on the target
operating system. The Session.xml file can be used in conjunction with the DISM.log file to determine points of



Offline Servicing Related Log FilesOffline Servicing Related Log Files

LOG FILE DESCRIPTION LOCATION

Online Servicing Scenario

Online Servicing-Related Log FilesOnline Servicing-Related Log Files

LOG FILE DESCRIPTION LOCATION

failures and the required servicing activity.

When a failure occurs in offline servicing, look at the DISM.log file first for specific errors. If the DISM.log file
doesn’t contain any errors, review the Sessions.xml log file second, and then the CBS.log file.

DISM.log Primary log file for all offline actions
using DISM.

%windir%\logs\dism

You can also create the DISM log
file in a different location by using
the /LogPath option. The level of
data written to the log file can also
be controlled by using the
/LogLevel option.

Sessions.xml An XML-based transaction log that
tracks all servicing activity, based
on session id, client, status, tasks,
and actions. If necessary, the
Sessions.log file will point to the
DISM.log and CBS.log files for more
details.

%windir%\servicing\sessions

To learn more about offline servicing, see Understanding Servicing Strategies.

This scenario is servicing a running operating system. This scenario involves booting the computer to audit mode
to add drivers, applications, and other packages. Online servicing is ideal for drivers if the driver packages have
co-installers or application dependencies. It is also efficient when the majority of your servicing packages have
installers, the updates are in either .msi or KB.exe file formats, or the applications rely on Windows-installed
services and technologies (such as the .NET Framework or full plug and play support).

Like offline servicing, all logging is captured in the DISM.log, CBS.log, and Sessions.xml files. If a failure occurs
when executing a DISM command, the tool will provide immediate response as well as log the issue in the
DISM.log file. The Session.xml file is a transaction log file that captures all servicing activities on the target
operating system. The Session.xml file can be used in conjunction with the DISM.log file to determine points of
failures and the required servicing activities.

When a failure occurs in offline servicing, look at the DISM.log file for specific errors. If the DISM.log file doesn’t
contain any errors, review the Sessions.xml log file and then the CBS.log file.



LOG FILE DESCRIPTION LOCATION

DISM.log Primary log file for all online actions
using DISM. If necessary, DISM.log
will point to CBS.log for more
details.

%windir%\logs\dism

You can also point DISM log file to
a different location by using the
/LogPath command option. The log
data can also be controlled by
using the /LogLevel command
option.

CBS.log Secondary log file that provides
more details about an online
servicing failure. DISM.log will
reference CBS.log for more details.

%windir%\logs\cbs

Sessions.xml An xml based transaction log that
tracks all servicing activity based on
session id, client, status, tasks, and
actions. If necessary, Sessions.log
will point to DISM.log and CBS.log
for more details.

%windir%\servicing\sessions

To learn more about offline servicing, see Understanding Servicing Strategies.



Windows Deployment Command-Line Tools
Reference
5/11/2018 • 2 minutes to read • Edit Online

In This Section

BCDEdit Command-Line Options

Related topics

These command-line tools are often used when manufacturing Windows devices.

BCDBoot Command-Line Options Initializes the boot configuration data (BCD) store and
copies boot environment files to the system partition
during image deployment.

Manages Boot Configuration Data (BCD).

Bootsect Command-Line Options Updates the master boot code for hard disk partitions to
switch between Windows Boot Manager (Bootmgr.exe)
and Windows NT Loader (NTLDR).

DiskPart Manages disk partitions.

Oscdimg Command-Line Options Creates an image (.iso) file of a customized 32-bit or 64-
bit version of Windows PE.

Server Manager command-line tools

Windows Deployment Tools Technical Reference

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/windows-deployment-command-line-tools-reference.md
http://go.microsoft.com/fwlink/?LinkId=128458
http://go.microsoft.com/fwlink/?LinkId=132134


BCDBoot Command-Line Options
5/11/2018 • 7 minutes to read • Edit Online

File Locations

Supported operating systems

How It Works

BCDBoot is a command-line tool used to configure the boot files on a PC or device to run the Windows
operating system. You can use the tool in the following scenarios:

Add boot files to a PC after applying a new Windows image. In a typical image-based Windows
deployment, use BCDBoot to set up the firmware and system partition to boot to your image. To learn more,
see Capture and Apply Windows, System, and Recovery Partitions.
Set up the PC to boot to a virtual hard disk (VHD) file that includes a Windows image. To learn
more, see Boot to VHD (Native Boot): Add a Virtual Hard Disk to the Boot Menu.
Repair the system partition. If the system partition has been corrupted, you can use BCDBoot to recreate
the system partition files by using new copies of these files from the Windows partition.
Set up or repair the boot menu on a dual-boot PC. If you've installed more than one copy of Windows
on a PC, you can use BCDBoot to add or repair the boot menu.

In Windows and Windows Preinstallation Environment
(WinPE)

%WINDIR%\System32\BCDBoot.exe

In the Windows Assessment and Deployment Kit
(Windows ADK):

C:\Program Files (x86)\Windows Kits\10\Assessment and
Deployment Kit\Deployment
Tools\amd64\BCDBoot\BCDBoot.exe

BCDBoot can copy boot environment files from images of Windows 10, Windows 8.1, Windows 8, Windows 7,
Windows Vista, Windows Server 2016 Technical Preview, Windows Server 2012 R2, Windows Server 2012,
Windows Server 2008 R2, or Windows Server 2008.

To configure the system partition, BCDBoot copies a small set of boot-environment files from the installed
Windows image to the system partition.

BCDBoot can create a Boot Configuration Data (BCD) store on the system partition using the latest version of
the Windows files:

BCDBoot creates a new BCD store and initialize the BCD boot-environment files on the system partition,
including the Windows Boot Manager, using the %WINDIR%\System32\Config\BCD-Template file.
New in Windows 10: During an upgrade, BCDBoot preserves any other existing boot entries, such as
debugsettings, when creating the new store. Use the /c option to ignore the old settings and start fresh with
a new BCD store.
If there is already a boot entry for this Windows partition, by default, BCDBoot erases the old boot entry and
its values. Use the /m option to retain the values from an existing boot entry when you update the system
files.
By default, BCDBoot moves the boot entry for the selected Windows partition to the top of the Windows

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/bcdboot-command-line-options-techref-di.md


Command-Line Options

OPTION DESCRIPTION

bcdboot C:\Windows

bcdboot C:\Windows /l ja-jp

Boot Manager boot order. Use the /d option to preserve the existing boot order.

On UEFI PCs, BCDBoot can update the firmware entries in the device’s NVRAM:

BCDBoot adds a firmware entry in the NVRAM to point to the Windows Boot Manager. By default, this entry
is placed as the first item in the boot list. Use the /p option to preserve the existing UEFI boot order. Use
/addlast to add it to the bottom of the boot order list.

The following command-line options are available for BCDBoot.exe.

BCDBOOT <source> [/l <locale>] [/s <volume-letter> [/f <firmware type>]] [/v] [/m [{OS Loader GUID}]]
[/addlast or /p] [/d] [/c]

<source> Required. Specifies the location of the Windows directory
to use as the source for copying boot-environment files.

The following example initializes the system partition by
using BCD files from the C:\Windows folder:

/l <locale> Optional. Specifies the locale. The default is US English (
en-us ).

The following example sets the default BCD locale to
Japanese:



bcdboot C:\Windows /s S:

bcdboot C:\Windows /s S: /f ALL

OPTION DESCRIPTION

/s <volume letter> Optional. Specifies the volume letter of the system
partition. This option should not be used in typical
deployment scenarios.

Use this setting to specify a system partition when you
are configuring a drive that will be booted on another
computer, such as a USB flash drive or a secondary hard
drive.

UEFI:

BCDBoot copies the boot files to either the EFI
system partition, or the partition specified by the
/s option.

BCDBoot creates the BCD store in the same
partition.

By default, BCDBoot creates a Windows Boot
Manager entry in the NVRAM on the firmware to
identify the boot files on the system partition. If
the /s option is used, then this entry is not
created. Instead, BCDBoot relies on the default
firmware settings to identify the boot files on the
system partition. By the UEFI 2.3.1 spec, the
default firmware settings should open the file:
\efi\boot\bootx64.efi in the EFI System Partition
(ESP).

BIOS:

1. BCDBoot copies the boot files to either the active
partition on the primary hard drive, or the
partition specified by the /s option.

2. BCDBoot creates the BCD store in the same
partition.

The following example copies BCD files from the
C:\Windows folder to a system partition on a secondary
hard drive that will be booted on another computer. The
system partition on the secondary drive was assigned
the volume letter S:

The following example creates boot entries on a USB
flash drive with the volume letter S, including boot files
to support either a UEFI-based or a BIOS-based
computer:



bcdboot C:\Windows /s S: /f ALL 

bcdboot C:\Windows /v

bcdboot c:\Windows /m {xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx}

OPTION DESCRIPTION

/f <firmware type> Optional. Specifies the firmware type. Valid values include
UEFI , BIOS , and ALL .

On BIOS/MBR-based systems, the default value is
BIOS . This option creates the \Boot directory

on the system partition and copies all required
boot-environment files to this directory.

On UEFI/GPT-based systems, the default value is 
UEFI . This option creates the

\Efi\Microsoft\Boot directory and copies all
required boot-environment files to this directory.

When you specify the ALL  value, BCDBoot
creates both the \Boot and the
\Efi\Microsoft\Boot directories, and copies all
required boot-environment files for BIOS and
UEFI to these directories.

If you specify the /f option, you must also specify the /s
option to identify the volume letter of the system
partition.

The following example copies BCD files that support
booting on either a UEFI-based or a BIOS-based
computer from the C:\Windows folder to a USB flash
drive that was assigned the volume letter S:

/v Optional. Enables verbose mode. Example:

/m [{OS Loader GUID}] Optional. Merges the values from an existing boot entry
into a new boot entry.

By default, this option merges only global objects. If you
specify an OS Loader GUID, this option merges the
loader object in the system template to produce a
bootable entry.

The following example merges the operating-system
loader in the current BCD store that the specified GUID
identifies in the new BCD store:



bcdboot C:\Windows /addlast

bcdboot C:\Windows /p
bcdboot C:\Windows /p /d

bcdboot C:\Windows /d

bcdboot C:\Windows /c

OPTION DESCRIPTION

Repair the system partition

/addlast Optional. Specifies that the Windows Boot Manager
firmware entry should be added last. The default
behavior is to add it first. Cannot be used with /p.

/p Optional. Specifies that the existing Windows Boot
Manager firmware entry position should be preserved in
the UEFI boot order. If entry does not exist, a new entry
is added in the first position. Cannot be used with
/addlast.

By default, during an upgrade BCDBoot moves the
Windows Boot Manager to be the first entry in the UEFI
boot order.

/d Optional. Preserves the existing default operating system
entry in the {bootmgr} object in Windows Boot Manager.

/c Optional. Specifies that any existing BCD elements
should not be migrated.

New for Windows 10: By default, during an upgrade,
BCD elements such as debugsettings or flightsigning
are preserved.

If the system partition has been corrupted, you can use BCDBoot to recreate the system partition files by using
new copies of these files from the Windows partition.

1. Boot your PC to a command line. For example, boot to the Windows installation disk and press
Shift+F10, or boot to Windows PE (WinPE: Create USB Bootable drive).

2. Use Diskpart to determine which drive letter contains your Windows partition and system partition (
diskpart, list vol, exit ).

3. Optional: Format your system partition: format (drive letter of your system partition) /q

4. Add a boot entry for your Windows partition: bcdboot D:\Windows

5. Reboot the PC. Windows should appear.



Set up or repair the boot menu on a dual-boot PC

Troubleshooting

Related topics

When setting up a PC to boot more than one operating system, you may sometimes lose the ability to boot into
one of the operating systems. The BCDBoot option allows you to quickly add boot options for a Windows-based
operating system. To set up a dual-boot PC:

1. Install a separate hard drive or prepare a separate partition for each operating system.

2. Install the operating systems. For example, if your PC has Windows 7, install Windows 10 onto the other
hard drive or partition.

3. Reboot the PC. The boot menus should appear with both operating systems listed.

If both operating systems aren't listed:

a. Open a command line, either as an administrator from inside Windows, or by booting to a command
line using the Windows installation media and pressing Shift+F10, or by booting to Windows PE
(WinPE: Create USB Bootable drive).

bcdboot D:\Windows

b. Add boot options for a Windows operating system.

c. Reboot the PC. Now, the boot menu will show both menu options.

For information about repairing the boot files on a PC with Windows XP and a more recent version of Windows
such as Windows 7, see the Microsoft Knowledge Base Article 2277998.

Capture and Apply Windows, System, and Recovery Partitions

Configure BIOS/MBR-Based Hard Drive Partitions

Configure UEFI/GPT-Based Hard Drive Partitions

BCDedit

Bootsect Command-Line Options

Diskpart Command line syntax

http://go.microsoft.com/fwlink/?LinkId=234039
http://go.microsoft.com/fwlink/?LinkId=128459
http://go.microsoft.com/fwlink/?LinkId=128458


Repair the boot menu on a dual-boot PC
5/11/2018 • 2 minutes to read • Edit Online

Repairing a Windows partition on a dual-boot PC

Repair another operating system partition

Related topics

When setting up a PC to boot more than one operating system, you may sometimes lose the ability to boot into
one of the operating systems. The BCDBoot option allows you to quickly add boot options for a Windows-based
operating system.

1. Install a separate hard drive or prepare a separate partition for each operating system.

2. Install the operating systems. For example, if your PC has Windows 8.1, install Windows 10 onto the other
hard drive or partition.

3. Reboot the PC. The boot menus should appear with both operating systems listed.

If both operating systems aren't listed:

Bcdboot D:\Windows

a. Open a command line, either as an administrator from inside Windows, or by booting to a command
line using the Windows installation disk and presssing Shift+F10, or by booting to Windows PE
(WinPE: Create USB Bootable drive).

b. Add boot options for a Windows operating system.

c. Reboot the PC. Now, the boot menu will show both menu options.

You can manually add create partitions using BCDEdit, or you can use a third-party tool such as EasyBCD to set up
the boot partitions.

BCDboot Command-Line Options

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/repair-the-boot-menu-on-a-dual-boot-pc.md
http://go.microsoft.com/fwlink/?LinkId=330254


BCDEdit Command-Line Options
5/11/2018 • 5 minutes to read • Edit Online

BCDEdit Command-Line Options

HelpHelp

OPTION DESCRIPTION

/? [commmand]

bcdedit /? createstore

Operating on a storeOperating on a store

OPTION DESCRIPTION

/createstore Creates a new empty boot configuration data store. The
created store is not a system store.

BCDEdit is a command-line tool for managing Boot Configuration Data (BCD).

BCD files provide a store that is used to describe boot applications and boot application settings.

BCDEdit can be used for a variety of purposes, including creating new stores, modifying existing stores, adding
boot menu options, and so on.

You'll need administrative privileges to use BCDEdit to modify BCD. Start the Command Prompt (Admin) or use
Windows PE.

A normal shutdown and reboot is necessary to ensure that any modified BCDEdit settings are flushed to disk.

BCDEdit is included in the %WINDIR%\System32 folder.

BCDEdit is limited to the standard data types and is designed primarily to perform single common changes to
BCD. Related resources:

Some common BCD operations, such as recovering a partition or setting up a new PC's system partition, may
be more easily accomplished by using BCDboot.
For complex operations or nonstandard data types, consider using the BCD Windows Management
Instrumentation (WMI) application programming interface (API) to create more powerful and flexible custom
tools.

The following command-line options are available for BCDEdit.exe.

BCDEdit /Command[Argument1] [Argument2] ...

Displays a list of BCDEdit commands.

To display detailed help for a particular command, run
bcdedit /?command, where command is the name of the
command you are searching for more information about.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/bcdedit-command-line-options.md


/export Exports the contents of the system store into a file. This file
can be used later to restore the state of the system store. This
command is valid only for the system store.

/import Restores the state of the system store by using a backup data
file previously generated by using the /export option. This
command deletes any existing entries in the system store
before the import takes place. This command is valid only for
the system store.

/store This option can be used with most BCDedit commands to
specify the store to be used. If this option is not specified,
then BCDEdit operates on the system store. Running the
bcdedit /store command by itself is equivalent to running the
bcdedit /enum active command.

/sysstore Sets the system store device. This only affects EFI-based
systems. It does not persist across reboots, and is only used in
cases where the system store device is ambiguous.

OPTION DESCRIPTION

Operating on entries in a storeOperating on entries in a store

OPTION DESCRIPTION

/copy Makes a copy of a specified boot entry in the same system
store.

/create Creates a new entry in the boot configuration data store. If a
well-known identifier is specified, then the /application,
/inherit, and /device options cannot be specified. If an
identifier is not specified or not well known, an /application,
/inherit, or /device option must be specified.

/delete Deletes an element from a specified entry.

/mirror Creates mirror of entries in the store.

Changing entry optionsChanging entry options

OPTION DESCRIPTION

/deletevalue Deletes a specified element from a boot entry.

/set Sets an entry option value.

Bcdedit /set {bootmgr} flightsigning on
Bcdedit /set flightsigning on

For example, this command will enable the system to trust Windows Insider Preview builds that are signed with
certificates that are not trusted by default:

Reboot after running the command. To turn off flightsigning:



Bcdedit /set {bootmgr} flightsigning off
Bcdedit /set flightsigning off

Controlling outputControlling output

OPTION DESCRIPTION

/enum Lists entries in a store. The /enum option is the default value
for BCEdit, so running the bcdedit command without options
is equivalent to running the bcdedit /enum active command.

/v Verbose mode. Usually, any well-known entry identifiers are
represented by their friendly shorthand form. Specifying /v as
a command-line option displays all identifiers in full.

Controlling the boot managerControlling the boot manager

OPTION DESCRIPTION

/bootsequence Specifies a one-time display order to be used for the next
boot. This command is similar to the /displayorder option,
except that it is used only the next time the computer starts.
Afterwards, the computer reverts to the original display order.

/default Specifies the default entry that the boot manager selects
when the timeout expires.

/displayorder Specifies the display order that the boot manager uses when
displaying boot options to a user.

/timeout Specifies the time to wait, in seconds, before the boot
manager selects the default entry.

/toolsdisplayorder Specifies the display order for the boot manager to use when
displaying the Tools menu.

Emergency Management Services optionsEmergency Management Services options

OPTION DESCRIPTION

/bootems Enables or disables Emergency Management Services (EMS)
for the specified entry.

/ems Enables or disables EMS for the specified operating system
boot entry.

/emssettings Sets the global EMS settings for the computer. /emssettings
does not enable or disable EMS for any particular boot entry.

DebuggingDebugging

Running the bcdedit /v command by itself is equivalent to
running the bcdedit /enum active /v command.



OPTION DESCRIPTION

/bootdebug Enables or disables the boot debugger for a specified boot
entry. Although this command works for any boot entry, it is
effective only for boot applications.

/dbgsettings Specifies or displays the global debugger settings for the
system. This command does not enable or disable the kernel
debugger; use the /debug option for that purpose. To set an
individual global debugger setting, use the bcdedit
/setdbgsettings type value command.

/debug Enables or disables the kernel debugger for a specified boot
entry.

/hypervisorsettings Sets the hypervisor parameters.

bcdedit /set <id> debug on

bcdedit /set <id> bootdebug on

Remote event loggingRemote event logging

OPTION DESCRIPTION

/eventsettings Sets the global remote event logging parameters.

/event Enables or disables remote event logging for an operating
system entry.

Related topics

To troubleshoot a new installation, enable debug mode by modifying the boot configuration file (BCD). For
example, use the following syntax to enable kernel or boot debug.

-or-

where <id> is the GUID of the Loader object that is used to load the operating system. "Default" can be used if the
operating system is the default option of the Boot Manager menu.

For examples of BCDEdit, see Boot Configuration Data in Windows Vista.

BCDboot

BCD System Store Settings for UEFI

BCDEdit Commands for Boot Environment

4-Gigabyte Tuning: BCDEdit and Boot.ini

Boot Configuration Data in Windows Vista

http://go.microsoft.com/fwlink/?LinkId=69448
https://msdn.microsoft.com/library/windows/hardware/dn653986
https://msdn.microsoft.com/library/windows/desktop/bb613473.aspx
http://go.microsoft.com/fwlink/?LinkId=69448


Bootsect Command-Line Options
5/11/2018 • 2 minutes to read • Edit Online

Bootsect Commands

COMMAND-LINE OPTIONS DESCRIPTION

Bootsect.exe updates the master boot code for hard disk partitions to switch between Bootmgr and NT Loader
(NTLDR). You can use this tool to restore the boot sector on your computer. This tool replaces FixFAT and
FixNTFS.

Bootsect uses the following command-line options:

bootsect {/help | /nt52 | /nt60} {SYS | ALL | <DriveLetter:>} [/force] /mbr

For example, to apply the master boot code that is compatible with NTLDR to the volume labeled E, use the
following command:

bootsect /nt52 E:

/help Displays these usage instructions.

/nt52 Applies the master boot code that is compatible with
NTLDR to SYS, ALL, or <DriveLetter>. The operating
system installed on SYS, ALL, or <DriveLetter> must be
older than Windows Vista.

/nt60 Applies the master boot code that is compatible with
Bootmgr to SYS, ALL, or <DriveLetter>. The operating
system installed on SYS, ALL, or <DriveLetter> must be
Windows 8, Windows® 7, Windows Vista, Windows
Server® 2012, Windows Server 2008 R2, or Windows
Server 2008.

SYS Updates the master boot code on the system partition
that is used to boot Windows.

ALL Updates the master boot code on all partitions. The ALL
option does not necessarily update the boot code for
each volume. Instead, this option updates the boot code
on volumes that can be used as Windows boot volumes,
which excludes any dynamic volumes that are not
connected with an underlying disk partition. This
restriction is present because boot code must be located
at the beginning of a disk partition.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/bootsect-command-line-options.md


COMMAND-LINE OPTIONS DESCRIPTION

Related topics

<DriveLetter> Updates the master boot code on the volume associated
with this drive letter. Boot code will not be updated if
either:

<DriveLetter> is not associated with a volume

<DriveLetter> is associated with a volume not
connected to an underlying disk partition.

/force Forcibly dismounts the volumes during the boot code
update. You must use this option with caution.

If Bootsect.exe cannot gain exclusive volume access, then
the file system may overwrite the boot code before the
next reboot. Bootsect.exe always attempts to lock and
dismount the volume before each update. When /force is
specified, a forced dismount is tried if the initial lock
attempt fails. A lock can fail, for example, if files on the
destination volume are currently opened by other
programs.

When successful, a forced dismount enables exclusive
volume access and a reliable boot code update even
though the initial lock failed. At the same time, a forced
dismount invalidates all open handles to files on the
destination volume. This can cause unexpected behavior
from the programs that opened these files. Therefore, use
this option with caution.

/mbr Updates the master boot record without changing the
partition table on sector 0 of the disk that contains the
partition specified by SYS, ALL, or <drive letter>. When
used with the /nt52 option, the master boot record is
compatible with operating systems older than Windows
Vista. When used with the /nt60 option, the master boot
record is compatible with Windows 8, Windows 7,
Windows Vista, Windows Server 2012, Windows Server
2008 R2, or Windows Server 2008.

BCDboot Command-Line Options



  

Oscdimg Command-Line Options
5/11/2018 • 9 minutes to read • Edit Online

Oscdimg Command-Line Options

File System OptionsFile System Options

ISO 9660 OptionsISO 9660 Options

OPTION DESCRIPTION

Joliet OptionsJoliet Options

Oscdimg is a command-line tool that you can use to create an image (.iso) file of a customized 32-bit or 64-bit
version of Windows Preinstallation Environment (Windows PE). You can then burn the .iso file to a CD or DVD.
Oscdimg supports ISO 9660, Joliet, and Universal Disk Format (UDF) file systems.

In this topic:

File System Options

CD or DVD Boot Options

Optimization Options

Order Options

DVD Video and Audio Options

Messaging Options

General Image Creation Options

Examples

The following command-line options are available for Oscdimg.

Oscdimg [<options>] <sourceLocation> <destinationFile>

The Oscdimg tool and Microsoft Windows image mastering API (IMAPI) support three file system formats: ISO
9660, Joliet, and UDF.

ISO 9660 options cannot be combined with Joliet or UDF options. The length of the file name combined with the
length of the file name extension cannot exceed 30 characters in the ISO 9660 file system.

The -d and -nt options cannot be used together.

-d Permits lower case file names. Does not force lowercase
file names to upper case.

-n Permits file names longer than DOS 8.3 file names.

-nt Permits long file names that are compatible with Windows
NT 3.51.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/desktop/oscdimg-command-line-options.md


OPTION DESCRIPTION

-jsC:\readme.txt

UDF OptionsUDF Options

OPTION DESCRIPTION

Joliet is an extension of the ISO 9660 file system. Joliet allows longer file names, Unicode characters, and
directory depths larger than eight. Joliet options cannot be combined with ISO 9660 options.

The -j2 Joliet option cannot be used with any UDF options.

-j1 Permits both file systems to view all the data on the disk.
Using this option does not duplicate all files on the image.
This option encodes Joliet Unicode file names and
generates DOS-compatible 8.3 file names in the ISO 9660
namespace. These file names can be read by either Joliet
systems or conventional ISO 9660 systems. However,
Oscdimg may change some of the file names in the ISO
9660 namespace to comply with DOS 8.3 and ISO 9660
naming restrictions.

-j2 Encodes Joliet Unicode file names without standard ISO
9660 names. This option is used to produce an image
that contains only the Joliet file system. Any system that
cannot read Joliet sees only a default text file that alerts
the user that this image is only available on computers
that support Joliet.

-js Overrides the default text file that is used when the user
specifies the -j2 option. For example:

UDF options cannot be combined with ISO 9660 options. The -ue, -uf, and -us options only apply when they are
used together with the -u2 option.

-u1 Produces an image that has both the UDF file system and
the ISO 9660 file system. The ISO 9660 file system is
written by using DOS-compatible 8.3 file names. The UDF
file system is written by using Unicode file names.

-u2 Produces an image that contains only the UDF file
system. Any system that cannot read UDF sees only a
default text file that alerts the user that this image is only
available on computers that support UDF.

-udfver102 Specifies UDF file system version 1.02.

-ue Creates embedded files.

-uf Embeds UDF file identifier entries.



    

-urC:\Readme.txt

OPTION DESCRIPTION

CD or DVD Boot OptionsCD or DVD Boot Options

OPTION DESCRIPTION

OPTION DESCRIPTION

-ur Overrides the default text file that is used together with
the -u2 option. For example:

-us Creates sparse files, when available, to make disk space
usage more efficient.

-yl Specifies long allocation descriptors instead of short
allocation descriptors.

Boot options can be used to create bootable CD or DVD images. The following boot options can be used to
generate single-boot entries. For more information, see Use a single boot entry to create a bootable image.

-b<bootSectorFile> Specifies the El Torito boot sector file that will be written
in the boot sector or sectors of the disk. Do not use
spaces. For example:

On UEFI: -bC:\winpe_x86\Efisys.bin

On BIOS: -bC:\winpe_x86\Etfsboot.com

-e Disables floppy disk emulation in the El Torito catalog.

-p Specifies the value to use for the platform ID in the El
Torito catalog. The default ID is 0xEF to represent a
Unified Extensible Firmware Interface (UEFI) system. 0x00
represents a BIOS system.

<sourceLocation> Required. Specifies the location of the files that you intend
to build into an .iso image.

<targetFile> Specifies the name of the .iso image file.

Important
Single-boot entries and multi-boot entries cannot be combined in the same command.

The following boot options can be used to generate multi-boot entries. For more information, see Use multi-boot
entries to create an image file.



  

  

-bootdata:<3>#<defaultBootEntry>#<bootEntry1>#
<bootEntryN>

OPTION DESCRIPTION

Optimization OptionsOptimization Options

OPTION DESCRIPTION

Order OptionsOrder Options

b<bootSectorFile> Specifies the El Torito boot sector file that will be written
in the boot sector or sectors of the disk. Do not use
spaces. For example:

On UEFI: bEfisys.bin

On BIOS: bEtfsboot.com

-bootdata:<number> Specifies a multi-boot image, followed by the number of
boot entries. Do not use spaces. For example:

where <3> is the number of boot entries that follow.

e Disables floppy disk emulation in the El Torito catalog.

p Specifies the value to use for the platform ID in the El
Torito catalog. The default ID is 0xEF to represent a UEFI
system. 0x00 represents a BIOS system.

t Specifies the El Torito load segment. If not specified, this
option defaults to 0x7C0.

<sourceLocation> Required. Specifies the location of the files that you intend
to build into an .iso image.

<targetFile> Specifies the name of the .iso image file.

Optimization options can be used to optimize storage by encoding duplicate files only once.

-o Uses a MD5 hashing algorithm to compare files.

-oc Uses a binary comparison of each file, and is slower than
the -o option.

-oi Ignores Diamond compression timestamps when
comparing files.

Order options specify the file order on disk. The file order does not have to list all files. Any files that do not
appear in this file are ordered as they would be ordinarily (that is, if the ordering file did not exist). For more
information, see Specify the boot order.



  

  

OPTION DESCRIPTION

-yoC:\temp\bootOrder.txt

DVD Video and Audio OptionsDVD Video and Audio Options

OPTION DESCRIPTION

Messaging OptionsMessaging Options

OPTION DESCRIPTION

The -yo option takes precedence over the -y5 option.

-y5 Specifies file layout on disk. This option writes all files in
an i386 directory first and in reverse sort order.

-yo<bootOrder.txt> Specifies a text file that has a layout for the files to be put
in the image. Do not use spaces. For example:

The DVD video and audio disk creation options cannot be combined with ISO 9660, Joliet, or UDF options.

-ut Truncates the ISO 9660 section of the image during DVD
video and audio disk creation. When this option is used,
only the VIDEO_TS, AUDIO_TS, and JACKET_P directories
are visible from the ISO 9660 file system.

-uv Specifies UDF Video Zone compatibility during DVD video
and audio disk creation. During creation, UDF 1.02 and
ISO 9660 are written to the disk. All files in the VIDEO_TS,
AUDIO_TS, and JACKET_P directories are written first.
These directories take precedence over all other ordering
rules that are used for this image.

Messaging options customize how file and directory information appears.

-a Displays the allocation summary for files and directories.

-os Shows duplicate files when the system creates the image.

-w1 Reports all file names or directories that are not ISO-
compliant or Joliet-compliant.

-w2 Reports all file names that are not DOS-compliant.

-w3 Reports all zero-length files.

-w4 Reports each file name that is copied to the image.



  

OPTION DESCRIPTION

General Image Creation OptionsGeneral Image Creation Options

OPTION DESCRIPTION

-l<volumeLabel>

-maxsize:<4096>

-yd Suppresses warnings for non-identical files that have the
same initial 64,000 bytes.

General image creation options can be used together with a single-boot entry option or multi-boot entry options
to create bootable CD or DVD images. For more information, see Boot Options and Examples.

The -m and -maxsize options cannot be used together.

-c Specifies that the system must use ANSI file names
instead of OEM file names.

-g Encodes time values as Universal Coordinated Time (UCT)
for all files, instead of the local time.

-h Includes hidden files and directories in the source path of
the image.

-k Creates an image even if some of the source files cannot
be opened.

-l<volumeLabel> Specifies the volume label. Do not use spaces. For
example:

-m Ignores the maximum size limit of an image.

-maxsize:<limit> Overrides the default maximum size of an image. The
default value is a 74-minute CD. However, if UDF is used,
the default has no maximum size. Do not use spaces. For
example:

where <4096> limits the image to 4096 MB.

-q Scans the source files only. This option does not create an
image.

-r New for Windows 8. Resolves symbolic links to their
target location.



  

  

  

-t12/31/2000,15:01:00

OPTION DESCRIPTION

Examples

Use a single-boot entry to create a bootable imageUse a single-boot entry to create a bootable image

Use multi-boot entries to create a bootable imageUse multi-boot entries to create a bootable image

-t<mm/dd/yyyy,hh:mm:ss> Specifies the timestamp for all files and directories. Do not
use spaces. You can use any delimiter between the items.
For example:

-y6 Specifies that directory records must be exactly aligned at
the end of sectors.

-yw Opens source files that have write sharing.

These examples illustrate how to do the following:

Create a bootable CD or DVD for a UEFI-based computer by using a single-boot entry.

Create a bootable CD or DVD for a UEFI-based or BIOS-based computer by using a multi-boot entry.

Specify the boot file order on a disk.

You can use the Oscdimg tool to create a bootable CD or DVD by using a single-boot entry.

To use a single-boot entry

Oscdimg -bC:\winpe_amd64\Efisys.bin -pEF -u1 -udfver102 C:\winpe_amd64\media 
C:\winpe_amd64\winpeamd64.iso

Create an image file for a UEFI-based computer. For example:

where C:\winpe_amd64\media is the location of the source files, and C:\winpe_amd64\winpeamd64.iso is
the path of the .iso file.

You can use the Oscdimg tool to create a bootable CD or DVD by using multi-boot entries. When you do this,
note the following:

The bootdata option must be followed by the number of boot entries in the command (-
bootdata:<number>).

Each multi-boot entry must be delimited by using a hash symbol (#).

Each option for a boot entry must be delimited by using a comma (,).

Each boot entry must specify the platform ID.

To use multi-boot entries

Create an image file for either a UEFI-based or BIOS-based computer by using a multi-boot command. For
example:



  Specify the boot orderSpecify the boot order

Oscdimg -bootdata:2#p0,e,bEtfsboot.com#pEF,e,bEfisys.bin -u1 
-udfver102 C:\winpe_amd64\media C:\winpe_amd64\winpeamd64.iso

where this command starts the Etfsboot.com boot file for a BIOS image, and then starts the Efisys.bin boot
file for a UEFI image.

For images larger than 4.5 GB, you must create a boot order file to make sure that boot files are located at the
beginning of the image.

The rules for file ordering are as follows:

The order file must be in ANSI.

The order file must end in a new line.

The order file must have one file per line.

Each file must be specified relative to the root of the image.

Each file must be specified as a long file name. No short names are allowed.

Each file path cannot be longer than MAX_PATH. This includes the volume name.

For example, D:\cdimage would resemble the following (where D is the drive letter of the DVD drive):

D:\cdimage\1\1.txt

D:\cdimage\2\2.txt

D:\cdimage\3\3.txt

D:\cdimage\3\3_5.txt

D:\cdimage\<longFileName>.txt

To create a boot order file

Oscdimg -m -n -yoC:\temp\bootOrder.txt 
-bC:\winpe_amd64\Efisys.bin C:\winpe_amd64\winpeamd64.iso

boot\bcd
boot\boot.sdi
boot\bootfix.bin
boot\bootsect.exe
boot\etfsboot.com
boot\memtest.efi
boot\memtest.exe
boot\en-us\bootsect.exe.mui
boot\fonts\chs_boot.ttf
boot\fonts\cht_boot.ttf
boot\fonts\jpn_boot.ttf
boot\fonts\kor_boot.ttf
boot\fonts\wgl4_boot.ttf
sources\boot.wim

Create a boot order file. For example:

where BootOrder.txt contains the following list of files:



Related topics
WinPE: Create USB Bootable drive

Windows Deployment Command-Line Tools Reference



Mobile manufacturing
6/6/2017 • 5 minutes to read • Edit Online

Manufacturing acronyms

After you have a completed the steps covered in the other guides to prepare the device, the focus shifts to
preparing the device for the final retail configuration.

During this process, you set the final configuration values, remove debug logging, and optimize the OS for
shipment. Next, you determine how the OS will be transferred to the device hardware in the manufacturing line.

Here are some common acronyms that might come in handy.

ATE automated test equipment

BER bit error rate

BIST built-in self-test

COT cost of test

CIT Testing computer interactive testing—semi-automated testing of
the device. During this stage, the device is connected to a
PC or workstation

DIB device interface board

DFT designed for test

DUT device under test

ESD electrostatic discharge

EVM error vector magnitude

FA final assembly

FQC final quality check

NIST National Institute of Standards and Technology

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/index.md


General manufacturing guidance

Manufacturing security requirements

Mobile deployment and imaging

Manufacturing mode of the full operating system

OOBT out-of-the-box test

PIB probe interface board

RTC real-time clock—on-board hardware clock used to track
the current time

SCM subcontract manufacturer

SOC system on a chip

UPH units per hour

UUT unit under test

The goal for Windows 10 Mobile is that partners are successful in establishing efficient and effective processes
that span manufacturing, testing, and servicing. To that end, Microsoft will provide guidance on the tools and
process that are used for manufacturing and support of a Windows 10 Mobile device. This guidance describes the
tools and techniques that are available to OEMs during the manufacturing process.

Manufacturing workflow

Example test area by manufacturing phase

Using a host computer to reboot a phone to flashing mode and get version information

Final retail images must be configured to meet a set of security requirements. To help OEMs ensure that their
retail images meet these requirements, Windows 10 Mobile automatically checks for some of these requirements
during first boot. Other requirements must be verified by OEMs.

Getting ready to build and test Windows 10 for mobile editions? Here's a lab that walks through building new
mobile devices and customizing them to meet your customers' needs.

Mobile deployment and imaging

Manufacturing mode is a mode of the full operating system that can be used for manufacturing-related tasks, such
as component and support testing.

Manufacturing Mode

Boot mode management UEFI protocol



Microsoft Manufacturing OS (MMOS)

Flashing tools

Manufacturing workflow

Simple factory flowSimple factory flow

Microsoft Manufacturing OS (MMOS) is an optimized configuration of the operating system that facilitates
efficient manufacturing.

Microsoft Manufacturing OS

MMOS image definition

Flash MMOS to the device

Develop MMOS test applications

Manufacturing test environment supported APIs

Deploy and test a user-mode test application in MMOS

Working with WIM MMOS images

You can develop a custom flashing tool to address the life cycle needs of the device

Flashing tools

Developing custom OEM flashing tools

 

OEMs need to determine the manufacturing process to use to implement MMOS in their manufacturing facilities.

To discuss the manufacturing process, a simplified model of the manufacturing line workflow will be used. Note
that each OEM will have a unique process; this simplified model is used as a common reference point.

Board tests/SMT – Image is flashed via gang programmer.

Final assembly, Boot – Marry board with plastic; the first time the device is booted on the manufacturing floor.

Manual tests – Line worker runs device tests such as sound, vibration, camera, keyboard, and so on.

RF/Call testing – Automated testing in which the device is tethered to enable power and the recording of test
data.

Final provisioning – Automated process where IMEI data is written, customizations are loaded, and labeling is
completed.

Final QA/Packaging – Final manual verification of the device, then packaging.

Random sample testing – A specified number of devices are removed from packaging and tested. If failures
reach a certain threshold, the entire line may be recalled.



Manufacturing process optionsManufacturing process options

Manufacturing process option 1: boot from WIM MMOS imageManufacturing process option 1: boot from WIM MMOS image

Manufacturing process option 2: reflash the deviceManufacturing process option 2: reflash the device

Each manufacturer has different techniques and tooling that they use to manufacture Windows 10 Mobile devices.
Two options are described here, but the OEM is encouraged to combine approaches and innovate as needed. The
best technical expertise regarding manufacturing resides with those who built the OEM manufacturing line. Select
the guidance that works for your manufacturing processes and business.

A summary of two example manufacturing processes is provided here.

You can temporarily copy a WIM (Windows Imaging) Microsoft Manufacturing OS (MMOS) image over to a
device and then boot to that image that is running in volatile RAM memory. For more information about MMOS,
see Microsoft Manufacturing OS.

Because the test WIM MMOS image that will never ship is used on the device, this approach enables the
provisioning of additional manufacturing tools (transports, extenders). Also, OEMs can use any functional native
APIs in the test image. Additional factory test-only drivers or other software can be included in the WIM MMOS
image.

One advantage of using this approach is that booting from a WIM Image in RAM is faster than flashing the image.

For more info, see Working with WIM MMOS images.

This process uses two images: one for factory testing, and a final golden image for the final shipping device. Like
the MMOS WIM image, the test image that will never ship is used on the device. This mean that additional
manufacturing tools (transports, extenders) can be included and manufacturing only native APIs can be called.

This approach makes it possible, if appropriate, to use a different version of the operating system for testing. This



Example test area by manufacturing phase

may be a useful interim measure as test applications are being migrated to Windows 10 Mobile.

One tradeoff in this approach is that the manufacturing line must be designed to accommodate the reflashing time
that occurs near the end of the manufacturing process.

For more info on working with the flashing tools, see Flashing tools.

 

Test area by manufacturing phase is provided only as an example; each manufacturer may wish to sequence the
tests differently.

Modem testing (RF / cellular testing)

Modem RF calibration

Wi-Fi RX/TX Power

Bluetooth RX/TX Power

Device testing

Display

Keypad

SIM interface

Storage card

Camera

RTC

Speaker

Microphone

Sensor – ALS

Sensor – Magnetometer

Sensor – Proximity



Sensor – Accelerometer

Handset interface

Power - stand by current

Device provisioning

IMEI

SIM Lock

Bluetooth MAC

Sensors calibration

Security provisioning

MO provisioning



Mobile deployment and imaging
6/6/2017 • 2 minutes to read • Edit Online

Intended audience

Overview

Windows 10 Mobile brings the features available in Windows 10 to mobile devices. In addition, on devices that
meet the required hardware components, Windows 10 Mobile also adds features like Continuum for Phones,
which allows users to connect their Windows phone to a monitor, and even to a mouse and keyboard, to make the
phone work like a desktop.

The entirety, or sections, of this walkthrough is intended for use by:

New or experienced Windows OEMs and ODMs who want to build and deploy a customized Windows 10
Mobile image.

Mobile operators who want to know the process of building and deploying a customized mobile image.

This mobile deployment and imaging guide is organized based on the two ways that you can customize, build, and
flash a Windows image to a mobile device:

Step 1: Prepare for Windows mobile development provides information about the preprequisites, tools, and how
to set up your development environment.

Step 2: Create mobile packages provides step-by-step information on how to create a mobile package using a
sample driver and when declaring an MCSF setting by using the MCSF settings schema within a .pkg.xml.

Step 3: Configure the Start layout shows how you can customize the Start layout on mobile devices to include
Web links, secondary tiles, folders, and so on. Start layout uses a new unified schema in win_threshold so it doesn't
matter if you are using the Start MCSF settings or the Start Windows Provisioning settings to add the layout to
your image. Also note that the default layout on mobile devices can only be customized as part of the imaging
process.

Step 4: Once you've done all the preparation steps, you're ready to start customizing and building your image. We
recommend learning the classic mobile deployment process first because MCSF still provides a more robust set of
customizations that OEMs and ODMs can configure for their image. However, Windows Provisioning offers many
enterprise policies, enrollment and enterprise settings not available through MCSF so we recommend becoming
familiar with the Windows Provisioning deployment process too.

Part 1: Classic mobile deployment

Configure customizations that are only available through the Managed Centralized Settings Framework
(MCSF) and use the classic Windows mobile command-line tools to build packages and a customized
image, and then flash the image to a device.

Part 2: Mobile deployment using Windows Provisioning

Use the Windows Provisioning answer file (WPAF) to configure customization settings that are only
available through the Windows Provisioning framework. Use the WPAF with an MCSF CAF as inputs to the
Windows Imaging and Configuration Designer (ICD) command-line interface to build a customized mobile
image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mobile-deployment-and-imaging.md


Prepare for Windows mobile development
6/6/2017 • 7 minutes to read • Edit Online

Step 1: Meet all the prerequisites

Step 2: Install the tools and development kits

Here's what you'll need to start customizing, testing, and deploying Windows on mobile devices.

Before you can get started on your Windows mobile development, make sure you meet these requirements:

You have access to the Microsoft Connect site where mobile partners can download the latest mobile OS
kits and packages.

If you don't have access or need more information, contact your Microsoft representative.

A development workstation or technician computer

This PC will run the tools needed during the development process. The PC must be running one of the
following operating systems:

Windows 10 32-bit (x86) or 64-bit (x64)
Windows 8.1 32-bit (x86) or 64-bit (x64)
Windows 7 32-bit (x86) or 64-bit (x64)

You must install all Windows critical updates to avoid any issues when using the mobile kits.

Uninstall earlier versions of the tools and kits

If you are using a different version of the tools and kits other than the ones listed in the Pairing information
section of the kit release notes, you first need to uninstall all of the programs associated with these
components.

Download the kits and OS packages

Download the latest kits and tools for Windows 10 Mobile from the Microsoft Connect site. See Contents
of the mobile build to learn more about the contents of the MobileOS kit for different silicon architectures.

Reference mobile hardware

This mobile device should represent all the mobile devices in a single model line; for example, the Contoso
Windows Phone. For more information about detailed hardware requirements for any device that runs
Windows 10 Mobile, see Section 2.0 - Minimum hardware requirements for Windows 10 Mobile in
Minimum hardware requirements.

Board support package (BSP) prerequisites

Make sure you have all the necessary BSP files for your reference hardware. A BSP is a set of files and
drivers that Windows 10 Mobile uses to communicate with the hardware on the device, to launch the OS,
and to create an OS image that can run on your reference hardware. The SoC vendor provides the BSP for
your reference hardware.

The following kits and tools are used for Windows mobile development:

Visual Studio 2015, which is your primary development environment for writing apps and drivers.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/preparing-for-windows-mobile-development.md
https://msdn.microsoft.com/library/windows/hardware/dn915086


DEVELOPMENT
SCENARIO MOBILEOS KIT WINDOWS ADK

WINDOWS
STANDALONE SDK WDK

VISUAL STUDIO
2015

Compile code
that runs on the
mobile device (for
example, drivers,
services, and
apps)

Required Required Required Required Required

Build packages Not required Required Not required Not required Not required

Sign binaries and
packages

Not required Required Not required Not required Not required

Build and
customize mobile
images on the
command line
using ImgGen

Required Not required Required Required Not required

Build and
customize mobile
images using
Windows ICD

Required Required Not required Not required Not required

To confirm that the Windows SDK was properly installed, make sure that the subdirectories listed in the 
following table exist on your technician PC. Some of these subdirectories may not appear in the kit install 
directory if you didn't select them from the Windows SDK install wizard.

<table>
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<thead>
<tr class="header">
<th align="left">Windows installation directory tree</th>
<th align="left">Subdirectories within the directory tree</th>

Windows 10 Mobile OS, which is contained in the MobileOS package.

Windows Assessment and Deployment Kit (ADK), which contains the tools you can use for building and
customizing your image as well as several other deployment tools that you can use to help you automate a
large-scale deployment of Windows.

Windows Driver Kit (WDK) and Windows 10 Standalone SDK, which you can install separately or install the
Enterprise WDK (EWDK), which contains a version of the driver kit and SDK.

Windows Hardware Lab Kit (HLK), which is a test framework you can use to test hardware devices for
Windows.

The following table specifies which development scenarios require each of the kits and tools.

To install the kits and tools

1. Follow the instructions for downloading and installing Visual Studio 2015, the Windows Driver Kit (WDK)
10, and the Windows 10 SDK.

Note Visual Studio 2015 is only required if you are compiling code that will run on the mobile device, such
as drivers and apps.

https://go.microsoft.com/fwlink/p/?LinkId=533470
https://go.microsoft.com/fwlink/p/?LinkId=733614
https://go.microsoft.com/fwlink/p/?LinkId=616887


</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left"><p>For a 32-bit OS: <strong>C:\Program Files\Windows Kits\10</strong></p>
<p>For a 64-bit OS: <strong>C:\Program Files (x86)\Windows Kits\10</strong></p></td>
<td align="left"><ul>
<li><strong>Bin</strong></li>
<li><strong>Catalogs</strong></li>
<li><strong>Debuggers</strong></li>
<li><strong>DesignTime</strong></li>
<li><strong>Include</strong></li>
<li><strong>Lib</strong></li>
<li><strong>Redist</strong></li>
<li><strong>References</strong></li>
<li><strong>Shortcuts</strong></li>
<li><strong>Testing</strong></li>
</ul></td>
</tr>
</tbody>
</table>

To confirm that the WDK was properly installed, make sure that the subdirectories listed in the following 
table exist on your technician PC.

<table>
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<thead>
<tr class="header">
<th align="left">Windows installation directory tree</th>
<th align="left">Subdirectories within the directory tree</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left"><p>For a 32-bit OS: <strong>C:\Program Files\Windows Kits\10</strong></p>
<p>For a 64-bit OS: <strong>C:\Program Files (x86)\Windows Kits\10</strong></p></td>
<td align="left"><ul>
<li><strong>Build</strong></li>
<li><strong>BuildLabSupport</strong></li>
<li><strong>CodeAnalysis</strong></li>
<li><strong>CrossCertificates</strong></li>
<li><strong>Debug</strong></li>
<li><strong>Help</strong></li>
<li><strong>Remote</strong></li>
<li><strong>Tools</strong></li>
</ul></td>
</tr>
</tbody>
</table>

1. Install the Windows 10 ADK.

Ensure that the Install Path is set to the kit install directory, C:\Program Files\Windows Kits\10 (for a
32-bit OS) or C:\Program Files (x86)\Windows Kits\10 (for a 64-bit OS).

In the Select the features you want to install page, select the following:

Deployment Tools
Windows Preinstallation Environment (Windows PE)
Imaging and Configuration Designer (ICD)

http://go.microsoft.com/fwlink/p/?LinkId=526740


Step 3: Install other tools

INSTALLER PACKAGE DESCRIPTION

Configuration Designer
User State Migration Tool (USMT)

To confirm that the Windows ADK was properly installed, make sure that the Assessment and
Deployment Kit appears under your Windows installation directory.

2. Download the latest mobile OS kits and packages from the Microsoft Connect site and copy the contents to
a local directory on your development workstation.

The kits and packages contain the files and tools you need to build a Windows 10 Mobile image.

3. Extract the packages and files to the kit install location.

a. Unzip the MobileOS-arm-fre.zip package.
b. Open the extracted package and copy all the subfolders and their contents to the kit install directory,

C:\Program Files\Windows Kits\10 (for a 32-bit OS) or C:\Program Files (x86)\Windows Kits\10
(for a 64-bit OS). The folders should be: FieldMedic, FMFiles, MSPackages, OEMCustomization, and
OEMInputSamples.

4. In the OEM folder, double-click Setup.exe to install the following mobile components:

Windows Phone Driver Kit (WPDK)
Debugger symbols
Windows Hardware Lab Kit content for phone
Test Shell (TShell)
Core OS packages

You can install some tools separately from the mobile kit. These tools, which are contained in the IHV_Tools folder,
are listed below.

WP_CPTT_NT-x86-fre.msi The Windows phone common packaging and test tools.



INSTALLER PACKAGE DESCRIPTION

Step 4: Set up environment variables

WP8KDConn.msi The KDBG Connectivity package, which contains the
following components:

Virtual Ethernet tool (VirtEth.exe)

Virtual network driver (the Virtual PC 2007 filter,
VmNetSrv), which is required for the Virtual
Ethernet tool unless Virtual PC 2007 is already
installed; the user will be prompted to install two
unsigned drivers.

USB serial drivers (usb2ethernet and
usbcompcom)

USB debugger drivers (usb2dbg); the user will be
prompted to install one signed driver.

The virtual network driver is installed in the
%ProgramFiles%\Microsoft Virtual PC\Utility\VMNetSrv
(or %ProgramFiles(x86)%\Microsoft Virtual
PC\Utility\VMNetSrv for a 64-bit OS) directory.

The other three components are installed in the
%ProgramFiles%\Microsoft Windows Phone 8 KDBG
Connectivity (or %ProgramFiles(x86)%\Microsoft Windows
Phone 8 KDBG Connectivity for a 64-bit OS) directory
tree, with the virtual Ethernet tool in the bin subdirectory,
the USB serial drivers in the drivers\Usb2Eth subdirectory,
and the USB debugger drivers in the drivers\Usb2Dbg
subdirectory.

TShell.msi The Test Shell, which is a set of command-line tools for
use in the bring-up and testing of a mobile device. You
can use TShell for tasks such as copying files to the mobile
device and to view logs.

Follow the steps below to set up the environment variables that are required for a working build environment.

To set up a build environment in Visual Studio 2015

1. Open a Developer Command Prompt for VS2015 window.

2. Set the WPDKCONTENTROOT environment variable to the location of the Windows 10 Mobile kit
installation directory.

For computers running a 32-bit version of Windows, by default this is %ProgramFiles%\Windows
Kits\10.

set WPDKCONTENTROOT=%ProgramFiles%\Windows Kits\10

For computers running a 64-bit version of Windows, by default this is
%ProgramFiles(x86)%\Windows Kits\10.

set WPDKCONTENTROOT=%ProgramFiles(x86)%\Windows Kits\10

3. Set the WDKCONTENTROOT environment variable to the location of the WDK kit installation directory.

For computers running a 32-bit version of Windows, by default this is %ProgramFiles%\Windows



Step 5: Install OEM test certs

Kits\10.

set WDKCONTENTROOT=%ProgramFiles%\Windows Kits\10

For computers running a 64-bit version of Windows, by default this is
%ProgramFiles(x86)%\Windows Kits\10.

set WDKCONTENTROOT=%ProgramFiles(x86)%\Windows Kits\10

4. Add the x86 tools directory for the Windows kits and the Windows kit tools directory to the PATH
environment variable.

set PATH=%PATH%;%WDKCONTENTROOT%\bin\x86;%WPDKCONTENTROOT%\Tools\bin\i386

To sign binaries and packages, you must install the OEM test certificates.

To install OEM test certs

After ensuring that WPDKCONTENTROOT is set to the path of the kit install location, run
InstallOEMCerts.cmd by using the following command:

%WPDKCONTENTROOT%\tools\bin\i386\InstallOEMCerts.cmd

For more information, see Set up the signing environment.

https://msdn.microsoft.com/library/windows/hardware/dn756804


Create mobile packages
11/15/2017 • 10 minutes to read • Edit Online

Add a driver componentAdd a driver component

In Windows 10 Mobile, packages make up the building blocks for the OS and they can contain all the files,
libraries, registry settings, executables, and data on the mobile device. Every OS component, from device drivers
to system files, must be contained in a package.

As an OEM, if you have device-specific drivers or customizations that you want to add to the OS, you need to
create a package. This section shows you how to add a fictitious driver and an MCSF customization setting as part
of the package.

For more detailed information about mobile packages, including specifying other components and package
merging, see Adding mobile packages.

To learn more about drivers and get started on writing your own, see Device and Driver Technologies.

In this walkthrough, we're downloading the sample echo KMDF driver, converting it to a universal Windows
driver, and then using Visual Studio to create a package file.

To add a driver

1. Download the echo universal driver sample.

a. Download the master.zip file and save it to your local hard drive:
https://github.com/microsoft/windows-driver-samples/archive/master.zip.

b. Extract all the contents of the master.zip file. Specify a new folder, such as C:\DriverSamples, or
browse to an existing one to store the extracted files.

c. After the files are extracted, go to the general\echo\kmdf subfolder within the folder where you
saved the extracted files to find the driver solution for the echo driver sample. For example, if you
created a C:\DriverSamples folder in the previous step, you can locate the driver solution under
C:\DriverSamples\general\echo\kmdf.

2. Convert the existing echo driver project to a universal Windows driver project.

a. In Visual Studio 2015, open the existing kmdfecho driver project, kmdfecho.sln.

b. Location the Solution Explorer in Visual Studio. In the Solution Explorer pane, right-click on
Solution 'kmdfecho' (3 projects) and choose Configuration Manager.

c. In the Configuration Manager window, set the target operating system to Windows 10.

d. Right-click on the driver project and then choose Properties. Under Configuration Manager >
Driver, verify that the Target Platform is set to Universal.

Other choices in Target Platform include Mobile. You may select this option if you want to build a
driver that runs on Windows 10 Mobile only.

3. From Visual Studio 2015, use PkgGen to generate a package file.

a. Right-click on the driver project and choose Add->New Item.

b. Under Visual C++ > Windows Driver, choose Package Manifest, and then click Add.

Visual Studio adds a file called Package.pkg.xml to your driver project. You can right-click on the file

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/creating-mobile-packages.md
https://docs.microsoft.com/en-us/windows-hardware/drivers/device-and-driver-technologies
https://github.com/microsoft/windows-driver-samples/archive/master.zip


Add an MCSF customization settingAdd an MCSF customization setting

and choose Properties to verify that the item type is set to PkgGen. On the same property page,
you can set Excluded from Build to Yes if you decide later that you want to build this driver project
and not generate a package file.

c. Click OK.

d. Right-click on the driver project and choose Properties. Under Configuration Properties, open
the PackageGen node and change the Version to a any value that you like. For example, you can
set the version to 1.0.0.0.

e. Set the package Owner, Component, and SubComponent values.

4. Right-click on the driver project and choose Properties. Set the test certificates to one of the OEM test
certificates that was installed when you ran installoemcerts.cmd.

For example, you can use CN=Windows Phone OEM Root 2013 (TEST ONLY).

5. Save your work and then restart Visual Studio as an administrator.

6. Build your driver. Visual Studio links against the required libraries and generates a .cat file, an .inf file, a
driver binary, and an .spkg file.

Once the driver is built, you should see a new folder named ProjectName.spkg, which contains the .cab and
the .spkg.

We will use the driver .spkg that you built in this walkthrough and combining it with the .spkg from the
next walkthrough to build a mobile OS image.

To learn about how to run PkgGen.exe outside of Visual Studio, see the next section on adding a customization
setting. Also see the Run the pkggen.exe tool section in Creating mobile packages.

In Windows 10 Mobile, there are two supported customization frameworks: Managed Centralized Settings
Framework (MCSF) and Windows provisioning. For more information about these frameworks, see
Customizations for mobile devices. When it comes to adding a custom OEM customization setting, only MCSF is
extendable and available for OEMs to declare their own various mobile OS settings in a simple and consistent
way that's similar to the Microsoft customization settings.

To learn how to use MCSF and the package XML schema to declare and access custom OEM settings, see the
sections in Managed Centralized Settings Framework (MCSF).

In this walkthrough, we're extending the Configure Quick actions customization to use the MCSF schema to
create a policy setting that exposes the various slots so that they can be easily configured later without having to
remember the registry keys and values. To do this, we add the policy settings declarations in a .pkg.xml file and
then build this file to create a package.

To add a customization setting

1. Write the MCSF policy setting that corresponds to the following registry key:

https://msdn.microsoft.com/library/dn756642
https://docs.microsoft.com/en-us/windows-hardware/customize/mobile/windows-10-mobile-customizations-portal
https://docs.microsoft.com/en-us/windows-hardware/customize/mobile/mcsf/managed-centralized-settings-framework-mcsf
https://msdn.microsoft.com/library/windows/hardware/dn757416


$(HKLM.SOFTWARE)\Microsoft\Shell\OEM\QuickActions\Slot\X
Type:  REG_SZ
Possible values:  
   Microsoft.QuickAction.AllSettings
   Microsoft.QuickAction.Connect
   Microsoft.QuickAction.Note
   Microsoft.QuickAction.Flashlight
   Microsoft.QuickAction.RotationLock
   Microsoft.QuickAction.BatterySaver
   Microsoft.QuickAction.Bluetooth
   Microsoft.QuickAction.WiFi
   Microsoft.QuickAction.AirplaneMode
   Microsoft.QuickAction.Vpn
   Microsoft.QuickAction.Cellular
   Microsoft.QuickAction.MobileHotspot
   Microsoft.QuickAction.Camera
   Microsoft.QuickAction.Brightness
   Microsoft.QuickAction.QuietHours
   Microsoft.QuickAction.Location

    <SettingsGroup Path="Notifications/QuickActions">  
      <!-- Default Quick actions configuration -->  
      <Setting Name="QuickActionSlot1" Description="App to place in quick action slot 1.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\1" Type="REG_SZ" 
Default="Microsoft.QuickAction.AllSettings" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting>  
      <Setting Name="QuickActionSlot2" Description="App to place in quick action slot 2.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\2" Type="REG_SZ" 
Default="Microsoft.QuickAction.RotationLock" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />

The X in the registry key should be replaced with the slot number being configured (beginning with 1).
Slots are ordered right-to-left. There is a maximum of 5 slots on a large screen mobile device while mobile
devices without a large screen have 4 slots.

The following code example shows how the MCSF policy settings for the quick actions can be declared:



           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>     
      </Setting> 
      <Setting Name="QuickActionSlot3" Description="App to place in quick action slot 3.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\3" Type="REG_SZ" 
Default="Microsoft.QuickAction.Bluetooth" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting> 
      <Setting Name="QuickActionSlot4" Description="App to place in quick action slot 4.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\4" Type="REG_SZ" 
Default="Microsoft.QuickAction.WiFi" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting> 
      <Setting Name="QuickActionSlot5" Description="App to place in quick action slot 5.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\5" Type="REG_SZ" 
Default="Microsoft.QuickAction.Camera" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />



           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting> 
    </SettingsGroup>

<?xml version="1.0" encoding="utf-8">
<Package xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  Owner=""
  Component=""
  SubComponent=""
  OwnerType="OEM"
  ReleaseType="">
   <Components>
    <SettingsGroup Path="Notifications/QuickActions">  
      <!-- Default Quick actions configuration -->  
      <Setting Name="QuickActionSlot1" Description="App to place in quick action slot 1.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\1" Type="REG_SZ" 
Default="Microsoft.QuickAction.AllSettings" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting>  
      <Setting Name="QuickActionSlot2" Description="App to place in quick action slot 2.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\2" Type="REG_SZ" 
Default="Microsoft.QuickAction.RotationLock" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />

2. Create a .pkg.xml file and add the policy settings in the previous step to the .pkg.xml file. The following
example shows how to do this.



           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>     
      </Setting> 
      <Setting Name="QuickActionSlot3" Description="App to place in quick action slot 3.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\3" Type="REG_SZ" 
Default="Microsoft.QuickAction.Bluetooth" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting> 
      <Setting Name="QuickActionSlot4" Description="App to place in quick action slot 4.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\4" Type="REG_SZ" 
Default="Microsoft.QuickAction.WiFi" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting> 
      <Setting Name="QuickActionSlot5" Description="App to place in quick action slot 5.">  
        <RegistrySource Path="$(hklm.software)\Microsoft\Shell\OEM\QuickActions\Slot\5" Type="REG_SZ" 
Default="Microsoft.QuickAction.Camera" />  
        <Validate>
           <!-- Shows the available options for the quick action slot -->
           <Option Value="Microsoft.QuickAction.AllSettings" FriendlyName="All settings" />
           <Option Value="Microsoft.QuickAction.Connect" FriendlyName="Connect" />
           <Option Value="Microsoft.QuickAction.Note" FriendlyName="Note" />
           <Option Value="Microsoft.QuickAction.Flashlight" FriendlyName="Flashlight" />
           <Option Value="Microsoft.QuickAction.RotationLock" FriendlyName="Rotation lock" />
           <Option Value="Microsoft.QuickAction.BatterySaver" FriendlyName="Battery saver" />
           <Option Value="Microsoft.QuickAction.Bluetooth" FriendlyName="Bluetooth" />
           <Option Value="Microsoft.QuickAction.WiFi" FriendlyName="Wi-Fi" />
           <Option Value="Microsoft.QuickAction.AirplaneMode" FriendlyName="Airplane mode" />
           <Option Value="Microsoft.QuickAction.Vpn" FriendlyName="VPN" />
           <Option Value="Microsoft.QuickAction.Cellular" FriendlyName="Cellular" />
           <Option Value="Microsoft.QuickAction.MobileHotspot" FriendlyName="Mobile hotspot" />
           <Option Value="Microsoft.QuickAction.Camera" FriendlyName="Camera" />
           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />



           <Option Value="Microsoft.QuickAction.Brightness" FriendlyName="Brightness" />
           <Option Value="Microsoft.QuickAction.QuietHours" FriendlyName="Quiet hours" />
           <Option Value="Microsoft.QuickAction.Location" FriendlyName="Location" />
        </Validate>
      </Setting> 
    </SettingsGroup>
   </Components>
</Package>

3. Add values for the Owner, Component, SubComponent, and ReleaseType elements. For example:

Owner="Contoso"
Component="Customization.Notifications"
SubComponent="QuickActions"
ReleaseType="Test"

To learn more about the elements and attributes, see Primary elements and attributes of a package project
file.

4. Name and save the .pkg.xml file as "QuickActions.pkg.xml".

5. Generate a package, or .spkg file, using the "QuickActions.pkg.xml" as input. For more information, see Run
the pkggen.exe tool in Adding mobile packages.

To generate a package using QuickActions.pkg.xml

a. Open a command line with administrator privileges.

b. Enter the following command to build a package from QuickActions.pkg.xml.

PkgGen QuickActions.pkg.xml
/config:"%WPDKCONTENTROOT%\Tools\bin\i386\pkggen.cfg.xml"

This command will generate a package called Customization.Notifications.QuickActions.spkg. In the
next section, we will use this package and add it to a feature manifest file.

https://msdn.microsoft.com/library/dn756796


Adding mobile packages
12/13/2017 • 8 minutes to read • Edit Online

Related topics

Packaging process during development

Packages are the logical building blocks of Windows 10 Mobile. They contain all the files, libraries, registry
settings, executables, and data on the device. From device drivers to system files, every component must be
contained in a package. This modular architecture allows for precise control of updates: a package is the smallest
serviceable unit on the device. Packages usually represent a specific feature or functionality in the operating
system. Individual packages can be grouped together to form more manageable groups of components and used
to create images for flashing or updating a device.

The following list shows additional topics related to package creation:

Primary elements and attributes of a package project file

Specifying components in a package project file

Specifying files and registry entries in a package project file

Command-line arguments for package generator

Merging packages before imaging

Merging packages using FeatureMerger

It is important to follow the packaging model to ensure the operating system behaves properly. If OEM packages
are incorrectly defined, a device that functions normally during development may stop working correctly when a
software update is applied.

Packages fall into three primary categories:

Microsoft prebuilt packages that are delivered with mobileos and contain the core operating system

SoC vendor prebuilt packages that are delivered by the vendor and contain the drivers and firmware that
support the device's chipset

OEM packages that are built by partners to contain their device-specific drivers and customizations

The following diagram illustrates the packaging process during development.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/creating-packages.md


Create a package project with no content

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="OEMName"
   OwnerType="OEM"     
   ReleaseType="Test"
   Platform="PlatformName"     
   Component="ComponentName"
   SubComponent="SubName">
</Package>

Add content to a package

A package project XML file generally starts with no content. The following is an example of an empty package
project.

Important

The package project XML file must use the "pkg.xml" extension.

If you run the package generator (pkggen.exe) against this project file, a package with no contents will be created.

The contents of a package are organized as a list of XML elements in the package project XML file. To add



<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="OEMName"
   OwnerType="OEM"     
   ReleaseType="Test"
   Platform="PlaformName"
   Component="ComponentName"
   SubComponent="SubName">
   <Components>
      <OSComponent>
         <Files>
            <File Source="$(_RELEASEDIR)\test_file1.dll"/>
            <File Source="$(_RELEASEDIR)\toBeRenamed.dat" 
               DestinationDir="$(runtime.system32)\test" Name="test.dat"/>
         </Files>
         <RegKeys>
            <RegKey KeyName="$(hklm.software)\OEMName\test">
               <RegValue Name="StringValue" Value="Test string" Type="REG_SZ"/>
               <RegValue Name="DWordValue" Value="12AB34CD" Type="REG_DWORD"/>
               <RegValue Name="BinaryValue" Value="12,AB,CD,EF" Type="REG_BINARY"/>
            </RegKey>
            <RegKey KeyName="$(hklm.software)\OEMName\EmptyKey"/>
         </RegKeys>
      </OSComponent>
   </Components>
</Package>

Run the pkggen.exe tool

contents to a package, add a Components element with the appropriate child elements as shown in the following
excerpt that demonstrates the addition of some files and registry settings to a package.

This example demonstrates how to specify the file source path and override the default path and name on the
device. It also demonstrates how to specify different registry values. If you run the package generator (pkggen.exe)
against this project file, it will create a package that contains the specified files and registry values. For more info
about how to run package generator, see Command-line arguments for package generator.

You can also add other objects such as COM servers and drivers. For additional schema and attribute information
for each type of object, see Specifying components in a package project file.

Relative DestinationDir references using a "." or ".." are not supported. Use absolute directory references instead.

The package generator tool (pkggen.exe) provided with the Windows Driver Kit and is used to build a package and
generate a .spkg file for inclusion in the operating system image. This tool is installed by default to
%WPDKCONTENTROOT%\Tools\bin\i386.

To use the package generator tool

PkgGen [package project file name] /config:"%WPDKCONTENTROOT%\Tools\bin\i386\pkggen.cfg.xml"

1. Configure your environment to specify a certificate for package signing using the guidance provided in Set
up the signing environment and Sign binaries and packages.

2. Add %WPDKCONTENTROOT%\Tools\bin\i386 to your Path environment variable.

3. From an elevated command prompt, enter the following command for each of the pkg.xml files you want to
build.

Note
When a package is changed the /version field should always be incremented when running package

https://msdn.microsoft.com/library/windows/hardware/dn756804.aspx
https://msdn.microsoft.com/library/windows/hardware/dn789217.aspx


View the contents of a package

Add a language-specific content to a package

<Components>
   <OSComponent>
      ...
      <Files Language="*">
         <File DestinationDir="$(runtime.default)\mui\$(langid)" 
            Source="$(_RELEASEDIR)\$(LANGID)\test.dll.mui"/>
      </Files>
      <Files Language="(zh-CN;zh-TW)">
         <File DestinationDir="$(runtime.default)\mui\$(langid)" 
            Source="$(_RELEASEDIR)\$(LANGID)\testZH.dll.mui"/>
      </Files>
      <RegKeys Language="(zh-CN;zh-TW)">
         <RegKey KeyName="$(hklm.software)\microsoft\testZH\$(LANGID)">
            <RegValue Name="ZHConfig_$(LANGID)" Value="$(LANGID)" Type="REG_SZ"/>
            <RegValue Name="ZHConfig_$(LANGID)_Test" Value="$(LANGID)" 
               Type="REG_EXPAND_SZ"/>
         </RegKey>
      </RegKeys>
      ...
   </OSComponent>
</Components>

generator.

For additional info about package generator options and capabilities, see Command-line arguments for package
generator.

Packages use Windows cabinet file technology to store a set of files.

To view the contents of a package

<FileEntry>
  <FileType>Regular</FileType>
  <DevicePath>\Windows\Packages\CustomMetadata\Contoso.PhoneTest.TestApp.meta.xml</DevicePath>
  <CabPath>4_Contoso.xml</CabPath> 
  <Attributes>Normal</Attributes>
</FileEntry>

1. On a Windows PC, locate the generated package and add a ".cab" file extension to the package name.

2. Double-click the renamed file to view the files that are stored in the .cab file.

3. The package files are renamed in the .cab file. To view the original filenames, extract the man.dsm.xml file to
the Desktop and open it.

4. There are multiple file entries. For each file entry, the <DevicePath> element shows the full file name. The
<CabPath> entry shows the file name that is used in the package.

5. After you are done viewing the files, remove the ".cab" file extension from the package file name.

In the preceding example, all the files and registry values are language neutral. You can use the package project
XML file to add language-related files and registry values to a package. Special flags are used to notify the
package generator of language-specific content. The following XML example demonstrates how to designate
language-specific content.

By specifying the Language attribute of File or RegKey elements, the package generator is notified that the



Add a resolution-specific content to a package

<Components>
   <OSComponent>
      ...
      <Files Resolution="*">
         <File Source="$(_RELEASEDIR)\$(RESID)\testA.jpg" Name="testA.$(resid).jpg"/> 
      </Files>
         <Files Resolution="(320X480;240x320)">
            <File Source="$(_RELEASEDIR)\$(RESID)\testB.jpg" 
               DestinationDir="$(runtime.system32)\$(resid)"/>
      </Files>
      <Files Resolution="(480x240)">
         <File Source="$(_RELEASEDIR)\$(RESID)\testC.jpg" 
            DestinationDir="$(runtime.system32)\$(resid)" Name="testC_$(resid).jpg"/>
      </Files>
      <RegKeys Resolution="*">
         <RegKey KeyName="$(hklm.software)\microsoft\ResRelatedSettings\$(RESID)">
            <RegValue Name="Config" Value="$(RESID)" Type="REG_SZ"/>
         </RegKey>
      </RegKeys>
         ...
   </OSComponent>
</Components>

Add a driver component

<Components>
   <Driver InfSource="$(_RELEASEDIR)\testDriver.inf">
      <Reference Source="$(_RELEASEDIR)\testDriver.sys"/>
      <Files>
         <File Source="$(_RELEASEDIR)\testDriver.sys"/>
      </Files>
   </Driver>
</Components>

Package a driver

enclosed contents are language related and need to be expanded for all (or just the specified) languages. Inside the
element, you can use $(L ANGID) to reference the actual language.

Note

While only File and RegKey elements have Language attributes, most of the package objects can contain File
and RegKey child elements. For more info about these elements, see Specifying files and registry entries in a
package project file.

Similar to including language-specific content, packages can also include resources (files or registry settings) that
are specific to a resolution. This is done by creating a "resolution package." The way to specify resolution-specific
content is also similar to that of language-specific content; the only difference is that you must use the Resolution
attribute instead of the Language attribute. The following XML example demonstrates how to designate certain
files and registry keys for a specific resolution.

Driver injection is supported by using the Driver element in the package project XML file. The following XML
example demonstrates how to specify the .inf and .sys file for a driver. For more info about the elements and
attributes available for drivers, including those for security, see Specifying components in a package project file.

The default file location for driver installation is "$(runtime.drivers)". The staging of the driver object requires



Add a service component

Add customization settings

Add binary partitions

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="OEMName"
   OwnerType="OEM"     
   ReleaseType="Test"          
   Component="ComponentName"
   SubComponent="SubName">
   Partition="DPP"
   BinaryPartition="true">
   <Components>
      <BinaryPartition ImageSource="$(_RELEASEDIR)\testDPP.bin"/>
   </Components>
</Package>

Project scope macros

access to the Mobile Core hive files. For a package that includes a driver, it is necessary to also set the variable
HIVE_ROOT to the directory with those hives, which should be %WPDKCONTENTROOT%\CoreSystem. Under
these circumstances, the command for package generator would be the following: 
PkgGen SampleDriver.pkg.xml /config:"%WPDKCONTENTROOT%\Tools\bin\i386\pkggen.cfg.xml"
/variables:"HIVE_ROOT=%WPDKCONTENTROOT%\CoreSystem"

Note

If the driver uses the Include INF directive to reference other drivers that are part of the Mobile Core subset of
the operating system, use the WIM_ROOT variable instead of the HIVE_ROOT variable. The default directory for
the staging WIM image is the same as the hives.

For Windows 10 Mobile, you must use both the HIVE_ROOT and WIM_ROOT parameters. If you use only
WIM_ROOT, the package might not be complete.

The Service element in the package project XML file, its child elements, and its attributes can be used to define
and package a system service. For more detailed info about the attributes and chid elements of the Service
element, see Specifying components in a package project file.

Managed Centralized Settings Framework (MCSF) provides a standard way to describe settings that are
customizable within packages. A SettingsGroup element represents a settings group in the customization answer
file.

The BinaryPartition element is a special element that represents a binary dump of a partition on the device. A
package project can only specify one BinaryPartition element. Additionally, a BinaryPartition element can't
coexist with any other objects and requires that the BinaryPartition attribute of the Package element be set to
true. The following example demonstrates this.

Package projects can utilize macros to simplify the XML creation process. Some macros are already globally
defined, in which case they can't be changed or modified, but you can also define local macros for use within your
own package project XML file. This local macro definition is embedded in the specific package project file through
the Macros element. The following example demonstrates creating a local macro for use in a package project file.



<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   ...
   >
   <Macros>
      <Macro Id="testName" Value="testValue"/>
...
   </Macros>

   <Components>
      ...
   </Components>
</Package>

After defining the macro shown here, you could use $(testName) to reference the value "testValue" in your project.
For more info, see "The Macros element and local project macros" in Primary elements and attributes of a
package project file.

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation feedback %5Bp_phPackaging\p_phPackaging%5D: Creating mobile packages  RELEASE: (11/14/2017)&body=%0A%0APRIVACY STATEMENT%0A%0AWe use your feedback to improve the documentation. We don't use your email address for any other purpose, and we'll remove your email address from our system after the issue that you're reporting is fixed. While we're working to fix this issue, we might send you an email message to ask for more info. Later, we might also send you an email message to let you know that we've addressed your feedback.%0A%0AFor more info about Microsoft's privacy policy, see http://privacy.microsoft.com/default.aspx.


Primary elements and attributes of a package project
file
11/17/2017 • 5 minutes to read • Edit Online

  <xs:element name="Package">
    <xs:complexType>
      <xs:sequence minOccurs="1" maxOccurs="1">
        <xs:element minOccurs="0" maxOccurs="1" ref="CustomMetadata" />
        <xs:element minOccurs="0" maxOccurs="1" ref="Macros" />
        <xs:element minOccurs="0" maxOccurs="1" ref="Capabilities" />
        <xs:element minOccurs="0" maxOccurs="1" ref="Components" />
        <xs:element minOccurs="0" maxOccurs="1" ref="Authorization" />
      </xs:sequence>
      <xs:attribute name="Owner" type="xs:string" use="required" />
      <xs:attribute name="Component" type="xs:string" use="required" />
      <xs:attribute name="SubComponent" type="xs:string" use="optional" />
      <xs:attribute name="BinaryPartition" type="xs:boolean" use="optional" />
      <xs:attribute name="OwnerType" use="required">
        <xs:simpleType>
          <xs:restriction base="xs:string">
            <xs:enumeration value="Microsoft" />
            <xs:enumeration value="OEM" />
            <xs:enumeration value="SiliconVendor" />
            <xs:enumeration value="MobileOperator" />
          </xs:restriction>
        </xs:simpleType>
      </xs:attribute>
      <xs:attribute name="ReleaseType" use="required">
        <xs:simpleType>
          <xs:restriction base="xs:string">
            <xs:enumeration value="Production" />
            <xs:enumeration value="Test" />
          </xs:restriction>
        </xs:simpleType>
      </xs:attribute>
      <xs:attribute name="Partition" type="xs:string" use="optional" />
      <xs:attribute name="Platform" type="xs:string" use="optional" />
      <xs:attribute name="GroupingKey" type="xs:string" use="optional" />
      <xs:attribute name="Description" type="xs:string" use="optional" />
    </xs:complexType>
  </xs:element>

Package attributes

The root XML element in the package project XML file is the Package element. This element is the base container
element for all other package-related elements in a package project XML file. It must occur only once, and it
contains all the package information in the project file as attributes and child elements. The information in the
Package element can be divided into four key areas: attributes, macros, security capabilities, and components.

The following XML example shows the schema definition of the Package element.

Attributes of the target package(s) are described by using the XML attributes of the Package element. This
element currently supports the following attributes.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/primary-elements-and-attributes-of-a-package-project-file.md


ATTRIBUTE DEFINITION

Important

Warning

Owner Required. String that specifies the owner of the package.
For example, Contoso.

Component Required. String that specifies the component represented
by the package. This value is used as a portion of the
package ID.

SubComponent Optional. String that specifies the subcomponent
represented by the package.

ReleaseType Required. String that specifies the type of release for which
the package should be included. Valid values are the
following:

Production

Test

If a package is intended to be included in a retail image,
it must be marked as Production. Packages marked as
Test will fail retail signing and are not allowed in retail
images.

OwnerType Required. String that specifies the category of owner for
the package. Valid values are the following:

Microsoft

OEM

SiliconVendor

MobileOperator

Partition Optional. String identifier for the target partition for the
package. By default, packages are installed to the MainOS
partition unless another is explicitly specified.

Packages that are intended to be updated must
not target the data partition. The reason for this
restriction is that the data partition is formatted
when the device reset feature is used.

Packages must only target a single partition.



Note

ATTRIBUTE DEFINITION

<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="OEMName"
   OwnerType="OEM"     
   ReleaseType="Test"
   Platform="PlatformName"     
   Component="ComponentName"
   SubComponent="SubName">
</Package>

The Macros element and local project macros

<Macros>
   <Macro Id="TypeLibId" Value="{F5078F18-C551-11D3-89B9-0000F81FE221}"/>
   <Macro Id="ProxyStubClsId" 
      Value="{00020424-0000-0000-C000-000000000046}"/>
</Macros>

Platform Required. String, such as “QC8960”, that specifies the
target platform for the package if the package is targeting
a specific platform. By default, this value is NULL.

Although this attribute is specified as optional in the
schema, it is required for all packages where the
OwnerType attribute is not set to Microsoft.

GroupingKey Optional. OEM-defined string that specifies an identifier
for grouping packages together. By default, this value is
NULL.

BinaryPartition Optional. Boolean value that indicates whether the
package contains a binary partition object. By default, this
value is set to False.

Description Optional. String that can be used to provide additional
details about the package. This field can contain any
string and is not read by any Microsoft components once
contained in the manifest.

The following XML example demonstrates how to specify the package attributes.

Note

The package attributes shown in this example support the use of macros.

To simplify the creation of the package project XML, macros can be used in the project file. A macro is essentially a
unique identifier in the project file that is later replaced by a defined value. Each macro definition is represented by
a Macro element within the parent Macros element. Each macro is defined by the attributes Id and Value. The
following XML example shows the use of the Macros element to define a macro.

The following XML example shows the schema definition of the Macros element.



<xs:element name="Macros">
   <xs:complexType>
      <xs:sequence>
         <xs:element name="Macro" minOccurs="1" maxOccurs="unbounded">
            <xs:annotation>
               <xs:documentation>
                  A Macro element defines a text substitution macro that can be used 
                  in other elements. Macros are referenced using NMAKE syntax, i.e. 
                  $(runtime.windows).
               </xs:documentation>
            </xs:annotation>
            <xs:complexType>
               <xs:attribute name="Id" type="MacroIdType" use="required">
                  <xs:annotation>
                     <xs:documentation>
                        Required. The Id for this macro, used in macro references. 
                        For example, if the Id for this macro is "runtime.windows",
                        the macro would be referenced as $(runtime.windows).
                     </xs:documentation>
                  </xs:annotation>
               </xs:attribute>
               <xs:attribute name="Value" type="MacroValueStringType" use="required">
                  <xs:annotation>
                     <xs:documentation>
                        Required. The value that will be substituted for macro 
                        references in macro- enabled XML attributes.
                     </xs:documentation>
                  </xs:annotation>
               </xs:attribute>
            </xs:complexType>
         </xs:element>
      </xs:sequence>
   </xs:complexType>
</xs:element>

ATTRIBUTE DEFINITION

Note

Id Required. String that specifies the name of the macro. This
identifier should always start with either letters or a “”
character and then be followed by letters, digits, the “”
character, or the “.” character. No other characters are
allowed in the Id attribute.

The Id for a macro is case sensitive and must be unique
for each defined Macro element in the package project
XML file.

Value Required. String that specifies the expansion of the macro
identifier. This value can include most ANSI characters and
must match the following regular expression pattern: [a-
zA-Z0-9-_!@#%^.,;:=+~`'{}()[]$ \]*".

Macros can be used throughout the project file by using the syntax $(MacroName). Although macros are valid in
most elements of the project file, they are not supported in all. Macros cannot be referenced in a nested fashion—
for example $(Macro1_$(Macro2)—and they cannot be used in the definition of package attributes. Some other
items of note about macros are:

A macro definition can include the use of a macro. For example, the following is valid.



The Components element

<Macros>
   <Macro Id="Windows" Value="\windows"/>
   <Macro Id="System32" Value="$(Windows)\System32"/>
</Macros>

The order macros are defined does not matter as long as the definitions are not recursive.

There are additionally global macros that can be used in a package project XML file, but they cannot be redefined
within the package. Redefining a global macro causes a failure when the package generator tries to build the
package.

The Components element is the most important part of a package. It defines for the package generator what files
and settings are included in the target package(s). Files, registry settings, and other information are grouped into
different kinds of objects for packaging. You can include multiple objects into the target package(s) by listing them
in this XML section. Currently the following objects are defined:

OSComponent

AppResource

Application

BCDStore

BinaryPartition

ComServer

Driver

Service

SvcHostGroup

WinRTHost

FullTrust

InboxApp

SettingsGroup

For additional details about these components, refer to Specifying components in a package project file. You can
have any number of these types of objects in your package project (with the exception of some restrictions for the
BinaryPartition object).

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation feedback %5Bp_phPackaging\p_phPackaging%5D: Primary elements and attributes of a package project file  RELEASE: (11/14/2017)&body=%0A%0APRIVACY STATEMENT%0A%0AWe use your feedback to improve the documentation. We don't use your email address for any other purpose, and we'll remove your email address from our system after the issue that you're reporting is fixed. While we're working to fix this issue, we might send you an email message to ask for more info. Later, we might also send you an email message to let you know that we've addressed your feedback.%0A%0AFor more info about Microsoft's privacy policy, see http://privacy.microsoft.com/default.aspx.


Specifying components in a package project file
11/20/2017 • 14 minutes to read • Edit Online

OSComponent element

<Components>   
   <OSComponent>
      <Files>
         <File Source="$(_RELEASEDIR)\testdll.dll"/>
         <File Source="$(_RELEASEDIR)\testzh.dll"/>
         <File Source="$(_RELEASEDIR)\testEA.dll"/>
      </Files>
      <Files Language="*">
         <File DestinationDir="$(runtime.default)\mui\$(langid)" 
            Source="$(_RELEASEDIR)\$(LANGID)\testdll.dll.mui"/>
      </Files>
      <Files Language="(zh-CN;zh-TW)">
         <File DestinationDir="$(runtime.default)\mui\$(langid)" 
            Source="$(_RELEASEDIR)\$(LANGID)\testZH.dll.mui"/>
      </Files>
      <Files Language="(zh-CN;zh-TW;jp-jp;kr-kr)">
         <File DestinationDir="$(runtime.default)\mui\$(langid)" 
            Source="$(_RELEASEDIR)\$(LANGID)\testEA.dll.mui"/>
      </Files>
      <RegKeys Language="(zh-CN;zh-TW)">
         <RegKey KeyName="$(hklm.software)\microsoft\testZH\$(LANGID)">
            <RegValue Name="ZHConfig_$(LANGID)" Value="$(LANGID)" Type="REG_SZ"/>
            <RegValue Name="ZHConfig_$(LANGID)_Test" Value="$(LANGID)" 
               Type="REG_EXPAND_SZ"/>
         </RegKey>
      </RegKeys>
   </OSComponent>
</Components>

Driver element

This section provides more detailed information about the supported children of the Components element in a
package project XML file.

The OSComponent element is a container for Files and RegKeys elements. OSComponent has no attributes
and is usually used to include system components such as shared DLLs, data files, and registry settings. For
additional information about the Files and RegKeys elements, see Specifying files and registry entries in a
package project file.

Note

The OSComponent element must contain at least one Files element or RegKeys element.

The following XML example uses the OSComponents element to include various system files.

The files and registry keys can represent language-neutral or language-specific components.

Windows 10 Mobile uses some of the same driver model as Windows 10 for desktop editions (Home, Pro,
Enterprise, and Education). You must import an .inf file for your driver into a package by using the Driver element.
When an .inf file is specified, the packaging infrastructure calls the driver installation code to simulate the driver
installation and determine the necessary registry change for the driver.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/specifying-components-in-a-package-project-file.md


ATTRIBUTE DESCRIPTION

ELEMENT DESCRIPTION

<Components>   
   <Driver InfSource=
      "$(_WINPHONEROOT)\Sample.inf">
      <Reference Source="$(_RELEASEDIR)\Sample.sys" />
      <Files>
         <File Source="$(_RELEASEDIR)\Sample.sys"/>
      </Files>
   </Driver>
</Components>

Pkggen.exe <other arguments> /variables:"HIVE_ROOT=%WPDKCONTENTROOT%\CoreSystem";<other variables> <other 
arguments>

The following table describes the attributes of the Driver element.

InfSource Required. Specifies the .inf file for your driver to import
into the driver package.

The following table describes the child elements of the Driver element.

Reference Optional. Specifies any additional files that are required
when installing the driver (such as the driver's .sys file).
Adding a Reference element doesn't actually add the file
to the package, however; to do that, you must still use a
Files element.

Files Optional. Specifies a file to include in the driver package
(such as the driver’s .sys file). For more info, see Specifying
files and registry entries in a package project file.

Security Optional. Specifies how the driver is accessible
applications and services. For more info, see Security
element below.

The following example adds a driver to a package.

The default file location for driver installation is "$(runtime.drivers)". The staging of the driver object requires
access to the Mobile Core hive files. Therefore, it is necessary to set the variable HIVE_ROOT to the directory that
contains those hives, which by default is %WPDKCONTENTROOT%\CoreSystem. The following example shows a
package generator (PkgGen.exe) command that sets the HIVE_ROOT variable.

Note

If the driver uses the Include INF directive to reference other drivers that are part of the Mobile Core subset of
the operating system, use the WIM_ROOT variable instead of the HIVE_ROOT variable. The default directory for
the staging WIM image is the same as the hives.

For Windows 10 Mobile, you must use both the HIVE_ROOT and WIM_ROOT parameters. If you use only
WIM_ROOT, the package might not be complete.



  Security elementSecurity element

ATTRIBUTE DESCRIPTION

ELEMENT DESCRIPTION

Note

For more information about command-line arguments for PkgGen.exe, see Command-line arguments for
package generator.

Under the default security policy for drivers, drivers are accessible to other TCB components (including other
drivers and the kernel) and to services. Some device experiences require a driver that can be accessed by
applications as well as services. To enable this scenario, OEMs may need to add a Security element under the
Driver element.

The Security element has the following attribute and child elements.

InfSectionName Required. This attribute specifies the name of an AddReg
directive section in the driver's .inf file. This specification
allows for the injection of a Security Descriptor Definition
Language (SDDL) string into the .inf file as part of
package generation.

AccessedByCapability Optional. This element is used to specify a capability ID
that is required for non-TCB code to access the driver, as
well as the rights granted to that capability. The capability
ID is specified through the Id attribute, which accepts a
string that is the capability name. The rights are specified
through the Rights attribute, which accepts one or more
of the following strings:

$(DEVICE_READ)

$(DEVICE_WRITE)

$(DEVICE_ALL)

$(DEVICE_EXECUTE)

AccessedByApplication Optional. This element is used to specify an app that can
access the driver, as well as the rights granted to that
application. The app is specified through the Name
attribute, which accepts a string that is the app's product
ID GUID. The rights are specified through the Rights
attribute, which accepts one or more of the following
strings:

$(DEVICE_READ)

$(DEVICE_WRITE)

$(DEVICE_ALL)

$(DEVICE_EXECUTE)

The product ID GUID must be specified including
brackets, for example 
{263AF644-C573-4e00-BB49-740DD4C69664} .



ELEMENT DESCRIPTION

Service element

ATTRIBUTE DESCRIPTION

AccessedByService Optional. This element is used to specify a service that
can access the driver, as well as the rights granted to that
service. The service is specified through the Name
attribute, which accepts a string that is the name of the
service. This value must match the name of the service as
it was declared in the Name attribute of the Service
element. The rights are specified through the Rights
attribute, which accepts one or more of the following
strings:

$(DEVICE_READ)

$(DEVICE_WRITE)

$(DEVICE_ALL)

$(DEVICE_EXECUTE)

The Service element describes a service in the system and is used for the packaging and configuration of partner
services.

The following table describes the attributes of the Service element.

Name Required. The name of the service. The string is case
sensitive.

DisplayName Optional. The displayable name of the service.

Description Optional. A description of the service.

Start Required. An enumeration value that defines when the
service will start. Valid values are the following:

Demand – The service starts after the OS has
finished booting and the shell is available.
Microsoft strongly recommends using this value
for services in Windows 10 Mobile wherever
possible.

Auto – The service starts automatically during
system startup.

Type Required. An enumeration value that defines the service
type. Valid values are the following:

Win32OwnProcess – A service that runs in its
own process.

Win32ShareProcess – A shared service that runs
in a host process with other services.



ATTRIBUTE DESCRIPTION

ELEMENT DESCRIPTION

DependOnService Optional. A service on which the service being defined
depends.

ErrorControl Optional. An enumeration value that defines the severity
of the error and the action to take if the service fails to
start. Valid values are the following:

Ignore –The startup program should ignore the
error and continue the startup operation.

Normal – The startup program should log the
error in the event log but continue the startup
operation.

Severe – The startup program should log the
error in the event log. If the last-known-good
configuration is being started, the startup
operation continues. Otherwise, the system is
restarted with the last-known-good configuration.

SvcHostGroupName Required for shared services. A unique OEM-defined
string that identifies a particular service group. All
services shared in the same process must assign the
SvcHostGroupName attribute to the same value.

The following table describes the child elements of the Service element.



ELEMENT DESCRIPTION

Executable Required for services that run in their own process. This
element defines the service executable through the
following four attributes.

Note

Note

Name - Optional. The name for the executable on
the device. If a name is not specified, the file name
in the source path is used.

Source – Required. The source path of the service
executable to be included in the package. This
path can be an absolute or relative path. It is also
valid to use macro references in the path.

If the executable file does not exist, package
generation will fail.

DestinationDir – Optional. The destination folder
on the device for the service executable. This path
must start with a globally defined macro for a
directory. If this attribute is not specified, the
default location for services is used.

Attributes – Optional. The file system attributes
for this file on the device. The value can be a
combination of the following, separated by a space
character.

Archive

Hidden

Offline

ReadOnly

System

Temporary

SparseFile

NotContentIndexed

When not specified, a predefined default value is
used.

The file system might not support all of these
attributes.



ELEMENT DESCRIPTION

FailureActions Optional. This element defines the actions taken on the
failure of the service. It has one child element (Action)
and two attributes (Command and ResetPeriod).

The Action element specifies the action to be performed.
At least one Action element is required when
FailureActions is included, and each Action element
must contain two attributes. The first attribute is Type,
which is an enumeration value that specifies the type of
action to take. The second attribute is Delay, which is a
non-negative integer that specifies the time, in
milliseconds, to wait before performing the action. Valid
values for Type are the following:

None – No action.

RestartService – Restart the service.

RunCommand – Run a command.

The following list describes the two attributes of the
FailureActions element.

Note

Command – Optional. The command line of the
process for the CreateProcess function to
execute in response to a failure, when the
RunCommand attribute is specified through the
Action element. This process runs under the same
account as the services.

If the value is NULL, the command is unchanged.
If the value is an empty string (""), the command
is deleted and no command is run when the
service fails.

ResetPeriod – Required. The time, in seconds,
after which to reset the failure count to zero if
there are no failures. Specify INFINITE to indicate
that the count should never be reset.



ELEMENT DESCRIPTION

Files Optional. This element, through its child element File,
defines supporting files to include with the service. The
File element has the following four attributes:

Note

Note

Name - Optional. The name for the file on the
device. If a name is not specified, the file name in
the source path is used.

Source – Required. The source path of the file to
be included in the package. This path can be an
absolute or relative path. It is also valid to use
macro references in the path.

If the file does not exist, package generation will
fail.

DestinationDir – Optional. The destination folder
on the device for the file. This path must start with
a globally defined macro for a directory. If this
attribute is not specified, the default location for
files is used.

Attributes – Optional. The file system attributes
for this file on the device. The value can be a
combination of the following, separated by a space
character.

Archive

Hidden

Offline

ReadOnly

System

Temporary

SparseFile

NotContentIndexed

When not specified, a predefined default value is
used.

The file system might not support all of these
attributes.

RegKeys Optional. Specifies registry entries for the service through
the child element RegKey. For additional information
about the RegKey element, see Specifying files and
registry entries in a package project file.



ELEMENT DESCRIPTION

BinaryPartition element

ComServer element

RequiredCapabilities Optional. Specifies platform capabilities required by the
service. When used, at least one child
RequiredCapability element must be provided. The
RequiredCapability element has one attribute, CapId,
which specifies a valid platform capability.

ServiceDll Required for shared services that run in a host executable.
Specifies information about the DLL that implements the
service. The ServiceDll element has the following
attributes:

Source – Required. The full path of the service
DLL on the development computer.

HostExe – Required. The full path of the service
host executable for the service on the image. For
example,
"$(runtime.system32)\OEM_SampleHost.exe".

The BinaryPartition element is used to create binary partition packages. If a package contains a BinaryPartition
object, it can contain no other objects, including other BinaryPartition objects.

There is also a special package-level Boolean attribute called BinaryPartition. When this attribute is set, one and
only one BinaryPartition element must be added.

The BinaryPartition element has only one attribute, ImageSource, which points to a file that contains a binary
dump of the target partition. You must specify the appropriate value for the package-level Partition attribute.

The ComServer element describes a DLL and all of the COM classes and related items derived from the DLL. It is
designed to simplify how CLSID-related registry settings are specified. The ComServer element is derived from
OSComponent and includes three additional child elements:

ATTRIBUTE DESCRIPTION

Dll: This element specifies the DLL that exports all the COM classes in the ComServer object. The path of
the DLL will also be used for the path stored under the InprocServer32 registry key.

Classes: This element specifies the classes exported from the Dll element. It contains multiple Class
elements, each of which can have the following attributes.

ID Required. A string that specifies the class ID. For
example, "{a3079dc1-e685-4e37-af40-
057ed6d0e252}"

TypeLib Optional. A string that specifies the TypeLib class ID.

AppId Optional. String.



In addition to these attributes, you can also specify zero or more
**RegKey** child elements under a **Class** element. When registry
information is included here, the built-in macro $(hkcr.clsid)
(which is mapped to the string
"HKCR\\Classes\\CLSID\\&lt;*currentClsId*&gt;") can be used to add
more settings for this class without mentioning the full key name.
The following example demonstrates the definition of a **Class**
object.

``` syntax
<Class 
   Id="{2933BF90-7B36-11D2-B20E-00C04F983E60}" 
   Version="1.0" 
   TypeLib="{D63E0CE2-A0A2-11D0-9C02-00C04FC99C8E}" 
   ThreadingModel="Both" 
   ProgId="Microsoft.XMLDOM.1.0" 
   VersionIndependentProgId="Microsoft.XMLDOM" 
   Description="XML DOM Document">

   <RegKey KeyName="$(hkcr.clsid)\SideBySide">
      <RegValue Name="RefCount" Type="REG_DWORD" Value="00000001" />
      <RegValue Name="Version30RefCount" Type="REG_DWORD" Value="00000001" />
   </RegKey>
   <RegKey KeyName="$(hkcr.clsid)\VersionList">
      <RegValue Name="3.0" Type="REG_EXPAND_SZ" 
         Value="%SystemRoot%\System32\msxml3.dll" />
    </RegKey>
</Class>
```

ATTRIBUTE DESCRIPTION

ProgId Optional. String.

Description Optional. String.

VersionIndependentProgId Optional. String.

Version Optional. String.

DefaultIcon Optional. String.

ThreadingModel Optional. A string that specifies the threading model.
Valid values are:

Apartment

Free

Both

Neutral

Interfaces: This element contains a list of Interface elements that describe the interfaces implemented by
the ComServer object. Similarly to Class elements, the following attributes and zero or more RegKey
child elements can be specified.



For the **Interface** element, there is a built-in macro $(hkcr.iid)
that maps to "HKCR\\Classes\\Interface\\&lt;*interfaceId*&gt;". The
following example demonstrates the definition of an **Interface**
object.

``` syntax
<Interface 
   Id="{D4D4A0FC-3B73-11D1-B2B4-00C04FB92596}" 
   TypeLib="$(TypeLibId)" 
   Name="IXMLAttribute" 
   ProxyStubClsId="{00020424-0000-0000-C000-000000000046}" 
   ProxyStubClsId32="$(ProxyStubClsId)">
   <RegKey KeyName="$(hkcr.iid)\TypeLib">
      <RegValue Name="Version" Type="REG_SZ" Value="3.0" />
   </RegKey>
</Interface>
```

The default device directory for this object is $(runtime.system32).

SettingsGroup element

Custom OEM package metadata

Adding custom metadata to package filesAdding custom metadata to package files

ATTRIBUTE DEFINITION

ID Required. A string that specifies the class ID. For
example, "{a3079dc1-e685-4e37-af40-
057ed6d0e252}"

TypeLib Optional. String that specifies the TypeLib class ID.

Name Optional. String.

ProxyStubClsid Optional. String.

ProxyStubClsid32 Optional. String.

A SettingsGroup element represents a settings group in the customization answer file. Managed Centralized
Settings Framework (MCSF) provides a standard way to describe settings that are customizable within packages.

OEMs have the ability to insert custom XML metadata into packages through the package project XML file
(.pkg.xml). When packages are generated, this XML data is written to a separate file (.meta.xml) inside of the
package. When the package is added to the image, the custom metadata will be available on the device.

The CustomMetadata element is used to add custom metadata under the Package node. The XML within
CustomMetadata is a series of key-value pairs using the Field element as shown below.



<Package>
  <CustomMetadata>
    <Field Name="Key">Value</Field>
  </CustomMetadata>
  <Macros>
  </Macros>
  <Capabilities>
  </Capabilities>
  <Components>
  </Components>
  <Authorization>
  </Authorization>
</Package>

<?xml version="1.0" encoding="utf-8"?>
<CustomMetadata xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00">
  <Field Name="Key">Value</Field>
</Field>
</CustomMetadata>

Walkthrough – adding custom metadataWalkthrough – adding custom metadata

Walkthrough – viewing custom metadataWalkthrough – viewing custom metadata

PkgGen writes out the content of CustomMetadata tag to the .meta.xml file in the package. The layout of this file is
nearly identical to the input.

The output metadata file is included in the package, and is installed on the phone in
\Windows\Packages\CustomMetadataFiles, as PackageName.meta.xml. This folder is a sibling of the DsmFiles
folder that is used for packages.

The packaging and device update tools treat the .meta.xml file like any other file on the phone.

Use the following process to add custom data to an existing package.

To add custom data to an existing package

<CustomMetadata>
    <Field Name="TargetVersion">8.1</Field>
    <Field Name="PrimaryPhoneModel">DCD6000</Field>
    <Field Name="DevelopmentTeam">Alpha Team</Field>
  </CustomMetadata>

1. Locate the desired package project XML file and open it in a text editor such as Notepad.

2. Add the desired metadata tags right after the <Package> element. For example, to track a targeted version,
model, and development team, add the following metadata value pairs.

3. Use PkgGen to generate a package. For more info, see Creating packages.

Use the following process to confirm that the metadata file is present in the generated package.

To confirm that the metadata file is in the generated package

1. On a Windows PC, locate the generated package and add a ".cab" file extension to the package name.

2. Double-click the renamed file to view files that are stored in the .cab file.

3. The package files are renamed in the .cab file. To locate the filename of the metadata file that will be used
on the device, click the man.dsm.xml  file, extract it, and open it. One of the file entries will show the
.meta.xml package name and the .cab file name that is used. In this example, 4_Contoso.xml  is the name of



Related topics

…
   <FileEntry>
      <FileType>Regular</FileType>
      <DevicePath>\Windows\Packages\CustomMetadata\Contoso.TestApp.meta.xml</DevicePath>
      <CabPath>4_Contoso.xml</CabPath>
      <Attributes>Normal</Attributes>
    </FileEntry>

<?xml version="1.0" encoding="utf-8"?>
<CustomMetadata xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00">
  <Field Name="TargetVersion">8.1</Field>
  <Field Name="PrimaryPhoneModel">DCD6000</Field>
  <Field Name="DevelopmentTeam">Alpha Team</Field>
</CustomMetadata>

the metadata XML file.

4. Extract the 4_Contoso.xml and open it. Confirm that it contains the expected metadata.

Creating packages

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation feedback %5Bp_phPackaging\p_phPackaging%5D: Specifying components in a package project file  RELEASE: (11/14/2017)&body=%0A%0APRIVACY STATEMENT%0A%0AWe use your feedback to improve the documentation. We don't use your email address for any other purpose, and we'll remove your email address from our system after the issue that you're reporting is fixed. While we're working to fix this issue, we might send you an email message to ask for more info. Later, we might also send you an email message to let you know that we've addressed your feedback.%0A%0AFor more info about Microsoft's privacy policy, see http://privacy.microsoft.com/default.aspx.


Specifying files and registry entries in a package
project file
11/17/2017 • 5 minutes to read • Edit Online

Files

<xs:complexType name="fileType">
   <xs:attribute name="Name" type="xs:string" use="optional"/>
   <xs:attribute name="Source" type="xs:string" use="required"/>
   <xs:attribute name="DestinationDir" type="DevicePathType" use="optional"/>
   <xs:attribute name="Attributes" type="attributesType" use="optional" />
   <xs:attribute name="EmbeddedSigningCategory" type="xs:string" use="optional" />
</xs:complexType>

ATTRIBUTE DEFINITION

Note

Because files and registry entries are a key component of each object in a package, it is important to understand
how files and registry entries are specified in package project files.

To include a file, use the File element, which is a child of the Files element. The following XML example shows
the schema definition of the File element.

This element has the following attributes.

Source Required. Specifies the source path of the file to be
included in to the package. This path can be an absolute
or relative path. It is also valid to use macro references
within the path.

The file must exist, or package generation will fail.

DestinationDir Optional. Specifies the destination folder on the device
for the specified file. This path must start with a globally
defined macro for a folder. If this attribute is not specified,
the default location depends on the owned object.

Name Optional. Specifies the name for this file on the device. If
a name is not specified, the file name in the source path
is used.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/specifying-files-and-registry-entries-in-a-package-project-file.md


Note

<Files>
  <File Source="MyHalFileLocation\HalExt1.dll" 
EmbeddedSigningCategory="-oem -hal" /> 
  <File Source="MyHalFileLocation\HalExt2.dll" 
EmbeddedSigningCategory="-oem -hal" /> 
  <File Source="MyHalFileLocation\HalExt3.dll" 
EmbeddedSigningCategory="-oem -hal" /> 
</Files>

ATTRIBUTE DEFINITION

Registry keys and values

Attributes Optional. Specifies the file system attributes for this file
on the device. This value can be a combination of the
following separated by a space character

Archive

Hidden

Offline

ReadOnly

System

Temporary

SparseFile

NotContentIndexed

When not specified, a predefined default value is used.

Although the above attributes can be specified, the file
system might not support all of them.

EmbeddedSigningCategory Optional. Specifies the type of code signing that should
be used for the file during package generation.

The string that is provided for
EmbeddedSigningCategory is passed unchanged to the
sign.cmd tool that is used in package generation. For info
on the available signing options for sign.cmd, see Sign
binaries and packages.

For example, to specify that HAL binaries should be
signed using the –oem and –hal option, add the
EmbeddedSigningCategory attribute as shown.

For general information about code signing, see Code
signing.

InWindows 10 Mobile, registry keys are instead specified in the package project XML file by using the RegKey
element.

The RegKey element has only one required attribute, KeyName, which is the full path of the registry key.
KeyName must start with a globally defined macro, but it does not require the trailing slash at the end of the key
name.

Under the RegKey element can be zero or more RegValue elements. Each of these elements represents a value

https://msdn.microsoft.com/library/windows/hardware/dn789217.aspx
https://msdn.microsoft.com/library/windows/hardware/dn756634.aspx


ATTRIBUTE DEFINITION

T YPE VALUE DEFINITION VALUE AT TRIBUTE

Note

under the registry key. The RegValue element has the following attributes.

Note

The MUI_SZ registry key type has been replaced with the REG_SZ or REG_EXPAND_SZ type. Developers should
use either of these and change the code to use the RegLoadMUIString function to do the same. The format of the
value is "@[path]\dllname,-strID" and an example would be "@%SystemRoot%\System32\msxml3r.dll,-2". This
change occurred because the Windows kernel does not support a MUI_SZ type.

Name Required. String that specifies the name of the value. The
symbol “@” can be used to specify the default value.
Additionally, macros can be used in the attribute value.

Value Required. String that represents the value of the key. This
attribute is dependent on the value type.

Type Required. The type of the value. The following list shows
the possible type values and the required format for the
paired Value attribute.

REG_SZ A plain text
string.

A NULL
terminato
r
character
is
appende
d to the
end of
this string
automati
cally. If
for some
reason
you don’t
want the
null
terminato
r, you
must use
REG_HEX
with a
raw hex
dump.

“test value”

REG_MULTI_S
Z

Multiple text
strings
separated
by ‘;’. See
note.

“value1;value
2;value3”



T YPE VALUE DEFINITION VALUE AT TRIBUTE

Note

ATTRIBUTE DEFINITION

File and registry key groups, language/resolution expansion, and CPU
filtering

REG_DWORD 32-bit
number
represented
in hex
format, with
no “0x”
prefix.

“1234ABCD”

REG_QWOR
D

64-bit
number in
hex format,
with no “0x”
prefix.

“1234ABCD1
234ABCD”

REG_BINARY Byte array in
hex format,
separated
by ‘,’, with no
“0x” prefix.

“1A,2B,3D”

REG_EXPAND
_SZ

Same as
REG_SZ.

REG_HEX A byte array
(same as
REG_BINARY)
with a type
prefix in the
form of
“hex(x):”
where x is
the hex
number for
the type.

“hex(7):1A,2B
,3D”

Given that the ‘;’ character is the delimiter for
REG_MULTI_SZ, the ‘;’ character cannot be used inside
the string because it would be parsed as the separator
of two strings. A workaround for this is to use the
REG_HEX type instead and specify the string with the
hex dump, e.g.: “hex(7):<exact hex dump of the
string>”.

For most objects, File and RegKey elements cannot be directly specified. Instead, they must be grouped under
the Files and RegKeys elements. A Files or RegKeys element must have at least one File or RegKey element,
respectively.

Both Files and RegKeys have some special attributes used for language/resolution expansion and CPU filtering.



ATTRIBUTE DEFINITION

Note

Note

CpuFilter Optional. Restricts the elements (File or RegKey) to a
specific CPU architecture. Currently this attribute
supports the following two values:

ARM

X86

The attribute is case sensitive and values must be
specified in uppercase letters.

This attribute can be used along with the Language or
Resolution attribute.

Language Optional. Indicates to the package generator that the
contents under this group are language specific and
must be distributed to the corresponding language
package. This attribute can be specified with the following
values:

“”: The “” character means that the elements
under this group are language specific and are
supported for every language that is being built.
For each language built, the contents are inserted
into the correspondent language packages. To
target different files for each language, you can
use the built-in global macro $(LANGID), which is
expanded to the language identifier of the target
language package.

“(en-US;zh-CN)”: This syntax is used to indicate to
the package generator that the contents are
language specific, but are only available for the
given languages. The contents will then be
inserted only into the specified language
packages.

“!(en-US;zh-CN)”: A ‘!’ in front of the language list
explicitly excludes the listed languages from
receiving the contents. The contents will not be
inserted to those listed languages.

This attribute can be used along with the CpuFilter, but
it cannot be used at the same time as Resolution.



Note

ATTRIBUTE DEFINITION

Resolution Optional. This attribute is similar in usage to the
Language attribute, with the exception that it requires
the use of a resolution identifier instead of a language
identifier. A resolution identifier is in the form of
“<width>x<height>”, for example “320x240”. A built-in
macro $(RESID) is available for the use of all child
elements.

This attribute can be used along with the CpuFilter, but
it cannot be used at the same time as Language.

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation feedback %5Bp_phPackaging\p_phPackaging%5D: Specifying files and registry entries in a package project file  RELEASE: (11/14/2017)&body=%0A%0APRIVACY STATEMENT%0A%0AWe use your feedback to improve the documentation. We don't use your email address for any other purpose, and we'll remove your email address from our system after the issue that you're reporting is fixed. While we're working to fix this issue, we might send you an email message to ask for more info. Later, we might also send you an email message to let you know that we've addressed your feedback.%0A%0AFor more info about Microsoft's privacy policy, see http://privacy.microsoft.com/default.aspx.


Command-line arguments for package generator
11/17/2017 • 2 minutes to read • Edit Online

NAME DESCRIPTION USAGE

The package generator tool (PkgGen.exe) is used to create a package from a package project XML file. The tool is
designed to process one project XML file at a time and by default is located at
%WPDKCONTENTROOT%\Tools\bin\i386. The following section outlines the command-line arguments.

Warning

Package generation requires catalog files to be signed. To perform this task, a certificate must be specified for use
with pkggen.exe. If a certificate is not provided, usage of pkggen.exe will return the following error message: 
Failed to sign package integrity catalog file . To specify a signing certificate for pkggen.exe, follow the steps in

Set up the signing environment and Sign binaries and packages.

Usage

PkgGen [Project File] [Options] /config:[Configuration File]

Note

When using the package generator tool, make sure to use quote marks for input paths that contain spaces. For
example, if you defined a %WPDKCONTENTROOT% environment variable that is set to C:\Program Files
(x86)\Windows Kits\10, then the invocation of package generator should be 
"%WPDKCONTENTROOT%\tools\bin\i386\pkggen.exe"  with a leading and ending quote mark. This guidance should also

be followed for the path to the project file and the configuration file. For any parameter values, such as variables,
that start with the /<param_name>:  syntax make sure to quote the entire string after the : symbol if there are any
spaces. An example would be 
/variables:"WPDKCONTENTROOT=C:\Program Files (x86)\Windows Kits\10;MyVar=TestValue" .

[Project File] Path to the project XML file. Required

/output:[Output Directory] Specifies the output directory for
the processed package. By default
this value is ".", meaning the
current directory.

Optional

/version:[Version String] Specifies the version of the package
using the format "<major>.
<minor>.<hotfix>.<build>". By
default this value is "0.0.0.0". Note:
The version field must be
incremented whenever a package is
changed.

Optional

/build:[Build Type] Specifies the build type of the
operating system image the
package is being created for (FRE or
CHK). By default FRE is used.

Optional

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/command-line-arguments-for-package-generator.md
https://msdn.microsoft.com/library/windows/hardware/dn756804.aspx
https://msdn.microsoft.com/library/windows/hardware/dn789217.aspx


NAME DESCRIPTION USAGE

/cpu:[CPU Type] Specifies the platform CPU type for
the package (ARM or x86). By
default, ARM is used.

Optional

/language:[Language ID List] Specifies a list of ";" separated
language identifiers for which
language packages should be
generated. By default this list is
empty.

Optional

/resolution:[Resolution ID list] Specifies a list of ";" separated
resolution identifiers for which
resolution packages should be
generated. By default this list is
empty.

Optional

/config:[Configuration File] Specifies the path to the global
macro file PkgGen.cfg.xml that is
included with the Windows Driver
Kit (WDK). By default, this file is
located at
%ProgramFiles(x86)%\Window
Kits\10\Tools\bin\i386 (or the
corresponding path under
%ProgramFiles% on computers
running a 32-bit version of
Windows).

Required

/variables:[Variable Definition List] Specifies additional variables for use
during package project file
processing. The format is "[variable
name]=[value];[variable 2 name]=
[value];".

Optional

{+|-}diagnostic Precede with either "+" or "-" to
indicate true or false. This option
enables debugging messages,
which are disabled by default.
Syntax for enabling debugging
messages would be +diagnostic .

Optional

{+|-}compress Precede with either "+" or "-" to
indicate true or false. The default is
false. This value allows for the
compression of the package. When
compress is true, the package
generator tool run time increases,
but the package is optimized for
storage size. This setting has no
impact on imaging.

Optional

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation feedback %5Bp_phPackaging\p_phPackaging%5D: Command-line arguments for package generator  RELEASE: (11/14/2017)&body=%0A%0APRIVACY STATEMENT%0A%0AWe use your feedback to improve the documentation. We don't use your email address for any other purpose, and we'll remove your email address from our system after the issue that you're reporting is fixed. While we're working to fix this issue, we might send you an email message to ask for more info. Later, we might also send you an email message to let you know that we've addressed your feedback.%0A%0AFor more info about Microsoft's privacy policy, see http://privacy.microsoft.com/default.aspx.


Merging packages before imaging
11/17/2017 • 5 minutes to read • Edit Online

Understanding the package merging process

PACKAGE GROUP ELEMENT IN THE FEATURE MANIFEST MERGING BEHAVIOR

Before you create an image, we recommend that you first merge your packages by using the FeatureMerger.exe
tool. This tool takes a feature manifest file as an input and merges your referenced packages into a small, well-
defined set of packages that adhere to a predictable and consistent naming system.

This topic provides general guidance about the package merging process.

Important

For retail images, you must generate merged packages that conform to the Windows Standard Package
Configuration (WSPC). WSPC is a set of rules that define the package naming requirements for retail devices. For
more info, see Windows Standard Packaging Configuration (WSPC) requirements for retail images.

To create merged packages, create a feature manifest file that lists the packages you want to merge and pass this
feature manifest file to the FeatureMerger.exe tool. FeatureMerger.exe merges your packages based on the
package groups under which the packages are listed in the feature manifest file and additional package metadata.
Based on this information, one or more packages that represent the minimal set of packages based on the
metadata are generated. The new merged packages are placed in the output directory specified when the tool was
invoked. For instructions about using FeatureMerger.exe, see Merging packages using FeatureMerger.

The following table summarizes how packages are merged based on the feature manifest package group they are
listed under.

BasePackages All packages listed under the BasePackages element
with the same partition, language, and resolution will be
merged together into a package with the following
naming convention:

<Owner>.Base.<FeatureManifestID>.<Partition>.spkg

SOCPackages All packages listed under the SOCPackages element with
the same SOC attribute value, partition, language, and
resolution will be merged together into a package with
the following naming convention.

<Owner>.SOC_<SOC
name>.<FeatureManifestID>.<Partition>.spkg

OEMDevicePlatformPackages

DeviceSpecificPackages

All packages listed under the
OEMDevicePlatformPackages and
DeviceSpecificPackages elements with the same
Device attribute value, partition, language, and
resolution will be merged together into a package with
the following naming convention.

<Owner>.DEVICE_<device
name>.<FeatureManifestID>.<Partition>.spkg

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/merging-packages-before-imaging.md


PACKAGE GROUP ELEMENT IN THE FEATURE MANIFEST MERGING BEHAVIOR

Naming convention for merged packages

Features All packages listed under the Features element with the
same FeatureID, partition, language, and resolution will
be merged together into a package with the following
naming convention.

<Owner>.OEM_<feature
ID>.<FeatureManifestID>.<Partition>.spkg

ReleasePackages All packages listed under the ReleasePackages element
with the same ReleaseType attribute value, partition,
language, and resolution will be merged together into a
package with the following naming convention.

<Owner>.RELEASE_<TEST |
PRODUCTION>.<FeatureManifestID>.<Partition>.spkg

SVPackages All packages listed under the SVPackages element with
the same SV attribute value, partition, language, and
resolution will be merged together into a package with
the following naming convention.

<Owner>.SV_<SV
name>.<FeatureManifestID>.<Partition>.spkg

PrereleasePackages All packages listed under the PrereleasePackages
element with the same Type attribute value, partition,
language, and resolution will be merged together into a
package with the following naming convention.

<Owner>.PRERELEASE_<REPLACEMENT |
PROTECTED>.<FeatureManifestID>.<Partition>.spkg

In the preceding table, the partition, language, and resolution metadata used for package merging are derived
from the following attributes in the package project XML file used to generate each package:

Partition attribute of the Package element.

Language attribute of the Files element.

Resolution attribute of the Files element.

Note

Language and resolution-specific merged packages (packages with the language or resolution suffix in the
package file name) do not comply with WSPC. For retail images, these packages should be merged into a WSPC-
compliant base package by referencing the packages under the BasePackages element in the feature manifest.

For more info about these attributes, see Primary elements and attributes of a package project file and Specifying
files and registry entries in a package project file.

The merged packages generated by FeatureMerger.exe have the following basic naming convention:

<Owner>.<MergedPackageType>.<FeatureManifestID>.<Partition>.spkg

The <MergedPackageType> substring is derived from the grouping element in the feature manifest, as described



SUBSTRING ORIGIN OF THE SUBSTRING

Important

General guidelines for package merging

in the previous section. The following table describes where the other substrings are derived from.

Owner The Owner substring is derived from one of the following
locations:

If you pass a single feature manifest XML file to
FeatureMerger.exe, this is derived from the
/OwnerName command line parameter.

If you pass an FMFileList XML file to
FeatureMerger.exe, this is derived from the
OwnerName attribute of the FM element in the
FMFileList XML file.

FeatureManifestID The FeatureManifestID substring is derived from one of
the following locations:

If you pass a single feature manifest XML file to
FeatureMerger.exe, this is derived from the /FMID
command line parameter.

If you pass an FMFileList XML file to
FeatureMerger.exe, this is derived from the ID
attribute of the FM element in the FMFileList XML
file.

When building merged packages for retail images,
OEMs must specify either Phone or Variant for the
FeatureManifestID substring. For more info, see Windows
Standard Packaging Configuration (WSPC) requirements
for retail images.

Partition The Partition substring is derived from the Partition
attribute of the Package element in the package project
XML files that were used to build the packages that are
being merged. For more information, see Primary
elements and attributes of a package project file.

You should structure your feature manifest files to control how groups of packages are merged. The following list
is a set of general guidelines for package merging:

Plan for how you want your packages to be merged. For example, you may only want certain sets of
packages to be available on phones that are targeted for specific mobile operators or markets.

Either create new feature manifest files, or leverage existing feature manifest files, to control how packages
are merged.

Use the SOCPackages, OEMDevicePlatformPackages and DeviceSpecificPackages elements to
manage hardware-specific packages. For example, all packages associated with a specific SoC element in a
feature manifest should have the same SOC attribute. FeatureMerger.exe uses each of these categories as a
criteria for merging packages. The packages will be merged with the other packages when any combination
of the elements matches. If some packages match on some of the attributes and not others, then only the



Related topics

packages that match on all elements will be contained in a merged package.

When generating merged packages for retail images, make sure you generate packages that conform to the
WSPC. For more info, see Windows Standard Packaging Configuration (WSPC) requirements for retail
images.

Use merged packages for all image generation by using the feature manifests that are generated by
FeatureMerger.exe. For more info, see Merging packages using FeatureMerger.

Verify that all packages have the proper metadata to ensure that merging is performed as expected.

For more info about feature manifests, see Feature manifest file contents. For more info about the OEMInput file
elements, see OEMInput file contents.

Merging packages using FeatureMerger

Windows Standard Packaging Configuration (WSPC) requirements for retail images

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation feedback %5Bp_phPackaging\p_phPackaging%5D: Merging packages before imaging  RELEASE: (11/14/2017)&body=%0A%0APRIVACY STATEMENT%0A%0AWe use your feedback to improve the documentation. We don't use your email address for any other purpose, and we'll remove your email address from our system after the issue that you're reporting is fixed. While we're working to fix this issue, we might send you an email message to ask for more info. Later, we might also send you an email message to let you know that we've addressed your feedback.%0A%0AFor more info about Microsoft's privacy policy, see http://privacy.microsoft.com/default.aspx.


Merging packages using FeatureMerger
11/17/2017 • 9 minutes to read • Edit Online

FeatureMerger.exe overview

Using FeatureMerger.exe with a single feature manifest XML file

FeatureMerger InputFile OutputPackageDir OutputPackageVersion OutputFMDir /FMID:<feature manifest id> 
/Languages:<language identifier list>
/Resolutions:<resolution identifier list> /OwnerName:<owner name> /Variables:<variables> [/OwnerType:<owner 
type>] [/MergePackageRootReplacement:<replacement directory> 
[{+|-}Incremental] [{+|-}Compress] 

Required arguments and switchesRequired arguments and switches

The package feature merger tool (FeatureMerger.exe) combines packages into a small, well-defined set of merged
packages that adhere to a predictable and consistent naming system. For retail images, OEMs must use
FeatureMerger.exe to merge their packages into a specific set of packages that conform to the Windows Standard
Package Configuration (WSPC).

For an overview of package merging, see Merging packages before imaging. For more information about the
WSPC requirements for retail images, see Windows Standard Packaging Configuration (WSPC) requirements for
retail images.

FeatureMerger.exe can be used in two ways: by passing a single feature manifest XML file, or by passing an
FMFileList XML file that describes multiple feature manifests. The tool generates a set of merged packages and a
new feature manifest file that references the merged packages. The new feature manifest file can be referenced in
an OEMInput file that is passed to ImgGen.cmd to build an image from the new merged packages.

To generate merged packages that comply with the (WSPC) for retail images, you must organize all your
packages into a single feature manifest as described in Windows Standard Packaging Configuration (WSPC)
requirements for retail images and pass this feature manifest to FeatureMerger.exe. If you are starting with
packages that are described in multiple feature manifest files, you can generate merged packages that comply
with WSPC in a multi-step process:

1. Generate an initial set of merged packages and feature manifests by running FeatureMerger.exe with an
FMFileList XML file that references the feature manifest files.

2. Manually create a new feature manifest file that references all of the merged packages generated in the
first step. Make sure that the merged packages are referenced in the WSPC-compliant sections of the
feature manifest file, as described in Windows Standard Packaging Configuration (WSPC) requirements
for retail images.

3. Generate merged packages by running FeatureMerger.exe with the consolidated feature manifest file.

FeatureMerger.exe has the following syntax when used with a single feature manifest XML file.

The following table lists the required arguments and switches when using FeatureMerger.exe with a single feature
manifest XML file.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/merging-packages-using-featuremerger.md


ARGUMENT/SWITCH DESCRIPTION VALUE

Note

en-us;de-de

InputFile The path to the feature manifest
XML file.

Text string

OutputPackageDir The path to the directory where
the merged packages will be
placed.

Text string

OutputPackageVersion The version of the merged package
that is created using the format "
<major>.<minor>.<hotfix>.
<build>".

The package version must be
incremented whenever a
package is changed. For more
info about package versioning
and updates, see Update
requirements.

Text string

OutputFMDir The path to the directory where
the generated feature manifests will
be placed. Feature manifests are
generated with the same file name
as the original feature manifest file
name. The updated version of the
feature manifest file contains the
names of the merged packages and
the provided version number.

Text string

/FMID:Feature manifest ID A required short FM ID that
describes the feature manifest file
that is used in the merged package
name to ensure that features from
different FM files don't collide. The
ID should be eight characters or
less and be different from all other
FM IDs. When generating merged
packages for retail images, this ID
must have the value of either
Phone or Variant. For more info,
see Windows Standard Packaging
Configuration (WSPC) requirements
for retail images.

Text string

/Languages:Language identifier
list

A semicolon “;” separated list of
supported UI language identifiers.
The following is an example of a
language identifier list.

Text string

https://docs.microsoft.com/windows-hardware/service/mobile/update-requirements


480x800;720x1280;768x1280;108
0x1920

/Variables:_cputype=arm;build
type=fre;releasetype:producti
on

ARGUMENT/SWITCH DESCRIPTION VALUE

Optional and reserved switchesOptional and reserved switches

SWITCH DESCRIPTION VALUE

/Resolutions:Resolution identifier
list

A semicolon “;” separated list of
supported resolution identifiers.
The following is an example of a
resolutions identifier list.

Text string

/OwnerName:Owner name The name of the package owner,
for example “Contoso”.

Text string

/Variables:variables Additional variables that are used
in the project file using the
following syntax:<name>=
<value>;<name>=<value>;

The following variables are pre-
defined:

_cputype: Required.
Specifies the CPU
architecture. For Windows
10 Mobile, this variable
must be set to "arm".

buildtype: Required.
Specifies the build type. This
variable must be set to
either "fre" or "chk".

releasetype: Optional.
Specifies the image release
type. This variable can be
set to either "test" or
"production". If this variable
is not specified, the default
value is "test".

For example, to set the CPU, build
type, and release type, specify the
variables like this:

Text string

The following table lists the optional switches when using FeatureMerger.exe with a single feature manifest XML
file.

/OwnerType:Owner type Specifies the resulting package
owner type.

Text string – For OEM packages,
this value must be set to "OEM".



SWITCH DESCRIPTION VALUE

SWITCH DESCRIPTION VALUE

ExamplesExamples

FeatureMerger C:\FM\OEMSampleFM.xml D:\FM\MergedPackages 8.0.0.1 D:\FM\MergedFMs /FMID:Phone /Languages:en-us  
/Resolutions:480x800;720x1280;768x1280;1080x1920 /OwnerName:Contoso /variables:_cputype=arm;buildtype=fre

Using FeatureMerger.exe with an FMFileList XML file

FeatureMerger InputFile OutputPackageDir OutputPackageVersion OutputFMDir /InputFMDirPath:<path> /Variables:
<variables> [/MergePackageRootReplacement:<replacement directory> 
[{+|-}Incremental] [{+|-}Compress] 

Required arguments and switchesRequired arguments and switches

ARGUMENT/SWITCH DESCRIPTION VALUE

/MergePackageRootReplaceme
nt:Replacement directory

Specifies a string to be used in the
generated FM file for packages.
Replaces the OutputPackageDir in
the package paths.

Text string

{+|-}Incremental Specifies to only re-merge existing
merged packages when one of the
sources packages has changed. If
this value is not set, the default is
False. This means that all packages
will be rebuilt each time
FeatureMerger is called.

Boolean value: Precede this switch
with either [+] to set to true or [-]
to set to false

{+|-}Compress This value allows for the
compression of merged packages.
When compress is true, the merge
tool run time increases, but the
package is optimized for storage
size. This setting has no impact on
imaging.

Boolean value: Precede this switch
with either [+] to set to true or [-]
to set to false

The following table lists the switches that are reserved for use by Microsoft when using FeatureMerger.exe with a
single feature manifest XML file.

/Critical Reserved for use by Microsoft. Text string

The following examples demonstrate FeatureMerger.exe syntax when specifying a feature manifest file.

FeatureMerger.exe has the following syntax when used with a single feature manifest XML file.

The following table lists the required arguments and switches when using FeatureMerger.exe with an FMFileList
XML file.



Note

ARGUMENT/SWITCH DESCRIPTION VALUE

InputFile The path to the FMFileList XML file.
For more info about the contents
of the FMFileList XML file, see
Contents of the FMFileList XML file
in this topic.

Text string

OutputPackageDir The path to the directory where
the merged packages will be
placed.

Text string

OutputPackageVersion The version of the merged package
that is created using the format "
<major>.<minor>.<hotfix>.
<build>".

The package version must be
incremented whenever a
package is changed. For more
info about package versioning
and updates, see Update
requirements.

Text string

OutputFMDir The path to the directory where
the generated feature manifests will
be placed. Feature manifests are
generated with the same file name
as the original feature manifest file
name. The updated version of the
feature manifest file contains the
names of the merged packages and
the provided version number.

Text string

/InputFMDirpath:path The directory where the source
feature manifest files are located.

Text string

https://docs.microsoft.com/windows-hardware/service/mobile/update-requirements


/Variables:_cputype=arm;build
type=fre;releasetype:producti
on

ARGUMENT/SWITCH DESCRIPTION VALUE

Optional and reserved switchesOptional and reserved switches

SWITCH DESCRIPTION VALUE

/Variables:variables Additional variables used in the
project file using the following
syntax:<name>=<value>;
<name>=<value>;

The following variables are pre-
defined:

_cputype: Required.
Specifies the CPU
architecture. For Windows
10 Mobile, this variable
must be set to "arm".

buildtype: Required.
Specifies the build type. This
variable must be set to
either "fre" or "chk".

releasetype: Optional.
Specifies the image release
type. This variable can be
set to either "test" or
"production". If this variable
is not specified, the default
value is "test".

For example, to set the CPU, build
type, and release type, specify the
variables like this:

Text string

The following table lists the optional switches when using FeatureMerger.exe with FMFileList XML file.

/MergePackageRootReplaceme
nt:Replacement directory

Specifies a string to be used in the
generated feature manifest for
packages. Replaces the
OutputPackageDir in the package
paths.

Text string

{+|-}Incremental Specifies to only remerge existing
merged packages when one of the
sources packages has changed. If
this value is not set, the default is
False. This means that all packages
will be rebuilt each time
FeatureMerger.exe is called.

Boolean value: Precede this switch
with either [+] to set to true or [-]
to set to false



  

SWITCH DESCRIPTION VALUE

SWITCH DESCRIPTION VALUE

ExamplesExamples

FeatureMerger.exe C:\FM\OEMSampleFMFileList.xml C:\FM\MergedPackages 8.0.0.1 C:\FM\MergedFMs  
/variables:_cputype=arm;buildtype=fre

Contents of the FMFileList XML fileContents of the FMFileList XML file

ELEMENT DESCRIPTION

{+|-}Compress This value allows for the
compression of merged packages.
When compress is true, the merge
tool run time increases, but the
package is optimized for storage
size. This setting has no impact on
imaging.

Boolean value: Precede this switch
with either [+] to set to true or [-]
to set to false

The following table lists the switches that are reserved for use by Microsoft when using FeatureMerger.exe with
an FMFileList XML file.

/Critical Reserved for use by Microsoft. Text string

The following example demonstrates FeatureMerger.exe syntax when specifying an FMFileList XML file.

An FMFileList XML file contains the following elements.

FMs The FMs element contains one or more FM elements.



<FM Path="C:\MyDir\OEMSampleFM.xml" 
ReleaseType="Test" OwnerType="OEM" ID="Phone" 
OwnerName="Contoso" />

<Resolution>480x800</Resolution>

<Language>en-US</Language>

<Locale>en-US</Locale>

ELEMENT DESCRIPTION

FM The FM element is used to point to feature manifest files.

The FM element has the following attributes.

Path: The path to the feature manifest files. The
variable $(FMDirectory) can be used to specify
the InputFMDir parameter in the path.

ReleaseType: The release type must be set to
either "Test" or "Production". For FMs used in final
retail images, this should be set to "Production". In
addition, all packages defined in a Production FM
must have the ReleaseType set to "Production".
For more info about working with packages, see
Primary elements and attributes of a package
project file.

OwnerType: This value should be set to "OEM".

ID: A required short FM ID that describes the
feature manifest file that is used in the merged
package name to ensure that features from
different FM files don't collide. The ID should be
eight characters or less and be different from all
other FM IDs. When generating merged packages
for retail images, this ID must have the value of
either Phone or Variant. For more info, see
Windows Standard Packaging Configuration
(WSPC) requirements for retail images.

OwnerName: The owner name should be set to
the OEM name, for example "Contoso".

SupportedResolutions The SupportedResolutions element is used to list the
resolutions supported in the packages that will be
merged.

SupportedLanguages The SupportedLanguages element is used to list the
languages supported in the packages that will be
merged.

SupportedLocales The SupportedLocales element is used to list the locales
supported in the packages that will be merged.

For example, the following sample file specifies two feature manifest files, a list of supported resolutions, a



<?xml version="1.0" encoding="utf-8"?>
<FMCollectionManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"
   xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">

  <FMs>
    <FM Path="D:\FeatureMergeTest\OEMSampleFM1.xml" ReleaseType="Test" OwnerType="OEM" ID="FM1" 
OwnerName="Contoso"/>
    <FM Path="D:\FeatureMergeTest\OEMSampleFM2.xml" ReleaseType="Test" OwnerType="OEM" ID="FM2" 
OwnerName="Contoso"/>
  </FMs>
  <SupportedResolutions>
    <Resolution>480x800</Resolution>
    <Resolution>720x1280</Resolution>
    <Resolution>768x1280</Resolution>
  </SupportedResolutions>
  <SupportedLanguages>
    <Language>en-US</Language>
  </SupportedLanguages>
  <SupportedLocales>
    <Locale>en-US</Locale>
  </SupportedLocales>
</FMCollectionManifest>

Paths that contain spaces

Package code signing

Related topics

supported language, and a supported locale.

When you are using FeatureMerger.exe, be sure to use quotation marks around paths that contain spaces. For
example, if you define a %WPDKCONTENTROOT% environment variable that is set to C:\Program Files
(x86)\Windows Kits\10, the invocation of a package merger should be enclosed in quotation marks:

"%WPDKCONTENTROOT%\tools\bin\i386\FeatureMerger.exe"

This guidance also applies to the parameters that take paths, such as /InputFMDirpath.

Like all package generation, merged package generation uses catalog signing. For catalog signing to work, a
certificate must be specified. To specify a signing certificate for package generation, follow the steps in Set up the
signing environment and Sign binaries and packages.

Merging packages before imaging

Windows Standard Packaging Configuration (WSPC) requirements for retail images

https://msdn.microsoft.com/library/windows/hardware/dn756804
https://msdn.microsoft.com/library/windows/hardware/dn789217.aspx


Windows Standard Packaging Configuration
(WSPC) requirements for retail images
11/17/2017 • 19 minutes to read • Edit Online

WSPC overview

Previous WSPC implementationPrevious WSPC implementation

New WSPC implementationNew WSPC implementation

For mobile retail images, OEM firmware packages (sometimes referred to as BSP submissions) must comply
with the Windows Standard Package Configuration (WSPC).

WSPC is designed to achieve a better customer experience:

Smaller download sizes.
Reduced imaging and update errors.
Faster updates: Reduced system overhead needed to deliver and install updates.
Fewer updates: Device updates can make a "single hop" update from any image baseline.

Note

Microsoft requires that all OEM retail firmware packages (BSP submissions) conform to the WSPC. While there
are no exceptions to this policy, Microsoft has included tools and processes to ease the your transition to WSPC
compliance.

The purpose of WSPC is to define a firmware package set and update rules for that package set where it is easy
to determine differences between any two arbitrary versions of the package set. The ability to easily and
definitively determine the changes between any two package set versions allows Microsoft to use more efficient
methods to update the device. The end result is a better customer experience as the user will experience only a
single update session and associated reboot as opposed to several.

Microsoft’s previous implementation of WSPC mandated a static firmware package set using static package
names. The static package set and names applied globally to all of an OEM’s POPs. These packages were tightly
coupled to the processor ’s (SOC’s) the file system partition layout. While this implementation fulfilled the goal
described in the summary above, it had two serious drawbacks. First, it put a high burden on you to achieve
compliance due to its complex implementation. Second, the implementation’s tight coupling to the SOC’s file
system partition layout does not accommodate new SOC’s with different partition configurations.

The new WSPC implementation based on a simpler generalization of our previous implementation. As long as
we don’t remove or rename packages between firmware versions, determining the differences between any two
arbitrary firmware versions is straight forward. We simply compare the source and target firmware package
sets, and update any packages that have changed between the two. This includes the addition of packages from
one firmware version to another.

Complying with the new model is simple and requires less overhead. Instead of Microsoft prescribing the exact
contents of the firmware package set, the you will do this by declaring one of your firmware package sets as a
baseline. This baseline will apply to a specific set of POPs defined by the OEM. In addition, since this model is a
generalized form of the previous WSPC implementation, Windows Phone 8.1 WSPC compliance firmware
submissions are automatically compliant with the new WSPC implementation.

This implications of this model are:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/packaging-requirements-for-retail-images.md


WSPC requirements
Windows Phone Ingestion ClientWindows Phone Ingestion Client

Feature mergeFeature merge

Firmware submissions

Baseline firmware submissionBaseline firmware submission

1. You can define multiple baselines on a per POP basis.

2. Once a package is added to a firmware package set, it cannot be removed.

If necessary, you must include an empty package.

3. You cannot rename a package in a firmware package set.

This is effectively the removal of an existing and the addition of a new package.

4. You must be mindful to ensure the firmware package set does not grow beyond reasonable size.

Feature merge should be used to manage firmware package set growth.

You must upgrade to the version x.x.x.x of the Windows Phone Ingestion Client (WPIC). There are breaking
changes in this version that necessitate the upgrade, including:

1. A Baseline parameter has been added to the Initialize-FirmwareSubmission cmdlet. This will be used to
identify a firmware submission as a baseline for WSPC compliance validation.

2. The nonWSPCCompliant parameter of the Initialize-FirmwareSubmission cmdlet has been deprecated.

The Windows Phone Ingestion Client version you are using (Version {0}) is no longer supported.  
Please make sure you are using the current version of the Windows Phone Ingestion Client, Version 
{1}.

3. All requests for all cmdlets from previous versions of the WPIC will be rejected with the following error :

Feature Merge continues to play a critical role in the new WSPC implementation. Packages must be feature
merged to greatest extent possible to smallest resultant set possible. Feature Merging firmware packages will
help manage package set growth as well avoid situations where you must work around deprecated packages for
WSPC compliance.

More information on using feature merge can be found at the links below:

Merging packages before imaging
Merging packages using FeatureMerger

Firmware updates are determined by comparing the baseline firmware submission with any subsequent
submissions.

To prepare a firmware submission for updating to retail devices by using a Request For Update (RFU), it must
first be declared as a baseline. By declaring a firmware submission as a baseline, the package set comprising
firmware submission will be used as the basis for WSPC compliance checks.

Prior to declaring a firmware submission as a baseline, you should have performed sufficient testing on the
firmware so that they are confident that the package set will experience minimal and/or manageable variance in
subsequent versions. Also, as discussed above, the package set should be feature merged to the greatest extent
possible.

To declare the firmware submission as a baseline, you will run the Initialize-FirmwareSubmission cmdlet with
the baseline parameter as shown below.

https://docs.microsoft.com/windows-hardware/service/mobile/initialize-firmwaresubmission-cmdlet
https://docs.microsoft.com/windows-hardware/service/mobile/initialize-firmwaresubmission-cmdlet
https://docs.microsoft.com/windows-hardware/service/mobile/initialize-firmwaresubmission-cmdlet


Initialize-FirmwareSubmission -TypeOfSubmission Image –UpdateHistoryPath [path] –OemInputPath [path] –
OutputFilePath [path] -Baseline

Subsequent firmware submissionsSubsequent firmware submissions
After a baseline firmware submission has been declared, subsequent firmware submissions targeting the same
POPs will be compared with the previous baseline firmware version for WSPC compliance.

Important Special care must be taken when targeting firmware submissions for multiple POPs with different
baselines. Achieving WSPC compliance across all baselines can be difficult.

The WSPC compliance check will ensure that the package set of the new firmware version contains the same
packages as the previous baseline or is a superset of the previous baseline. Consider the following package sets
as an example:

Baseline firmware submission

Package1.spkg version 1

Package2.spkg version 1

Package3.spkg version 1

Package4.spkg version 1

Firmware submission v2

Package1.spkg version 2

Package2.spkg version 2

Package3.spkg version 2

Package4.spkg version 2

Firmware submission v3

Package1.spkg version 2

Package2.spkg version 2

Package3.spkg version 2

Package4.spkg version 2

Package5.spkg version 1

Firmware submission v4

Package1.spkg version 2

Package2.spkg version 2

Package3.spkg version 2

Package5.spkg version 1

Firmware submission v2 is WSPC-compliant with the baseline because the package set is the same between
versions (even though the package versions are different).

Firmware submission v4 is not WSPC-compliant with the baseline because Package4.spkg does not exist (has
been removed) in version 4.



Initialize-FirmwareSubmission -TypeOfSubmission Image –UpdateHistoryPath [path] –OemInputPath [path] –
OutputFilePath [path]

The firmware submission is not WSPC compliant with the baseline submission {1}.  This is because the 
packages {0} are missing from the new submission. Since this is not a new baseline, the firmware submission 
is allowed.  However, since this submission not WSPC compliant and is not a baseline, it will not be 
available for a retail servicing update.  Retail servicing updates are only allowed for the following 
scenarios: between an RTM source submission and an RTM target submission, or between a legacy non-WSPC 
compliant source submission and an RTM target submission.  To make this submission WSPC compliant, please 
ensure the missing packages are included in the submission.

<path>:\ Initialize-FirmwareSubmission -TypeOfSubmission Image –UpdateHistoryPath [path] –OemInputPath 
[path] –OutputFilePath [path] -Baseline

The firmware submission is not WSPC compliant with the baseline submission {1}.  This is because the 
packages {0} are missing from the new submission.  To make this submission WSPC compliant, please ensure the 
missing packages are included in the submission.

*.SPKG and *.CAB firmware package names*.SPKG and *.CAB firmware package names

Using empty packages for WSPC complianceUsing empty packages for WSPC compliance

Removal packagesRemoval packages

Out of order firmware submissionsOut of order firmware submissions

Microsoft will process all firmware submissions regardless of their WSPC compliance status as long as you have
not submitted it as a baseline.

If the new firmware submission is not WSPC-compliant, the following warning will be returned:

Microsoft will reject baseline firmware submissions that are not WSPC-compliant. The following error will be
shown:

Starting with Windows 10 Mobile, you’ll be able to build firmware using Microsoft’s Component Based
Servicing Model (CBS). CBS packages use the *.CAB extension where legacy Windows Phone packages use the
*.SPKG extension. Once pushed to the device, SPKG packages are converted to CAB packages on device so
package names are not unique by extension.

As a result, when conducting WSPC compliance checks between firmware submissions, packages names
differing only by SPKG or CAB extension will be treated as the same package.

For example, package1.spkg will be treated as the same package as package1.cab.

In some cases, it may be necessary for a you to discontinue the use of a particular package that was part of a
previous baseline submission. However, to maintain WSPC compliance for subsequent baseline submissions,
the deprecated package must continue to exist.

To support this scenario, you can submit an empty package of the same package name in the new baseline
submission.

Because the purpose of the new WSPC implementation is to remove the use of and need for removal packages,
they are no longer supported for firmware submissions.

Over the course of a typical development lifecycle for firmware, we expect that the version number of new
firmware will always be larger than the previous version number. However, we understand that there may be
exceptions. As a result, Microsoft will also support cases where you submit firmware with versions that are less
than the max firmware version submitted.

For example, assume the following baseline versions of firmware have been submitted :



<path>:\ Initialize-FirmwareSubmission -TypeOfSubmission Image –UpdateHistoryPath [path] –OemInputPath 
[path] –OutputFilePath [path] 

The firmware submission is not WSPC compliant with the baseline submission {1}.  This is because the 
packages {0} are missing from the new submission. Since this is not a new baseline, the firmware submission 
is allowed.  However, since this submission not WSPC compliant and is not a baseline, it will not be 
available for a retail servicing update.  Retail servicing updates are only allowed for the following 
scenarios: between an RTM source submission and an RTM target submission, or between a legacy non-WSPC 
compliant source submission and an RTM target submission.  To make this submission WSPC compliant, please 
ensure the missing packages are included in the submission. 

<path>:\ Initialize-FirmwareSubmission -TypeOfSubmission Image –UpdateHistoryPath [path] –OemInputPath 
[path] –OutputFilePath [path] -baseline

The firmware submission is not WSPC compliant with the baseline submission {1}.  This is because the 
packages {0} are missing from the new submission.  To make this submission WSPC compliant, please ensure the 
missing packages are included in the submission.

Partial submissionsPartial submissions

NonWSPCCompliant parameterNonWSPCCompliant parameter

Request for update (RFU)Request for update (RFU)

Baseline firmware submission v1

Baseline firmware submission v3

Baseline firmware submission v5

Baseline firmware submission v7

Now, you submit new firmware with version 4. WSPC compliance will need to run against:

Baseline firmware submission v3 to ensure that the v4 package set is a superset of the v3 package set (no
removals between v3 and v5)
Baseline firmware submission v5 to ensure that the v5 package set is a superset of the v4 package set (no
removals between v4 and v5)

If either of the checks fail and the firmware submission v4 was submitted without the baseline flag, the
firmware will be accepted, but the following warning will be returned:

If either of the checks fail and the firmware submission v4 was submitted with the baseline parameter, the
firmware will be rejected with the following error :

Partial firmware submissions with the Initialize-FirmwareSubmission cmdlet using the PartialImage parameter
will still be allowed, but the submission must not be a baseline submission.

The NonWspcCompliant parameter is not supported.

For more info, see Initialize-FirmwareSubmission cmdlet.

As we mentioned previously, retail servicing must be between baseline firmware submissions. By retail
servicing, we mean using the New-RequestForUpdate cmdlet with the retail servicing type. Example is shown
below:

https://docs.microsoft.com/windows-hardware/service/mobile/initialize-firmwaresubmission-cmdlet
https://docs.microsoft.com/windows-hardware/service/mobile/initialize-firmwaresubmission-cmdlet
https://docs.microsoft.com/windows-hardware/service/mobile/new-requestforupdate-cmdlet


$result = New-RequestForUpdate 
-FirmwareSubmissionTicketId <Target Firmware Submission> 
–RequestForUpdateType RetailServicing 
-SourceFirmwareSubmissionTicketId <Source Firmware Submission> 
-OemDeviceName xxx 
-MOId 000-yy

The target firmware submission is not a Baseline submission, which is required for a retail servicing 
update. A retail servicing update is only allowed for the following scenarios: between a Baseline source 
submission and a Baseline target submission, or between a legacy non-WSPC compliant source submission and a 
Baseline target submission. Please also make sure you are using the current version of the Windows Phone 
Ingestion Client, Version {0}.  Submission status in this request for update: [Target submission: {1}, {2}], 
[Source submission: {3}, {4}].

The source firmware submission is WSPC compliant, however it is not a Baseline submission, which is required 
for a retail servicing update. A retail servicing update is only allowed for the following scenarios: 
between a Baseline source submission and a Baseline target submission, or between a legacy non-WSPC 
compliant source submission and a Baseline target submission.  Please also make sure you are using the 
current version of the Windows Phone Ingestion Client, Version {0}.

$result = New-RequestForUpdate 
-FirmwareSubmissionTicketId <Target Firmware Submission> 
–RequestForUpdateType Trial
-SourceFirmwareSubmissionTicketId <Source Firmware Submission> 
-OemDeviceName xxx 
-MOId 000-yy

The target firmware submission is not a Baseline submission, which is required for a retail servicing 
update. A retail servicing update is only allowed for the following scenarios: between a Baseline source 
submission and a Baseline target submission, or between a legacy non-WSPC compliant source submission and a 
Baseline target submission. Since this is a non-retail RFU, it is being allowed, however the RFU should be 
made WSPC compliant before submitting the retail RFU. RFU status in this request for update: [Target 
submission: {0}, {1}], [Source submission: {2}, {3}].

The source firmware submission is WSPC compliant, however it is not a Baseline submission, which is required 
for a retail servicing update. A retail servicing update is only allowed for the following scenarios: 
between a Baseline source submission and a Baseline target submission, or between a legacy non-WSPC 
compliant source submission and a Baseline target submission. Since this is a non-retail RFU, it is being 
allowed, however the RFU should be made WSPC compliant before submitting the retail RFU.

RFUs used for retail servicing must be:

Between two successful baseline firmware submissions
The version of the target firmware submission must be greater than the source firmware submission

If the target firmware submissions is not a baseline, the request will be rejected and the following error will be
shown:

If neither the source nor target firmware submissions are baseline but the source firmware submission is WSPC
compliant, the request will be rejected and the following error will be shown:

If the target firmware submissions is not a baseline, but the request is not for retail servicing, the request will be
accepted and processed with a warning similar to the following:

If neither the source nor target firmware submissions are baseline but the source firmware submission is WSPC
compliant, but the request is not for retail servicing, the request will be accepted and processed with a warning
similar to the follow:



Support for legacy WSPC compliance

Migrating from a legacy non-compliant submission

Tools

Standard validationStandard validation

VALIDATION RULE

1 Removal packages Removal packages are not allowed. This
includes SPKRs or CBS-Rs.

2 Package version Packages cannot have a 0.0.0.0
package version.

3 Binary packages in MainOS Packages in MainOS partition cannot
be flagged as binary partition package.

4 Binary packages in EFIESP Packages in EFIESP partition cannot be
flagged as binary partition package.

Because the new WSPC compliance is a more general implementation of the previous WSPC model, legacy
WSPC compliant submissions will automatically be compliant with the new model.

All existing WSPC submissions will automatically be marked as baseline as part of the rollout of this change.

Because our customers already have devices already with non-WSPC compliant firmware, Microsoft will
provide an upgrade path for these devices to WSPC-compliant versions.

To accommodate this, Microsoft will allow retail servicing from non baseline (non-WSPC compliant) firmware
submissions to baseline firmware submissions provided the following conditions are met:

The source firmware submission version is less than the minimum version of the baseline firmware version.
The baseline target firmware submission is WSPC-compliant with the source firmware submission.

The implication of these conditions is that the package set of the existing source non-compliant submissions will
effectively become the baseline package set for WSPC compliance going forward.

For more info, see New-RequestForUpdate cmdlet.

The Microsoft Windows Phone Ingestion Client (WPIC) and Phone Image Inspector (ImgVal) have both been
updated to determine if firmware submissions are WSPC-compliant or not. However, because WSPC
compliance is now determined by comparison to previously submitted baseline firmware, both tools must have
access to Microsoft’s UTS systems. As a result, ImgVal will not be capable of running in a standalone mode.
During installation, ImgVal will prompt you for your Microsoft Connect credentials as it does currently for
WPIC. For more info about WPIC, see Ingestion Client for Windows Phone.

In addition to WSPC validation, WPIC and ImgVal will also run a new set of standard validations against
firmware submissions. These standard validation rules are designed to catch common errors in firmware
submissions that may cause issues during retail servicing.

Previously, this validation was bypassed for NonWspcCompliant submissions. Going forward they will be
applied to all submissions. Standard validation errors are blocking and must be fixed for successful firmware
submissions.

The standard validation rules are listed below:

https://docs.microsoft.com/windows-hardware/service/mobile/new-requestforupdate-cmdlet
https://docs.microsoft.com/windows-hardware/service/mobile/ingestion-client-for-windows-phone


5 Binary packages in UpdateOS Packages in UpdateOS partition cannot
be flagged as binary partition package.

6 PhoneFirmwareRevision Firmware version must be in x.x.x.x
format where x is between 0 and
65535 (inclusive).

7 PhoneManufacturer Phone manufacturer name must be
alphanumerical and less than or equal
to 32 characters.

8 PhoneManufacturerModelName OEM device name must be
alphanumerical with -._ and less than
or equal to 32 characters.

9 PhoneMobileOperatorName Mobile operator name must conform
to XXX-XX format.

VALIDATION RULE

Building merged packagesBuilding merged packages

Creating empty packagesCreating empty packages

Note Firmware created through the Qualcomm Windows Phone Customization Tool (QWPCT) will
automatically conform to the standard compliance rules above.

To conform to WSPC, OEMs should use FeatureMerger.exe to reduce the total number of packages in a
firmware submissions to the greatest extent possible. For more info about the package merging process and
how the merged package names are derived, see Merging packages before imaging.

Achieving WSPC compliance for a new firmware submission requires that it contain a superset of the packages
contained in the previous baseline submission. An impact of this WSPC compliance rule is that packages may
not be removed from new firmware submissions as compared to the previous baseline.

In some cases, it may be necessary to reconfigure your firmware in such a way that a package in the previous
baseline is no longer used. In order to achieve WSPC compliance in this case, you will need to create and include
an empty package in the firmware.

The following steps summarize the process of creating an empty feature merged package called
Contoso.BASE.MainOS.spkg:

<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="Contoso" OwnerType="OEM" Component="EmptyPackage" SubComponent=”ForMainOS”  
ReleaseType="Production" Platform="<PLAT>" Partition="MainOS">
   <Components>
   </Components>
</Package>

1. Build one empty package for the partition targeted by the package using PkgGen.exe. Ensure the
<Components> element is empty. For example, the following package XML generates an empty project
for the MainOS partition.

2. Reference the empty packages in the feature manifest. For example, the following feature manifest
generates merged base packages and includes a combination of empty packages for the MainOS
partition.



<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="Contoso" OwnerType="OEM" Component="BASE" SubComponent=”MainOS”  ReleaseType="Production" 
Platform="<Plat>" Partition="MainOS">
   <Components>
   </Components>
</Package>

Troubleshooting
ACTIVITY MESSAGE RESOLUTION

1 Any WPIC command The Windows Phone
Ingestion Client version you
are using (Version {0}) is no
longer supported. Please
make sure you are using
the current version of the
Windows Phone Ingestion
Client, Version {1}.

Download and install the
latest Windows Phone
Ingestion Client from
Microsoft Connect.

<FeatureManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
  <BasePackages>
  <PackageFile Path="C:\Packages" Name="Contoso.BASE.MainOS.spkg" Partition="MainOS" />
    <PackageFile Path="C:\EmptyPackage" Name="Contoso.EmptyPackage.ForMainOS.spkg"/>
    <PackageFile Path="C:\EmptyPackage" Name="Contoso.EmptyPackage.ForMainOS2.spkg"/>
    <PackageFile Path="C:\EmptyPackage" Name="Contoso.EmptyPackage.ForMainOS3.spkg"/>
  </BasePackages>
</FeatureManifest>

3. Generate merged packages by running FeatureMerger.exe with the feature manifests that reference the
empty packages. The generated merged packages will contain both the empty packages and, where
applicable, packages with content from the OEM.

Alternately, you can generate an empty package for the partition targeted by the package using PkgGen.exe
without using feature merge. Ensure the <component> element is empty. For example, the following package
XML generates an empty project for the MainOS partition called Contoso.BASE.MainOS.spkg.

https://connect.microsoft.com


2 Request for update WSPC compliant with the
baseline submission {1}. This
is because the packages {0}
are missing from the new
submission. Since this is not
a new baseline, the firmware
submission is allowed.
However, since this
submission not WSPC
compliant and is not a
baseline, it will not be
available for a retail
servicing update. Retail
servicing updates are only
allowed for the following
scenarios: between an RTM
source submission and an
RTM target submission, or
between a legacy non-
WSPC compliant source
submission and an RTM
target submission. To make
this submission WSPC-
compliant, please ensure
the missing packages are
included in the submission.

3 Request for update The firmware submission is
not WSPC-compliant with
the baseline submission {1}.
This is because the
packages {0} are missing
from the new submission.
To make this submission
WSPC-compliant, please
ensure the missing
packages are included in the
submission.

4 Firmware submission To be WSPC-compliant, you
cannot remove a package.
The following packages
were removed '{0}'.

Ensure the missing package
(or empty package as
appropriate) is included in
the submission to be WSP-
compliant.

5 Firmware submission Using a cached package list
for validation because a
connection to the server
cannot be established. '{0}'

Ensure the Image Validation
tool or Windows Phone
Ingestion Client have access
to Microsoft’s code signing
and publishing systems.

6 Firmware submission Could not retrieve the
baseline package list while
running on the client. A
WSPC compliance check
cannot be performed.

A check will be performed
on the server. If error
persists, contact Microsoft.

ACTIVITY MESSAGE RESOLUTION

No action is necessary if
this firmware version is
not going to be used
for a retail update.

However, Microsoft
recommends that all
new firmware
submission be WSPC-
compliant with the
previous baseline.

To fix the WSPC
compliance issue,
ensure the missing
package (or empty
package as appropriate)
is included in the
submission.

Since this submission is
a baseline, it must be
WSPC-compliant with
the previous baseline.

Ensure the missing
package (or empty
package as appropriate)
is included in the
submission.



7 Firmware submission Could not retrieve the
baseline package list while
running on a Windows
server. A WSPC compliance
check cannot be performed.

Contact Microsoft.

8 Firmware submission An exception was thrown
while loading a package. {0}
: {1}

Contact Microsoft.

9 Firmware submission Could not retrieve the
firmware version of the
submission.

Contact Microsoft.

10 Firmware submission There was an incorrect
number of baseline
submissions returned.
Count: {0}

Contact Microsoft.

11 Firmware submission No submission results were
returned so a cached copy
is being used.

Ensure the Image Validation
tool or Windows Phone
Ingestion Client have access
to Microsoft’s code signing
and publishing systems.

12 Firmware submission The following variant is not
WSPC compliant. OEM: {0},
Mobile operator: {1}, OEM
device name: {2}.

Ensure the firmware
submission is targeting the
correct variants. Also check
the previous baseline for
the offending variant and
ensure all packages are
present in the new
submission.

13 Firmware submission Could not get baseline
package lists online for
validation because
connection to server cannot
be established. Error: '{0}'

Ensure the Image Validation
tool or Windows Phone
Ingestion Client have access
to Microsoft’s code signing
and publishing systems.

14 Firmware submission No baseline submission
result returned, this must
be the first and new
baseline submission for this
POP.

No baseline submission
result returned, this must
be the first and new
baseline submission for this
POP. If first baseline
submission, this is the
correct behavior. Otherwise
ensure the firmware
submission is targeting the
correct variants.

15 Firmware submission Could not retrieve the latest
baseline package list
through partner service.
Client local cache is used
instead.

Ensure the Image Validation
tool or Windows Phone
Ingestion Client have access
to Microsoft’s code signing
and publishing systems.

ACTIVITY MESSAGE RESOLUTION



Related topics
Merging packages before imaging

Merging packages using FeatureMerger



Configure the Start layout
6/6/2017 • 3 minutes to read • Edit Online

You can now easily configure the default Start layout to include Web links, secondary tiles, folders, and apps. The
converged Windows 10 Start layout requires that you create a LayoutModification.xml file, which we'll create in
this walkthrough.

Note The schema for the LayoutModification.xml file is different from the MCSF customization answer file
schema or the Windows provisioning answer file schema. You will need to use the LayoutModification.xml to fully
take advantage of the Start customization in Windows 10 and you can use the Start settings in either MCSF or
Windows Provisioning to reference LayoutModification.xml.

If you are not new to Windows mobile development and were using pre-existing MCSF settings pertaining to the
Start layout, we highly recommend that you switch to a LayoutModification.xml to take full advantage of the Start
experience. Also note that not all pre-existing MCSF Start settings are supported in Windows 10.

In this walkthrough, we will:

Create two versions of the Start layout, one with a folder and another without a folder.

Configure the MCSF Start layout settings to specify that we are using the new layout modification XML for
our layout, creating variants in the CAF file, and specifying which Start layout applies to the variants we've
created.

Note Make sure you've read Start layout for Windows 10 mobile editions before doing this walkthrough. The
topic provides more detailed information about each element in LayoutModification.xml, which is not covered in
this walkthrough, as well as limitations and restrictions that you need to be aware of.

To configure the Start layout modification file

1. Create a file called LayoutModification1.xml.

2. Add the XML code to:

Pin a medium-sized tile on row 6, column 0. The tile is for the MSN News app.
Pin a medium-sized tile on row 6, column 2. The tile is a Web link for the Contoso home page.
Pin a small-sized folder on row 6, column 4. The folder name is "Contoso apps" and it contains the
following:

A medium-sized tile for the MSN Apps app.
A medium-sized tile for the MSN Money app.

The following XML example shows what you need to add to the LayoutModification.xml file.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/configure-the-start-layout.md
https://msdn.microsoft.com/library/windows/hardware/mt171093


<?xml version="1.0" encoding="utf-8"?>
<LayoutModificationTemplate
    xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
    xmlns:defaultlayout="http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
    xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
    Version="1">
    <DefaultLayoutOverride>
      <StartLayoutCollection>
            <defaultlayout:StartLayout>
              <start:Group>
                  <start:Tile
                    AppUserModelID="Microsoft.BingNews_8wekyb3d8bbwe!ApplicationID"
                    Size="2x2"
                    Row="6"
                    Column="0"/>
                  <start:SecondaryTile
                    AppUserModelID="Microsoft.MicrosoftEdge_8wekyb3d8bbwe!MicrosoftEdge"
                    TileID="MyWeblinkTile"
                    Arguments="http://www.contoso.com"
                    DisplayName="Contoso Homepage"
                    Square150x150LogoUri="ms-appx:///Assets/MicrosoftEdgeSquare150x150.png" 
                    Wide310x150LogoUri="ms-appx:///Assets/MicrosoftEdgeWide310x150.png"
                    ShowNameOnSquare150x150Logo="true"
                    ShowNameOnWide310x150Logo="false"
                    BackgroundColor="#FF112233"
                    Size="2x2"
                    Row="6"
                    Column="2"/>
                  <start:Folder
                    Name="Contoso apps"
                    Size="2x2"
                    Row="6"
                    Column="4">
                    <start:Tile
                      AppUserModelID="Microsoft.BingMaps_8wekyb3d8bbwe!ApplicationID"
                      Size="2x2"
                      Row="0"
                      Column="0"/>
                    <start:Tile
                      AppUserModelID="Microsoft.BingFinance_8wekyb3d8bbwe!ApplicationID"
                      Size="2x2"
                      Row="0"
                      Column="2"/>
                    <!-- Remove these comments if you have an app that you can preload and want to add 
to the folder
                    <start:Tile
                      AppUserModelID="TBD"
                      Size="2x2"
                      Row="0"
                      Column="4"/>
                    -->
                  </start:Folder>
              </start:Group>
            </defaultlayout:StartLayout>
      </StartLayoutCollection>
    </DefaultLayoutOverride>
</LayoutModificationTemplate>

3. Save the xml file and note the location of the file; for example,
C:\Contoso\Customizations\LayoutModification1.xml.

4. Using the same xml file, now save it as LayoutModification2.xml.

5. Modify the contents of the new LayoutModification2.xml file by deleting everything within the start:Folder
element and replacing that folder tile location with the MSN Money app.



<?xml version="1.0" encoding="utf-8"?>
<LayoutModificationTemplate
    xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
    xmlns:defaultlayout="http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
    xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
    Version="1">
    <DefaultLayoutOverride>
      <StartLayoutCollection>
            <defaultlayout:StartLayout>
              <start:Group>
                  <start:Tile
                    AppUserModelID="Microsoft.BingNews_8wekyb3d8bbwe!ApplicationID"
                    Size="2x2"
                    Row="6"
                    Column="0"/>
                  <start:SecondaryTile
                    AppUserModelID="Microsoft.MicrosoftEdge_8wekyb3d8bbwe!MicrosoftEdge"
                    TileID="MyWeblinkTile"
                    Arguments="http://www.contoso.com"
                    DisplayName="Contoso Homepage"
                    Square150x150LogoUri="ms-appx:///Assets/MicrosoftEdgeSquare150x150.png" 
                    Wide310x150LogoUri="ms-appx:///Assets/MicrosoftEdgeWide310x150.png"
                    ShowNameOnSquare150x150Logo="true"
                    ShowNameOnWide310x150Logo="false"
                    BackgroundColor="#FF112233"
                    Size="2x2"
                    Row="6"
                    Column="2"/>
                  <start:Tile
                    AppUserModelID="Microsoft.BingFinance_8wekyb3d8bbwe!ApplicationID"
                    Size="2x2"
                    Row="6"
                    Column="4"/>
              </start:Group>
            </defaultlayout:StartLayout>
      </StartLayoutCollection>
    </DefaultLayoutOverride>
</LayoutModificationTemplate>

The contents of your XML file should look like this:

6. Save the xml file and note the location of the file; for example,
C:\Contoso\Customizations\LayoutModification2.xml.

7. Add the layout modification files and configure the Start layout settings in the MCSF CAF or Windows
Provisioning answer file (WPAF).

For MCSF: See Configure the Start layout in Configure customization settings.
For Windows Provisioning: If you are using the Windows Imaging and Configuration Designer (ICD) UI,
see Configure the Start layout in Use the Windows ICD UI to customize and build a mobile image. If
you are using the Windows ICD CLI (hybrid method), see Configure the Start layout in Use the
Windows ICD CLI to customize and build a mobile image.



Part 1: Classic mobile deployment
6/6/2017 • 2 minutes to read • Edit Online

In this section, we'll go through the process of customizing and building a mobile image using the classic, or
Windows Phone 8.1, tools.

Configure customization settings
Add a package to an OEM manifest file
Configure the OEMInput file
Build a mobile image using ImgGen
Sign a mobile image
Flash an image to a mobile device

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/lab-1--classic-mobile-deployment.md


Configure customization settings
10/26/2017 • 13 minutes to read • Edit Online

Create an MCSF customization answer file

Customizations are ways that you can modify the Windows device UI, connectivity settings, and user experience
to better reflect your brand and to meet the requirements of the network and market in which the device will ship.
Customizations can include adding apps, modifying the Start layout, configuring network settings using device
management, changing the default values in the Settings screen, or adding new wallpapers.

Windows 10 Mobile supports two customization frameworks: MCSF and Windows provisioning. For more
information about each framework, see Customizations for mobile devices.

In this section, we'll focus on adding the Start layout modification file, preloading an app, and configuring some
customization settings using MCSF.

For more detailed information about the various customizations you can do, see
https://msdn.microsoft.com/library/windows/hardware/dn757433.

You can use the MCSF customization answer file (CAF) to specify the settings and variants that you want to
configure for a custom mobile OS image. Depending on the tools that you're using to build your image, you can
use the MCSF CAF as input to ImgGen.cmd or the Windows Imaging and Configuration Designer (ICD) CLI. This
answer file is based on the MCSF schema so if you decide to use another schema, such as the Windows
provisioning schema, you need to write a different answer file that follows that schema instead.

If you don't have a pre-existing MCSF CAF, follow this walkthrough to learn how to create a basic MCSF CAF
with multivariant support. Multivariant is the generic mechanism that lets you create a single image that can work
for multiple markets by dynamically configuring the language, branding, apps, and networking settings during
runtime based on the supported conditions, such as mobile operator and locale. If you are building a single
variant image, you may skip this walkthrough.

To create the MCSF CAF with multivariant support

<?xml version="1.0" encoding="utf-8" ?>
<ImageCustomizations xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate"  
                     Name=""  
                     Description="Use to configure settings for custom mobile image."  
                     Owner=""  
                     OwnerType="OEM"> 

  <!-- Use to set up targets and conditions for the variants -->
  <Targets>  
   <Target Id="">  
      <TargetState>  
        <Condition Name="" Value="" />  
        <Condition Name="" Value="" />  
      </TargetState>  
    </Target>  
   <Target Id="">  
      <TargetState>  
        <Condition Name="" Value="" />  
        <Condition Name="" Value="" />  
      </TargetState>  
    </Target> 
  </Targets>  

1. Create an XML file and add the following content.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/configure-customization-settings.md
https://msdn.microsoft.com/library/windows/hardware/mt481438
https://msdn.microsoft.com/library/windows/hardware/dn757433
https://msdn.microsoft.com/library/windows/hardware/dn757452


  </Targets>  

  <!-- Use to specify the customizations for a single variant when used without the Variant element, 
       or customizations that apply to all variants when used with the Variant element -->
  <Static>  
    <!-- Use to preload apps to install for all variants -->
    <Applications>
      <Application Source=""
                   License=""
                   ProvXML="" />
    </Applications>

    <!-- Section where you specify the settings you want to configure -->
    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings>
  </Static>

  <!-- These settings in the Variant groups will only be applied if the associated target&#39;s 
conditions are met. -->
  <!-- The settings shown here will only be applied for this variant -->
  <Variant Name="">  
    <!-- Only one TargetRef can be used for each variant -->
    <TargetRefs>  
      <TargetRef Id="" />  
    </TargetRefs>  

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 
  </Variant>  

  <!-- The settings shown here will only be applied for this variant -->
  <Variant Name="">  
    <!-- Only one TargetRef can be used for each variant -->
    <TargetRefs>  
      <TargetRef Id="" />  
    </TargetRefs>  

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 
  </Variant> 

</ImageCustomizations>

2. Specify the values for the following attributes, which determines the owner for the customizations:

Name - A string that specifies the name of the customization or package. You can specify the name
based on the device you're configure, such as "XDeviceCustomizations", or a generic name like
"MobileCustomizations".
Description - A string to help you identify the customizations defined within the CAF.
Owner - A string specifying the owner, such as the OEM name.
OwnerType - Set this to "OEM".

3. Specify the Targets to use for the variants. Targets describe keying for a variant and must be described or
pre-declared before being referenced by the variant. To do this:



  <!-- Use to set up targets and conditions for the variants -->
  <Targets>  
   <Target Id="Id_PhoneCo">  
      <TargetState>  
        <Condition Name="MCC" Value="410" />  
        <Condition Name="MNC" Value="510" />  
      </TargetState>  
    </Target>  
   <Target Id="Id_Fabrikam">  
      <TargetState>  
        <Condition Name="MCC" Value="310" />  
        <Condition Name="MNC" Value="610" />  
      </TargetState>  
    </Target> 
  </Targets>  

To set up a Target

a. Name the Target Id.

b. Specify the Condition(s) for the target by providing the Name and Value.

For example, if we creating variants for two fictitious mobile operators, The Phone Company and Fabrikam,
and we have their MCC and MNC, we can create a target for each operator using the MCC and MNC.

To learn more about all the supported Condition Names that you can use, see the section Target,
TargetState, Condition, and priorities in Create a provisioning package with multivariant settings. Note that
in this walkthrough we are not using a provisioning package to declare our multivariant settings; instead,
we are adding this directly into the MCSF CAF.

4. Set up the variant. To do this:

To define a Variant

a. Specify the Variant Name.

b. Specify the TargetRef Id for the variant. This should match one of the Target Ids you specified in
the Targets section of the CAF. Note that there should only be one TargetRef Id per variant.

Using our fictitious mobile operators, The Phone Company and Fabrikam, we can define the variants for
each of these operators as shown in the following example:

https://msdn.microsoft.com/library/windows/hardware/dn916108


Configure the Start layout

  <!-- The settings shown here will only be applied for The Phone Company -->
  <Variant Name="ThePhoneCompany">  
    <TargetRefs>  
      <TargetRef Id="Id_PhoneCo" />  
    </TargetRefs>  

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 
  </Variant>  

  <!-- The settings shown here will only be applied for Fabrikam -->
  <Variant Name="Fabrikam">  
    <TargetRefs>  
      <TargetRef Id="Id_Fabrikam" />  
    </TargetRefs>  

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 

    <Settings Path="">  
      <Setting Name="" Value="" /> 
    </Settings> 
  </Variant>   

5. Name and save the XML file; for example, C:\Contoso\Customizations\MobileCustomizations.xml.

We'll add the static (common or variant-agnostic) and variant-specific customization settings and values in
the next walkthroughs.

In this section, we'll use the Start MCSF settings to add the Start layout modification files that you created in
Configure the Start layout. We'll use one of the layout modification files as the common Start layout and we'll use
the other layout modification file for one of the fictitious mobile operator variants.

  <Static>  
    <!-- Use to preload apps to install for all variants -->
    <Applications>
      <Application Source=""
                   License=""
                   ProvXML="" />
    </Applications>

    <!-- Section where you specify the settings you want to configure -->
    <Settings Path="StartLayoutModificationFilePath">  
      <Setting Name="LayoutModificationFilePath" 
Value="C:\Contoso\Customizations\LayoutModification1.xml" />
    </Settings>  
  </Static>

1. Create and edit the MCSF CAF; for example, C:\Contoso\Customizations\MobileCustomizations.xml.

2. Set C:\Contoso\Customizations\LayoutModification1.xml as the common Start layout.

Within the Static section of the CAF, set LayoutModificationFilePath  to the file path to the layout
modification file.



Preload apps

  <!-- The settings shown here will only be applied for The Phone Company -->
  <Variant Name="ThePhoneCompany">  
    <TargetRefs>  
      <TargetRef Id="Id_PhoneCo" />  
    </TargetRefs>  

    <Settings Path="StartLayoutModificationFilePath">  
      <Setting Name="LayoutModificationFilePath" 
Value="C:\Contoso\Customizations\LayoutModification2.xml" />
    </Settings> 
  </Variant>  

By specifying a new default location for the LayoutModification.xml, you are overriding the default Start
layout that's in C:\Data\ProgramData\Microsoft\Start\Layouts.

3. Set C:\Contoso\Customizations\LayoutModification2.xml as the default Start layout for the fictitious
mobile operator, The Phone Company.

In the Variant section named ThePhoneCompany, set LayoutModificationFilePath  to the file path for the
second layout modification file.

Note LayoutModificationFilePath  is a FirstVariationOnly setting, which means that it can only be modified during
first variation, which is typically when the first valid configuration is found (such as when a S IM is inserted and a
marked configuration is found for the SIM). If the configuration changes, such as during a S IM swap, the value for
the FirstVariationOnly setting will not be changed again.

In this example, when the device boots after flashing a new mobile image and there is no SIM is inserted into the
mobile device or a S IM for the fictitious Fabrikam mobile operator (MCC=310, MNC=610) is already in the
device, LayoutModification1.xml (Start layout with a folder) will be used. If a S IM for the fictitious The Phone
Company (MCC=410, MNC=510) is inserted after this, the Start layout will not change. However, if the device
boots after flashing a new mobile image and there is already a S IM for The Phone Company inserted in the
device, LayoutModification2.xml (Start layout with no folder) will be used instead.

Partners can preload apps to be packaged and configured to install on mobile devices during the initial device
setup process. In addition to preloading games, lifestyle apps, and other genres of apps, partners can preload
system settings apps or partner account setup apps, just to name a few. For more information about preloading
apps, see Preinstallable apps for mobile devices.

Important In Windows 10, if you are working with an app developer or creating your own app to preload on the
device, you must now request a preinstallation package for the app. For more information about this part of the
process, see Generate preinstall packages for OEMs. The .zip file that's returned as part of this process should
contain the app's source file (such as an .appx, .appxbundle, or .xap), a provisioning file (.provxml), and a license file
(.xml). If your preinstall package does not contain all of these files, you can't successfully preload the app.

To preload an app

1. Verify that the app preinstall package contains all the files you need to preload an app: source file,
provisioning file, and license file.

2. Add the app to the image. To do this, follow these steps:

a. Add an Applications section to the CAF.

https://msdn.microsoft.com/library/windows/hardware/dn707972
http://go.microsoft.com/fwlink/p/?LinkId=624851


Configure the DeviceTargetingInfo metadata for the device

    <!-- Use to preload apps to install for all variants -->
    <Applications>
      <Application Source=""
                   License=""
                   ProvXML="" />
    </Applications>

Note You can add the Applications section within the Static section of the CAF, which means the
app will be installed for all images regardless of the variant, or you can add it within a particular
Variant, which means it will only be installed for a particular variant. If you are preloading more
than one app, one can be common to all variants (or within the Static section), while another applies
only to a particular variant (or within a Variant section). An example of the latter case can be when
you have an app that you only need to install for one particular mobile operator, or country/region,
and so on.

b. Set Source to the location and name of your app source file; for example,
C:\Contoso\Customizations\Apps\SampleApp.appx.

c. Set License to the location and name of your app's license file; for example,
C:\Contoso\Customizations\Apps\SampleAppLicense.xml.

d. Set ProvXML to the location and name of your app's provisioning file; for example,
C:\Contoso\Customizations\Apps\mpap_sampleapp_001.provxml.

The provXML file follows a prescribed naming convention. See Preinstallable apps for mobile
devices for more information.

3. Save the CAF when you are done adding all the apps.

In some cases, you may need to preload an app that has dependencies on other packages or components. In this
case, you need to make sure that the other packages or components are preinstalled first before your app. If the
dependent packages or components are not installed first, your app preload will fail. We won't walk through this
scenario here, but you can find this documented in Preload an app with a dependency.

In order to ship a mobile device, at a minimum, you must set the required settings described in Phone metadata in
DeviceTargetingInfo. Examples of required metadata include:

OEM and mobile operator information, used for display strings in the UI, device update, connecting to the
Microsoft Store, and so on.
Hardware component versions and software versions, used for targeting updates to devices and for user
support.
The device's model name, the mobile operator's name, and the manufacturer's name, which appear in the
About screen in Settings.

To configure the DeviceTargetingInfo metadata

1. Edit the MCSF CAF; for example, C:\Contoso\Customizations\MobileCustomizations.xml.

2. Within the Static section of the CAF, add a DeviceInfo/Static  settings group.

https://msdn.microsoft.com/library/windows/hardware/dn707972
https://msdn.microsoft.com/library/windows/hardware/mt691485
https://msdn.microsoft.com/library/windows/hardware/dn772214


**Note**  You will need to contact your Microsoft representative to find out the value that you should use for 
`PhoneManufacturer`.

  <Static>  
    <!-- Other settings groups may already precede the DeviceInfo/Static group -->

    <Settings Path="DeviceInfo/Static">       
      <Setting Name="PhoneManufacturer" Value="" />    
      <Setting Name="PhoneManufacturerDisplayName" Value="" /> 
      <Setting Name="PhoneROMVersion" Value="" /> 
      <Setting Name="PhoneHardwareRevision" Value="" />    
      <Setting Name="PhoneSOCVersion" Value="" /> 
      <Setting Name="PhoneFirmwareRevision" Value="" />   
      <Setting Name="PhoneRadioHardwareRevision" Value="" />    
      <Setting Name="PhoneRadioSoftwareRevision" Value="" /> 
      <Setting Name="PhoneBootLoaderVersion" Value="" />    
      <Setting Name="PhoneROMLanguage" Value="" /> 
      <Setting Name="PhoneHardwareVariant" Value="" /> 
   </Settings> 

  </Static>

REQUIRED SETTING OPTIONAL SETTING SOC VENDOR SETTING

These settings are image-time only and will be put directly into the registry hive. Note that some settings in
the DeviceInfo/Static  group are optional so you may choose not to specify any values for them or remove
them from the CAF. The following table summarizes which settings are required, optional, and which ones
come from the silicon vendor.

PhoneManufacturer

PhoneFirmwareRevision

PhoneROMLanguage

PhoneHardwareVariant

PhoneManufacturerDisplayName

PhoneRadioHardwareRevision

PhoneROMVersion

PhoneHardwareRevision

PhoneSOCVersion

PhoneRadioSoftwareRevision

PhoneBootLoaderVersion

1. Within the Variant section of the CAF, add a DeviceInfo/Variant  settings group.

Using our example, we'll add the settings within the variant section for ThePhoneCompany



Configure other customization settings

   <!-- The settings shown here will only be applied for The Phone Company -->
  <Variant Name="ThePhoneCompany">  
    <TargetRefs>  
      <TargetRef Id="Id_PhoneCo" />  
    </TargetRefs>  

    <!-- Other settings with the Variant section not included here for simplicity --> 

    <Settings Path="DeviceInfo/Variant">
      <Setting Name="PhoneMobileOperatorName" Value="" /> 
      <Setting Name="PhoneManufacturerModelName" Value="" />    
      <Setting Name="PhoneMobileOperatorDisplayName" Value="" /> 
      <Setting Name="PhoneSupportPhoneNumber" Value="" />    
      <Setting Name="PhoneSupportLink" Value="" /> 
      <Setting Name="PhoneOEMSupportLink" Value="" />    
      <Setting Name="PhoneModelName" Value="" /> 
      <Setting Name="RoamingSupportPhoneNumber" Value="" />
   </Settings> 

  </Variant>  

REQUIRED SETTING OPTIONAL SETTING

These settings are first variation only and can be configured at runtime, so potentially may be based on the
SIM value. Note that some settings in the DeviceInfo/Variant  group are optional so you may choose not
to specify values for them or remove them from the CAF. The following table summarizes which settings
are required, optional, and which ones come from the silicon vendor.

PhoneMobileOperatorName

PhoneManufacturerModelName

PhoneModelName

PhoneMobileOperatorDisplayName

PhoneSupportPhoneNumber

PhoneSupportLink

PhoneOEMSupportLink

PhoneRoamingSupportPhoneNumber

2. Save the CAF when you are done adding all the values for the required settings or any optional settings
you choose to set. Follow the guidance in Phone metadata in DeviceTargetingInfo to make sure you set the
correct values and their formats.

There are a variety of other customization settings that you can configure for Windows mobile devices. For
phones in particular, you'll also typically need to provision connectivity settings such as the MMS APN, MMS
proxy, IMS services (if supported), and so on. For this walkthrough, we'll assume that you've already configured
these settings so we won't cover how to configure these connectivity settings. The MCSF section of the partner
documentation provides scenario-based documentation to help you identify the settings you need to configure
based on the scenarios or areas you want to enable. For more information about these customizations, see:

Customizations for device management for info on overriding the default CountryTable.xml, setting the UICC
slot for branding configuration, and more.
Customizations for hardware components for info on customizing the display, storage, touch, and so on.
Customizations for applications and Microsoft components for info on adding a phone call/SMS filter app,
active phone cover settings, and others.
Customizations for boot, initial setup, and shutdown to learn about configuring the timezone confirmation
page and language selection during device setup, and many more.

https://msdn.microsoft.com/library/windows/hardware/dn772214
https://msdn.microsoft.com/library/windows/hardware/dn757439
https://msdn.microsoft.com/library/windows/hardware/dn757441
https://msdn.microsoft.com/library/windows/hardware/dn757434
https://msdn.microsoft.com/library/windows/hardware/dn757435


Customizations for browser for info on ways you can customize Microsoft Edge.
Customizations for connectivity to learn more about setting the custom percentages for signal strength bars,
preferred data provider list, roaming filter, and so on.
Customizations for desktop experiences to customize the device icon and default image that appears when the
mobile device is connected to the desktop.
Customizations for email to learn how to change the email app to always have a light background.
Customizations for maps for info preloading map data in the user store or SD card, maps for phones shipped
in China, and more.
Customizations for phone calls to learn about branding for phone calls, setting up visual voicemail, enabling
IMS services and RCS, and many more.
Customizations for photos, music, and videos for info about audio volume limitation, adding OEM lens apps,
and so on.
Customizations for Settings to learn about all the many customizations you can configure for the settings that
appear within the Settings app on mobile devices.
Customizations for SMS and MMS for more info on adding encoding extension tables for SMS, maximum
length for messages, intercept deny list, and many more.
Customizations for Start to change the default behavior of the Microsoft Store live tile. Note that you may
configure the Start layout too, but that's covered in Start layout for Windows 10 mobile editions and shown as
an example in this walkthrough.

https://msdn.microsoft.com/library/windows/hardware/dn757436
https://msdn.microsoft.com/library/windows/hardware/dn757437
https://msdn.microsoft.com/library/windows/hardware/dn757438
https://msdn.microsoft.com/library/windows/hardware/dn757440
https://msdn.microsoft.com/library/windows/hardware/dn757442
https://msdn.microsoft.com/library/windows/hardware/dn757443
https://msdn.microsoft.com/library/windows/hardware/dn757445
https://msdn.microsoft.com/library/windows/hardware/dn757448
https://msdn.microsoft.com/library/windows/hardware/dn757449
https://msdn.microsoft.com/library/windows/hardware/dn757450
https://msdn.microsoft.com/library/windows/hardware/mt171093


Add a package to an OEM manifest file
6/6/2017 • 2 minutes to read • Edit Online

You can use a feature manifest (FM) file to define specific types of image builds that contain different sets of
optional packages. To learn more about FM files, see Feature manifest file contents. For more information about
additional logic that you can add to the build system, see Feature groupings and constraints.

In this walkthrough, we will add the packages you created in Creating mobile packages, to an FM file to define new
OEM features that you can later include to build a mobile OS image.

To add a package to an FM file

<?xml version="1.0" encoding="utf-8"?>
<FeatureManifest 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">

  <!-- Other elements that you can configure
  <OEMDevicePlatformPackages>
    <PackageFile Name="Microsoft.Fake.OEMDevicePlatform.spkg" 
Path="$(mspackageroot)\firmware\Fake\$(cputype)\$(buildtype)" Device="Fake"/>
  </OEMDevicePlatformPackages>

  <BasePackages>
    <PackageFile Path="$(mspackageroot)\drivers\Fake\$(cputype)\$(buildtype)" 
Name="Microsoft.Fake.AX88772.spkg"/>
  </BasePackages>
  -->

  <Features>  
    <OEM>  
      <PackageFile Path="SourceDirectoryA" Name="MyEchoDriver.spkg">  
        <FeatureIDs>  
          <FeatureID>ECHO_DRIVER</FeatureID>  
        </FeatureIDs>  
      </PackageFile>  
      <PackageFile Path="SourceDirectoryB" 
Name="Contoso.Customization.Notifications.QuickActions.spkg">  
        <FeatureIDs>  
          <FeatureID>QUICK_ACTIONS</FeatureID>  
        </FeatureIDs>  
      </PackageFile>  
    </OEM>  
  </Features> 

</FeatureManifest>

1. Create a new FM file or modify an existing FM file to include the two packages that you created and define
feature IDs for these packages. For an example of what the FM file looks like, see
%WPDKCONTENTROOT%\FMFiles\arm\MSOptionalFeatures.xml in your kit installation folder.

The following example shows what your FM file may look like.

The OEMDevicePlatformPackages element and BasePackages element are placeholders and are only
there to show you what other options are available to configure in the FM file.

For more information about creating an FM file and other elements that you may need to fully define your

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/add-a-package-to-an-oem-manifest-file.md
https://msdn.microsoft.com/library/windows/hardware/dn756745
https://msdn.microsoft.com/library/windows/hardware/dn756740


feature, see Feature manifest file contents. For more information about additional logic that you can add to
the build system, see Feature groupings and constraints.

2. In the first PackageFile element within the OEM section, replace SourceDirectoryA with the location of the
folder that contains the Echo driver package and replace MyEchoDriver.spkg with the real name of the .spkg
containing the driver.

3. In the second PackageFile element within the OEM section, replace SourceDirectoryB with the location of
the folder that contains the customization setting package and replace
Contoso.Customization.Notifications.QuickActions.spkg with the real name of the .spkg containing the
customization setting.

4. Save your FM file in the %WPDKCONTENTROOT%\FMFiles\arm folder. For this example, let's name the
file as ContosoOptionalFeatures.xml.

https://msdn.microsoft.com/library/windows/hardware/dn756745
https://msdn.microsoft.com/library/windows/hardware/dn756740


Configure the OEMInput file
9/28/2017 • 2 minutes to read • Edit Online

Now that you've configured your customization settings in the MCSF CAF and added custom OEM features in the
OEM manifest file, you'll need to create an OEMInput file that specifies the device platform, the feature manifest
files, the release type, device model, build type, languages you want to support, boot UI language, device
resolutions, and other attributes like optional features that you want to include as part of your image.

For more information about each element in the OEMInput file, see OEMInput file contents.

In this walkthrough, we will add the two features we defined in Adding a package to an OEM manifest file,
specifying the languages that we want to support, and defining the rest of our image.

To configure the OEMInput file

1. Create a new OEMInput.xml file or modify an existing OEMInput file. For an example of what the
OEMInput.xml file looks like, see %WPDKCONTENTROOT%\OEMInputSamples\Fake in your kit
installation folder.

In the following example, we copied the contents of the
%WPDKCONTENTROOT%\OEMInputSamples\Fake\TestOEMInput.xml file and made the following
modifications:

Added a new description.

Added English (United Kingdom), French (France), Spanish (Spain), and Chinese (Simplified) to the
list of included devices languages in addition to English (United States). We added this in the
UserInterface section. For more information about other languages you can add to your mobile
device, including how to change the default device language and regional format, see Mobile device
languages.

Added the ContosoOptionalFeatures.xml feature manifest file that we created in the Adding a
package to an OEM manifest file walkthrough and placed it under the AdditionalFMs section of the
OEMInput file by adding a new AdditionalFM entry and specifying the location and name of the
feature manifest file.

Added the ECHO_DRIVER and QUICK_ACTIONS features by adding a new OEM subsection within
the Features section of the OEMInput file. For each feature that we add within the OEM section, we
add a new Feature entry and then specify the name of the feature that we defined in the feature
manifest file.

Note If you're using a mobile reference device, make sure you update the values in the SOC, SV , and
Device sections of the OEMInput.xml. You may also change the ReleaseType depending on what you're
trying to do. Make sure you follow the guidance in OEMInput file contents when specifying values for these
elements.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/configure-the-oeminput-file.md
https://msdn.microsoft.com/library/windows/hardware/dn756778
https://msdn.microsoft.com/library/windows/hardware/dn772212
https://msdn.microsoft.com/library/windows/hardware/dn756778


<?xml version="1.0" encoding="utf-8"?>
<OEMInput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
          xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
          xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
  <Description>Windows mobile image test FFU generation</Description>
  <SOC>FAKE_SOC_Test</SOC>
  <SV>Microsoft</SV>
  <Device>FAKE</Device>
  <ReleaseType>Test</ReleaseType>
  <BuildType>fre</BuildType>
  <SupportedLanguages>
    <UserInterface>
      <Language>en-US</Language>
      <Language>en-GB</Language>
      <Language>fr-FR</Language>
      <Language>es-ES</Language>
      <Language>zh-CN</Language>
    </UserInterface>
    <Keyboard>
      <Language>en-US</Language>
    </Keyboard>
    <Speech>
      <Language>en-US</Language>
    </Speech>
  </SupportedLanguages>
  <BootUILanguage>en-US</BootUILanguage>
  <BootLocale>en-US</BootLocale>
  <Resolutions>
    <Resolution>480x800</Resolution>
  </Resolutions>
  <AdditionalFMs>
    <AdditionalFM>%WPDKROOT%\FMFiles\arm\ContosoOptionalFeatures.xml</AdditionalFM>
    <AdditionalFM>%WPDKROOT%\FMFiles\arm\MSOptionalFeatures.xml</AdditionalFM>
  </AdditionalFMs>
  <Features>
    <Microsoft>
      <Feature>IMGFAKEMODEM</Feature>
      <Feature>TEST_DISABLE_DISK_IDLE</Feature>
      <Feature>STANDARD_FEATURE_1</Feature>
      <Feature>CODEINTEGRITY_TEST</Feature>
      <Feature>SELFHOST_AUTOMATIC_DEVICE_CONFIGURATOR</Feature>
      <Feature>LOCATIONFRAMEWORKAPP</Feature>
      <Feature>FACEBOOK</Feature>
      <Feature>COMMSENHANCEMENTGLOBAL</Feature> 
      <Feature>KDNETUSB_TEST_ON</Feature>
      <Feature>TESTINFRASTRUCTURE</Feature>
      <Feature>TEST</Feature>
      <Feature>STARTUPOVERRIDES</Feature>
      <Feature>GWPCERTTESTPROV</Feature>
      <Feature>MOBILECORE_TEST</Feature>
      <Feature>DRIVERS_WDTFINFRA</Feature>
      <Feature>SKYPE</Feature>
      <Feature>BOOTSEQUENCE_TEST</Feature>
      <Feature>SKIPOOBE</Feature>
      <Feature>CORTANADBG_TEST_PROTECTED</Feature>
      <Feature>TEST_PROTECTED</Feature>
      <Feature>PSEUDOLOCALES</Feature>
    </Microsoft>
    <OEM>
      <Feature>ECHO_DRIVER</Feature>
      <Feature>QUICK_ACTIONS</Feature>
    </OEM>
  </Features>
  <Product>Windows Phone</Product>
</OEMInput>



2. Name and save your OEMInput.xml file. For our example, we named it ContosoTestOEMInput.xml and
saved it in a %WPDKCONTENTROOT%\ContosoOEMInput folder.



Build a mobile image using ImgGen
6/6/2017 • 2 minutes to read • Edit Online

You can use two different tools to build a customized mobile image (FFU image) in Windows 10:

Using ImgGen.cmd, which is a command file that runs the classic imaging tool, ImageApp.exe. This tool was
also available earlier releases of Windows 10 Mobile including Windows Phone 8.1 and the various GDRs.

Using the Windows Imaging and Configuration Designer (ICD) command-line interface, which is new for
Windows 10.

In this walkthrough, we'll show how to use ImgGen.cmd to build the custom mobile image. In another
walkthrough, we'll go through how to create another mobile image that includes the customizations we've done so
far in addition to other customizations available only through Windows Provisioning by using the Windows ICD
CLI.

To build a customized image using ImgGen

1. Open a Developer Command Prompt for VS2015 window as an administrator.

2. If you are running Windows 8.1, complete the following steps to set the USN journal registry size to 1 Mb
on your development PC. Otherwise, skip to the next step.

a. Change the USN minimum size registry key by running the following command:

reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v
NtfsAllowUsnMinSize1Mb /t REG_DWORD /d 1

b. Reboot the PC before proceeding to the next step.

3. Run ImgGen.cmd by using the following command.

ImgGen TestFlash.ffuContosoTestOEMInput.xml "%WPDKCONTENTROOT%\MSPackages"
MobileCustomizations.xml 10.0.0.1

This command will build an image that will be called TestFlash.ffu.

Note This command assumes you've gone through the rest of the walkthroughs in this section. For more
information about the command-line syntax for ImgGen.cmd, see Using ImgGen.cmd to generate the
image in Build a mobile image using ImgGen.cmd.

Once the image is built, you'll need to sign it so it can be flashed to a mobile device.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/build-a-customized-mobile-image-using-imggen.md
https://msdn.microsoft.com/library/windows/hardware/dn756630


Sign a mobile image
6/6/2017 • 2 minutes to read • Edit Online

You need to sign a mobile image before you can deploy it to a device. For more information about signing images,
see Sign a full flash update (FFU) image.

Before you start, make sure you followed the steps in Step 5: Install OEM test certs in Prepare for Windows mobile
development. If you haven't done this yet, do this first before proceeding with the steps for signing an image.

In this walkthrough, we'll focus on test signing the image manually. In addition to ImageSigner, we'll also use
Sign.cmd.

To test sign an image

1. Open a developer prompt with administrator rights in the directory that contains the output from the image
generation process.

2. Extract the catalog of the unsigned FFU file by running the following command:

ImageSigner GETCATALOG TestFlash.ffu TestFlash.cat

3. Sign the catalog using the /pk option. There are two parts to this step:

Set SIGN_OEM=1

Sign.cmd /pk TestFlash.cat

4. Sign the FFU with the signed catalog file using ImageSigner.

ImageSigner SIGN TestFlash.ffu TestFlash.cat

Once the image is signed, you're ready to flash the image to your mobile device.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/sign-a-mobile-image.md
https://msdn.microsoft.com/library/windows/hardware/dn789216


Flash an image to a mobile device
6/6/2017 • 2 minutes to read • Edit Online

Flashing is the process of getting a mobile image into a mobile device. Each manufacturer has different techniques
and tooling that they'll use to manufacture and service a Windows mobile device and this means that each OEM
needs to determine which flashing and manufacturing process works best for them. For more information, see
Flashing tools.

In this walkthrough, we'll use ffutool.exe, which is installed as part of the Windows ADK, to flash the image to a
mobile device. For more information about flashing and to learn more about what you need to get your device
ready for flashing, see Use the flashing tools provided by Microsoft.

To flash an image

1. Boot the device into FFU flashing mode while it is connected to the host computer.

If you didn't include the L ABIMAGE optional feature when generating your test image, you can force the
device into FFU flashing mode manually by pressing and releasing the power button to boot the device and
then immediate pressing and holding the volume up button. However, note that this option is only available
if an FFU has been initially flashed to the device.

2. Open a command prompt with administrator rights.

3. Run ffutool.exe from the command line to flash the image.

ffutool -flash TestFlash.ffu

It will take a few minutes for the image to be fully flashed to the device. Once flashing is done, go through device
setup and verify that your customizations appear as part of the image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/flash-an-image-to-a-mobile-device.md
https://msdn.microsoft.com/library/windows/hardware/dn789235


Part 2: Mobile deployment using Windows
Provisioning
6/6/2017 • 2 minutes to read • Edit Online

Requirements

In this section, we'll go through the process of customizing and building a mobile image using the Windows
Imaging and Configuration Designer (ICD). Windows ICD provides a hybrid method for customizing and building
a mobile image because it lets you use both a Windows Provisioning answer file (WPAF) to configure the runtime
settings, enterprise policies, and enrollment settings available in Windows Provisioning, and a Managed
Centralized Settings Framework (MCSF) customization answer file (CAF) to fully customize the device hardware
and connectivity settings, preload apps, and add assets such as ringtones and localized strings.

Use the Windows ICD CLI to customize and build a mobile image

This method uses the Windows ICD CLI to build a customized mobile image.

Legacy: Use the Windows ICD UI to customize and build a mobile image

Note, this method is not supported in Windows 10, version 1607.

Before proceeding with either of the walkthroughs, you must first complete the steps in Prepare for Windows
mobile development and Configure the Start layout. Windows Provisioning/Windows ICD understands MCSF
CAF so if you want to learn how to create a CAF, see Configure customization settings.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/lab-2--mobile-deployment-using-windows-provisioning.md


Use the Windows ICD UI to customize and build a
mobile image
6/6/2017 • 8 minutes to read • Edit Online

Build a mobile image using the Windows ICD UI

You can use the Windows Imaging and Configuration Designer (ICD) UI to create a new Windows 10 Mobile
image and customize it by adding settings and some assets.

Note: This method is not supported in Windows 10, version 1607.

This imaging method requires a pre-installed OS kit so you must have all the necessary Microsoft OS packages
and feature manifest files in your default install path. A configuration data file (BSP.config.xml), which contains
information about the hardware component packages for your board support package (BSP), is also required. For
the BSP.config.xml file, you can:

Use the BSP.config.xml file you downloaded as part of the BSP kit, or,

Generate your own BSP.config.xml by running the BSP kit configuration tools from the SoC vendor and
selecting your component drivers.

This walkthrough shows how to use the Windows ICD UI to customize, build, and flash a mobile image.

1. From the Windows ICD Start page, select New Windows image customization.

Or, you can also select New Project... from the File menu.

2. In the Enter Project Details window, specify a Name and Location for your project. Optionally, you can
also enter a brief Description to describe your project.

3. Click Next.

4. If you created the project from the Start page, skip this step.

In the Select project workflow window, select Imaging from the list of available project workflows and
then click Next.

5. In the Select imaging source format window, select The Windows image is based on Microsoft
packages, and then click Next.

You will be prompted to specify a BSP.config.xml file.

6. In the Select hardware component drivers window, click Browse to launch File Explorer and search for
the location of your BSP.config.xml file.

7. Click Finish.

This loads all the customizations that you can configure based on the Windows edition that you selected.
Once all the available customizations are loaded, you can see the Customizations Page.

8. In the Customizations Page, select the settings you want to customize from the Available
Customizations pane.

For this walkthrough, see Configure customizations in the Windows ICD UI for a list of the settings we're
using as examples. Once you're done configuring the settings, proceed to the next step.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/use-the-windows-icd-ui-to-customize-and-build-a-mobile-image.md


9. Although optional, export a provisioning package to encapsulate the settings you just configured and allow
you to reuse all or most of the customizations for another project.

To do this, click the Export dropdown in the main menu, select Provisioning Package, add the required
package information.

Name - Name to use for the package, for example, Contoso_ppkg.
ID - Auto-generated package GUID.
Owner - Package owner. Set to OEM.
Version - Version info. This is pre-populated with the latest package version number or "1.0". Leave it
set to the default, 1.0, although you can set it to any version that you want.
Rank - Package rank, which is a value between 0 and 99 (inclusive). Leave it set to the default, 0.

Click Next until you get to the Build the provisioning package screen. Click Build to build the package
and then click Finish.

10. Select Create from the main menu and then choose FFU .

11. In the Select image type screen, choose Test for the image type.

Although there are other image types, a Test image type is good when your image is not yet final and you
are still testing various components in your image. The image is also unlocked and doesn't contain any
security enforcements.

12. Click Next.

13. In the Describe the image screen, select the languages that you want to include as part of your image.

If you went through Part 1: Classic mobile deployment, the settings in this step are similar to how you
would set the device languages in Configure the OEMInput file.

User Interface Languages - These are the display language(s) to install on the device.

Select en-gb, en-us, es-es, fr-fr, and zh-cn.

Keyboard Languages - These are additional keyboard languages to use for text correction and
suggestions while typing on the device.

Select en-us.

Speech Languages - These are the speech languages that you want to install on your device.

Select en-us.

14. Because we selected multiple languages in User Interface Languages, we need to select the default
display language that the device will use when it is first turned on by the user. To do this, choose Boot
Language and select the default device language that you want to set. For example, set this to en-us.

15. To set the country or region, choose Boot Locale and select the locale for the default region or country.
Any locale can be used as the regional format, but only the country (GeoID) value is used. For example, set
this to en-us.

16. Click Next.

17. To change the location where the files are saved, click Browse... under Select where to save the files.

You may change the location where the files are saved, but typically the default location is fine.

18. Optional. If you created a CAF file by following Configure customization settings, you can include this by
selecting Browse... under Customization answer file (optional) and specifying the location where you
saved the CAF.



Configure customizations in the Windows ICD UI

For example, C:\Contoso\Customizations\MobileCustomizations.xml.

19. To change the default location where you want to save the image, click Browse... to launch File Explorer
and specify a new location.

To use the default location, click Next.

20. Click Build to start building the image. The project information is displayed in the build page and the
progress bar indicates the build status.

If you need to cancel the build, click Cancel. This cancels the current build process, closes the wizard, and
takes you back to the Customizations Page.

21. During the image build process, a lot of what's happening during the build process is shown in the build
output window. This window shows:

Warnings that might appear while the image is building.

Verbose build messages to indicate the phases within the image build process.

Error messages such as when the input files have schema errors or when the image fails to build.

If your build fails, an error message will be displayed. You can review the build log to identify the issue by
clicking View in Notepad.

If your build is successful, the name of the image and its location will be displayed.

If you choose, you can build the image again by picking a different image type, selecting different
languages, and then starting another build. To do this, click Back to select what you want to change,
and then click Next to start another build.

Boot the device into image or FFU download mode. To force your phone into image or FFU
download mode manually, press and release the power button to reboot the phone and then
immediately press and hold the volume up button. Note that this option is available only after an
initial FFU has been flashed to the phone.

If this doesn't work, check and follow the device flashing instructions provided by the SoC vendor.

If you are ready to flash the built image to your device, click Flash and select the target device to
flash the FFU. If you don't find the device listed in the list of available target device(s), click Refresh.

If you want to flash the image to the device later, follow the steps in Deploy an image to a mobile
device when you are ready to flash the image to your device.

It will take a few minutes for the image to be fully flashed to the device. Once flashing is done, go
through device setup and verify that your customizations appear as part of the image.

If you are done, click Finish to close the wizard and go back to the Customizations Page.

 

Note When configuring customizations using Windows ICD, do not use the Image time settings, use the
Runtime settings instead. If you configure the image-time settings, this will cause an error due to a settings
collision if the setting is configured in both WPAF and MCSF CAF.

If you haven't done so already, you must first create the LayoutModification.xml files as shown in Configure the
Start layout before proceeding with the steps in this section.

To configure the Start layout

1. In the Available customizations pane in Windows ICD, expand Runtime settings, select Start, and then



Deploy an image to a mobile device

select StartLayout.

2. In the middle pane, click Browse to open File Explorer.

3. In the File Explorer window, navigate to the location where you saved LayoutModification1.xml from step 1;
for example, C:\Contoso\Customizations.

4. Select LayoutModification1.xml and then click Open.

This sets the value of StartLayout and the setting should appear in the Selected customizations page.

Enterprise policies and enrollment settings are some of the customizations available only through Windows
Provisioning. Here, we'll configure a few of these policies to include as part of the image. For more information
about the other policies that you can configure, see Policies (for the Windows Provisioning settings). Note that the
Windows Provisioning settings topics do not provide a detailed description of each policy; instead, each topic links
to the more detailed information in Policy CSP.

To set policies

1. In the Available customizations pane, expand Runtime settings, and select Policies.

2. Find Policies/DeviceLock and set MaxInactivityTimeDeviceLock to "15".

This specifies that after the device has been idle for 15 minutes, the device will become PIN or password
locked.

3. Find Policies/DeviceLock and set ScreenTimeoutWhileLocked to "15".

This specifies the duration, in seconds, for the screen timeout while on the lock screen. For this example, the
duration is 15 seconds.

 

Follow these steps if you deferred flashing the image to the device after it was built.

1. Boot the device into image or FFU download mode. To force your phone into image or FFU download
mode manually, press and release the power button to reboot the phone and then immediately press and
hold the volume up button. Note that this option is available only after an initial FFU has been flashed to
the phone.

If this doesn't work, check and follow the device flashing instructions provided by the SoC vendor.

2. Using a USB cable, connect your phone to the host computer.

3. Click Deploy from the main menu and choose To USB connected device to deploy the FFU image to the
device.

4. In the Select an FFU image window, click Browse... to launch File Explorer and select the FFU that you
want to flash to your target device, and then click Next.

5. Choose the target device or drive from the list. If your device or drive is not listed, click Refresh.

6. Click Next.

7. In the Deploy to device window, choose Flash to start flashing the image.

8. Click Finish to close the Deployment page.

https://msdn.microsoft.com/library/windows/hardware/dn965797
https://msdn.microsoft.com/library/windows/hardware/dn904962


Use the Windows ICD CLI to customize and build a
mobile image
7/13/2017 • 8 minutes to read • Edit Online

Create a WPAF with multivariant support

You can use the Windows Imaging and Configuration Designer (ICD) command-line interface (CLI) to generate a
new Windows 10 Mobile image.

This imaging method requires a pre-installed OS kit so you must have all the necessary Microsoft OS packages
and feature manifest files in your default install path. You also need either a BSP.config.xml file, which contains
information about the hardware component packages for your board support package (BSP) or you can use an
OEMInput.xml file.

If you're using a BSP.config.xml file, you can:

Use the BSP.config.xml file you downloaded as part of the BSP kit, or,

Generate your own BSP.config.xml by running the BSP kit configuration tools from the SoC vendor and
selecting your component drivers.

Multivariant provides a generic mechanism for creating a single image that can work for multiple markets. You can
use it to dynamically configure language, branding, and network settings during runtime based on the mobile
operator and locale/country.

Unlike the Windows ICD UI, you can use the Windows ICD CLI to to create an image that has multivariant
support. In order to do this, you must first edit a Windows Provisioning answer file (WPAF), customizations.xml,
and add the Targets and Variant sections to the file. Create a provisioning package with multivariant settings
provides a more information about multivariant support in Windows 10 and a list of the conditions that Windows
supports along with their priorities. It also provides a step-by-step example on what you need to do.

In this section, we'll modify the customizations.xml file that was created from Use the Windows ICD UI to
customize and build a mobile image and include Targets and Variant sections to support multivariant. If you are
building a single variant image, you may skip this section.

1. Locate the provisioning package file, customizations.xml. If you didn't change the default project location,
you can find the package in <drive:>\Users\<user_name>\Documents\Windows Imaging and
Configuration Designer (WICD)\<project_name>.

2. Use an XML or text editor to open the customizations.xml file.

The following example shows the contents of the customizations.xml file created in Use the Windows ICD
UI to customize and build a mobile image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/use-the-windows-icd-cli-to-customize-and-build-a-mobile-image.md
https://msdn.microsoft.com/library/windows/hardware/dn916108


<?xml version="1.0" encoding="utf-8"?>
<WindowsCustomizations>
  <PackageConfig xmlns="urn:schemas-Microsoft-com:Windows-ICD-Package-Config.v1.0">
    <ID>{239b9121-9f26-42db-8ae2-0d62989caa66}</ID>
    <Name>Contoso_ppkg</Name>
    <Version>1.0</Version>
    <OwnerType>OEM</OwnerType>
    <Rank>0</Rank>
  </PackageConfig>
  <Settings xmlns="urn:schemas-microsoft-com:windows-provisioning">
    <Customizations>
      <Common>
        <Policies>
          <DeviceLock>
            <MaxInactivityTimeDeviceLock>15</MaxInactivityTimeDeviceLock>
            <ScreenTimeoutWhileLocked>15</ScreenTimeoutWhileLocked>
          </DeviceLock>
        </Policies>
        <Start>
          <StartLayout>C:\Contoso\Customizations\LayoutModification1.xml</StartLayout>
        </Start>
      </Common>
    </Customizations>
  </Settings>
</WindowsCustomizations> 

3. Edit the customizations.xml file and create a Targets section to describe the conditions that will handle your
multivariant settings.

The following example shows the customizations.xml, which has been modified to include the conditions
MCC and MNC. For parity, the example uses the same fictitious IDs and conditions that were used in
Create an MCSF customization answer file section in Configure customization settings.



<?xml version="1.0" encoding="utf-8"?>
<WindowsCustomizations>
  <PackageConfig xmlns="urn:schemas-Microsoft-com:Windows-ICD-Package-Config.v1.0">
    <ID>{239b9121-9f26-42db-8ae2-0d62989caa66}</ID>
    <Name>Contoso_ppkg</Name>
    <Version>1.0</Version>
    <OwnerType>OEM</OwnerType>
    <Rank>0</Rank>
  </PackageConfig>
  <Settings xmlns="urn:schemas-microsoft-com:windows-provisioning">
    <Customizations>
      <Common>
        <Policies>
          <DeviceLock>
            <MaxInactivityTimeDeviceLock>15</MaxInactivityTimeDeviceLock>
            <ScreenTimeoutWhileLocked>15</ScreenTimeoutWhileLocked>
          </DeviceLock>
        </Policies>
        <Start>
          <StartLayout>C:\Contoso\Customizations\LayoutModification1.xml</StartLayout>
        </Start>
      </Common>
      <Targets> 
        <Target Id="Id_PhoneCo"> 
          <TargetState> 
            <Condition Name="MCC" Value="410" /> 
            <Condition Name="MNC" Value="510" /> 
          </TargetState> 
        </Target> 
        <Target Id="Id_Fabrikam"> 
          <TargetState> 
            <Condition Name="MCC" Value="310" /> 
            <Condition Name="MNC" Value="610" /> 
          </TargetState> 
        </Target>
      </Targets> 
    </Customizations>
  </Settings>
</WindowsCustomizations> 

4. In the customizations.xml file, create two Variant sections:

a. Specify a Name for each variant.

b. Add a child TargetRefs element.

c. Within the TargetRefs element, add a TargetRef element.

The following example shows what the customizations.xml looks like after adding two variants,
ThePhoneCompany and Fabrikam, and then using the two Target Ids we defined in the previous step to
use as the TargetRef Id for each variant.



<?xml version="1.0" encoding="utf-8"?>
<WindowsCustomizations>
  <PackageConfig xmlns="urn:schemas-Microsoft-com:Windows-ICD-Package-Config.v1.0">
    <ID>{239b9121-9f26-42db-8ae2-0d62989caa66}</ID>
    <Name>Contoso_ppkg</Name>
    <Version>1.0</Version>
    <OwnerType>OEM</OwnerType>
    <Rank>0</Rank>
  </PackageConfig>
  <Settings xmlns="urn:schemas-microsoft-com:windows-provisioning">
    <Customizations>
      <Common>
        <Policies>
          <DeviceLock>
            <MaxInactivityTimeDeviceLock>15</MaxInactivityTimeDeviceLock>
            <ScreenTimeoutWhileLocked>15</ScreenTimeoutWhileLocked>
          </DeviceLock>
        </Policies>
        <Start>
          <StartLayout>C:\Contoso\Customizations\LayoutModification1.xml</StartLayout>
        </Start>
      </Common>
      <Targets> 
        <Target Id="Id_PhoneCo"> 
          <TargetState> 
            <Condition Name="MCC" Value="410" /> 
            <Condition Name="MNC" Value="510" /> 
          </TargetState> 
        </Target> 
        <Target Id="Id_Fabrikam"> 
          <TargetState> 
            <Condition Name="MCC" Value="310" /> 
            <Condition Name="MNC" Value="610" /> 
          </TargetState> 
        </Target>
      </Targets> 
      <Variant Name="ThePhoneCompany"> 
        <TargetRefs> 
          <TargetRef Id="Id_PhoneCo" /> 
        </TargetRefs> 
      </Variant> 
      <Variant Name="Fabrikam"> 
        <TargetRefs> 
          <TargetRef Id="Id_Fabrikam" /> 
        </TargetRefs> 
      </Variant> 
    </Customizations>
  </Settings>
</WindowsCustomizations> 

5. Move compliant settings from the Common section to the Variant section.

Note Settings that reside in the Common section are applied unconditionally on every triggering event.



In the following example, we used the `DeviceLock/MaxInactivity` policy under ThePhoneCompany variant while 
the `DeviceLock/ScreenTimeoutWhileLocked` policy was moved under the Fabrikam variant.

```XML
<?xml version="1.0" encoding="utf-8"?>
<WindowsCustomizations>
  <PackageConfig xmlns="urn:schemas-Microsoft-com:Windows-ICD-Package-Config.v1.0">
    <ID>{239b9121-9f26-42db-8ae2-0d62989caa66}</ID>
    <Name>Contoso_ppkg</Name>
    <Version>1.0</Version>
    <OwnerType>OEM</OwnerType>
    <Rank>0</Rank>
  </PackageConfig>
  <Settings xmlns="urn:schemas-microsoft-com:windows-provisioning">
    <Customizations>
      <Common>
        <Start>
          <StartLayout>C:\Contoso\Customizations\LayoutModification1.xml</StartLayout>
        </Start>
      </Common>
      <Targets> 
        <Target Id="Id_PhoneCo"> 
          <TargetState> 
            <Condition Name="MCC" Value="410" /> 
            <Condition Name="MNC" Value="510" /> 
          </TargetState> 
        </Target> 
        <Target Id="Id_Fabrikam"> 
          <TargetState> 
            <Condition Name="MCC" Value="310" /> 
            <Condition Name="MNC" Value="610" /> 
          </TargetState> 
        </Target>
      </Targets> 
      <Variant Name="ThePhoneCompany"> 
        <TargetRefs> 
          <TargetRef Id="Id_PhoneCo" /> 
        </TargetRefs> 
        <Policies>
          <DeviceLock>
            <MaxInactivityTimeDeviceLock>15</MaxInactivityTimeDeviceLock>
          </DeviceLock>
        </Policies>
      </Variant> 
      <Variant Name="Fabrikam"> 
        <TargetRefs> 
          <TargetRef Id="Id_Fabrikam" /> 
        </TargetRefs> 
        <Policies>
          <DeviceLock>
            <ScreenTimeoutWhileLocked>15</ScreenTimeoutWhileLocked>
          </DeviceLock>
        </Policies>
      </Variant> 
    </Customizations>
  </Settings>
</WindowsCustomizations> 

```

1. Save the updated customizations.xml file and note the path to this updated file. You will need the path as
one of the values when you get ready to build the image.

2. Use the Windows ICD command-line interface (CLI) to create a provisioning package using the updated
customizations.xml. For more information about how to build a provisioning package and a description of



Build a mobile image using the Windows ICD CLI

icd.exe /Build-ProvisioningPackage /CustomizationXML:"C:\CustomProject\customizations.xml" 
/PackagePath:"C:\CustomProject\output.ppkg" /StoreFile:C:\Program Files (x86)\Windows 
Kits\10\Assessment and Deployment Kit\Imaging and Configuration Designer\x86\Microsoft-Common-
Provisioning.dat"

the command switches and parameters, see To build a provisioning package in Use the Windows ICD
command-line interface.

For example:

In this example, the StoreFile corresponds to the location of the settings store that will be used to create
the package for the required Windows edition.

Note The provisioning package created during this step will contain the multivariant settings. You can use
this package either as a standalone package that you can apply to a Windows device, use it as the base
when starting another project, or use it as one of one of the inputs (/ProvisioningPackage) when building
either a Windows 10 for desktop editions (Home, Pro, Enterprise, and Education) image or Windows 10
Mobile image.

This walkthrough shows how to use the Windows ICD CLI to build a mobile image. For more information about
the Windows ICD CLI, including usage examples and parameter descriptions, see Use the Windows ICD
command-line interface.

1. Open a command-line window with administrator rights.

2. From the command-line, navigate to the Windows ICD install directory:

On an x64 computer, go to: C:\Program Files (x86)\Windows Kits\10\Assessment and Deployment
Kit\Imaging and Configuration Designer\x86

On an x86 computer, go to: C:\Program Files\Windows Kits\10\Assessment and Deployment
Kit\Imaging and Configuration Designer\x86

3. Using the updated customizations.xml (with multivariant settings) and the MCSF CAF created in Configure
customization settings, use the Windows ICD CLI to build a mobile image.

To do this with the example files and using a bsp.config.xml, see the following command:

icd.exe /Build-ImageFromPackages /ImagePath:"C:\Contoso\Customizations\TestFlash2.ffu"
/BSPConfigFile:"C:\ContosoXDevice.bsp.config.xml" /ImageType:Test
/CustomizationXML:"C:\Contoso\Customizations\customizations.xml" /OEMCustomizationVer:1.0.0.0
/MCSFCustomizationXML:"C:\Contoso\Customizations\MobileCustomizations.xml"

Here are a few things to keep in mind:

Replace all the placeholder values for each parameter with the values that match your assets and
directory locations
Specify /ImageType because we are using /BSPConfigFile
Use /CustomizationXML to point to the customizations.xml
Windows ICD requires /OEMCustomizationVer if ProvisioningPackage is defined
Make sure the format for the /OEMCustomizationVer version number is in <Major>.<Minor>.
<SubVersion>.<SubMinorVersion>, such as 1.0.0.0

To do this with the example files and using an OEMInput.xml file, see the following command:

icd.exe /Build-ImageFromPackages /ImagePath:"C:\Contoso\Customizations\TestFlash2.ffu"

https://msdn.microsoft.com/library/windows/hardware/dn916115
https://msdn.microsoft.com/library/windows/hardware/dn916115


Flash an image to a mobile device

/OEMInputXML:"C:\ContosoTestOEMInput.xml"
/CustomizationXML:"C:\Contoso\Customizations\customizations.xml" /OEMCustomizationVer:1.0.0.0
/MCSFCustomizationXML:"C:\Contoso\Customizations\MobileCustomizations.xml"

Once the image (FFU) is built, you can flash it to your mobile device by using ffutool.exe or the Deploy option in
the Windows ICD UI. See the following section for more information.

There are two ways that you can use to flash an image to a mobile device:

Using ffutool.exe, or,
Using the built-in flashing functionality in Windows ICD

This section shows how to do both. Choose one of these methods to flash your image to your mobile device.

Follow these steps if you are flashing the image to the device using Windows ICD.

To flash an image using Windows ICD

1. Boot the device into image or FFU download mode. To force your phone into image or FFU download
mode manually, press and release the power button to reboot the phone and then immediately press and
hold the volume up button. Note that this option is available only after an initial FFU has been flashed to
the phone.

If this doesn't work, check and follow the device flashing instructions provided by the SoC vendor.

2. Using a USB cable, connect your phone to the host computer.

3. Launch Windows ICD.

4. Click Deploy from the main menu and choose To USB connected device to deploy the FFU image to the
device.

5. In the Select an FFU image window, click Browse... to launch File Explorer and select the FFU that you
want to flash to your target device, and then click Next.

6. Choose the target device or drive from the list. If your device or drive is not listed, click Refresh.

7. Click Next.

8. In the Deploy to device window, choose Flash to start flashing the image.

9. Click Finish to close the Deployment page.

Follow these steps if you are flashing the image to the device using ffutool.exe.

To flash an image using ffutool.exe

1. Boot the device into FFU flashing mode while it is connected to the host computer.

If you didn't include the L ABIMAGE optional feature when generating your test image, you can force the
device into FFU flashing mode manually by pressing and releasing the power button to boot the device and
then immediate pressing and holding the volume up button. However, note that this option is only available
if an FFU has been initially flashed to the device.

2. Open a command prompt with administrator rights.

3. Run ffutool.exe from the command line to flash the image.

ffutool -flash TestFlash.ffu



No matter which method you used to flash the image to the device, it will take a few minutes for the image to be
fully flashed. Once flashing is done, go through device setup and verify that your customizations appear as part of
the image.



Manufacturing Mode
7/13/2017 • 2 minutes to read • Edit Online

Manufacturing profiles

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ManufacturingMode\CustomProfile]

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ManufacturingMode\CustomProfile\Services]

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ManufacturingMode\CustomProfile\Services\OEMFactoryTestSe
rvice]
"Start"=dword:00000002

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ManufacturingMode\CustomProfile\Services\*]
"Start"=dword:00000003

Introduced in Windows 10 Mobile, manufacturing mode is a mode of the full operating system that can be used
for manufacturing-related tasks, such as component and support testing.

In Windows Phone 8.1, you had to flash the Microsoft Manufacturing Operating System (MMOS) to do
manufacturing tests and processes, such as test hardware, blow fuses, and provision security keys. Once the tests
were completed, you had to flash the full operating system. This added extra time on the manufacturing floor.

This new feature allows you to boot into a manufacturing mode of the full operating system (and do those
manufacturing steps) without having to flash an MMOS image.

A manufacturing profile defines settings that should be used when the operating system boots in manufacturing
mode. The device can have more than one manufacturing profile. A profile named Default is included with
Windows 10 Mobile. The default profile contains the settings for Microsoft components that let the device boot
into a minimal environment for Manufacturing Mode.

Manufacturing profiles are stored in the registry on the device in the following location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ManufacturingMode You must create a
subkey for each manufacturing profile. Under the profile key, you can change the settings for some select
operating system components for when the system is booting in manufacturing mode. For example, you can alter
which services are started when this manufacturing profile is enabled. You can add your own services in the
Services subkey, as shown below. If you want to set all services to the same start type, you can use an * for the
service name. If the * wildcard is not used, all Win32 services that are not included in the manufacturing profile
will use their default start type.

Note The * wildcard only applies to Win32 services, excluding kernel-mode drivers.

The following example creates a manufacturing profile named CustomProfile, causes the service named
OEMFactoryTestService to automatically start, and all other Win32 services to demand start:

The manufacturing profile name must be less than 64 characters.

You cannot use Current for the name of your manufacturing profile. This name is reserved for the currently active
manufacturing profile.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/manufacturing-mode.md


Create a custom manufacturing profile package
7/13/2017 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
        Owner="Contoso"
        Component="MfgMode"
        SubComponent="ManufacturingModeServices"
        ReleaseType="Production"
        OwnerType="OEM">

    <Macros>
      <Macro Id="MfgMode" Value="$(hklm.control)\ManufacturingMode" />
      <Macro Id="CustomProfileServices" Value="$(MfgMode)\CustomProfile\Services" />
    </Macros>

    <Components>
        <OSComponent>
         <!-- Overrides copied from default profile -->
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\*">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000003" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\AccountProvSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>              
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\adss">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\AudioSrv">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\BFE">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\BrokerInfrastructure">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\cellusermodeinterconnect">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />

You can add manufacturing profiles to your device by using a package. For more info on creating packages, see
Creating packages . In some cases, you may need to create a custom profile. For example, perhaps you want to fine
tune what Microsoft services are running for performance or functionality reasons or perhaps you want to have
more than one manufacturing profile. When creating new custom profiles, you should start by copying the
provided default profile and customizing it to suit your needs.

For example, if you wanted to create a new custom profile for factory testing that is a copy of the default profile but
also starts your factory test service, it may look like this:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/how-to-create-a-custom-manufacturing-profile.md
https://msdn.microsoft.com/library/dn756642


              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\DcomLaunch">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\DHCP">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\Fusion">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\KeepWifiOnSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000003" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\LaunchAppSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\MPSSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\NETACT">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\nsi">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\Power">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\ProfSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\RpcEptMapper">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\RpcSs">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\SamSs">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\SecMgr">



            <RegKey KeyName="$(CustomProfileServices)\SecMgr">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\SirepSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000004" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\SystemEventsBroker">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\TestSirepSvc">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
         <!-- Custom overrides for OEM services -->
          <RegKeys>
            <RegKey KeyName="$(CustomProfileServices)\OEMFactoryTestService">
              <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
            </RegKey>
          </RegKeys>
        </OSComponent>
    </Components>
</Package>

pkggen.exe example.pkg.xml /config:pkggen.cfg.xml

You can then create the package by using pkggen.exe (included with the Windows Driver Kit):



Create a custom manufacturing profile package with
USBFN settings
7/13/2017 • 2 minutes to read • Edit Online

<?xml version='1.0' encoding='utf-8'?>
<Package
    xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
    Owner="Microsoft"
    Component="UsbFn"
    SubComponent="Settings"
    ReleaseType="Production"
    OwnerType="Microsoft"
    >
  <Macros>
    <Macro
        Id="MfgMode"
        Value="$(hklm.control)\ManufacturingMode"
        />
    <Macro
        Id="MfgModeProfile"
        Value="Default"
        />
    <Macro
        Id="MfgModeUsbFn"
        Value="$(MfgMode)\$(MfgModeProfile)\USBFN"
       />
  </Macros>
  <Components>
    <OSComponent>
      <RegKeys>
        <RegKey
            KeyName="$(MfgModeUsbFn)\Default"
            >
          <RegValue
              Name="bcdDevice"
              Type="REG_DWORD"
              Value="00000001"
              />
          <RegValue
              Name="bDeviceClass"
              Type="REG_DWORD"
              Value="00000000"
              />
          <RegValue
              Name="bDeviceProtocol"
              Type="REG_DWORD"
              Value="00000000"
              />

You can also specify custom USBFN settings in a manufacturing profile that are only used when the device is in
manufacturing mode.

When the device is not in Manufacturing Mode, USBFN settings will still be read from the normal location. When
the device is in Manufacturing Mode and Manufacturing Mode-specific settings have been provided, the settings
are from a different location. If no settings have been provided in the active manufacturing profile, the settings will
be read from the normal location. This allows you to use different settings when the device is in manufacturing
mode versus when it is not.

Here's an example of a manufacturing profile package that specifies USBFN settings:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/how-to-create-a-custom-manufacturing-profile-with-usbfn-settings.md


          <RegValue
              Name="bDeviceSubClass"
              Type="REG_DWORD"
              Value="00000000"
              />
          <RegValue
              Name="idProduct"
              Type="REG_DWORD"
              Value="0000F0CA"
              />
          <RegValue
              Name="idVendor"
              Type="REG_DWORD"
              Value="0000045E"
              />
          <RegValue
              Name="iManufacturer"
              Type="REG_DWORD"
              Value="00000001"
              />
          <RegValue
              Name="iProduct"
              Type="REG_DWORD"
              Value="00000002"
              />
          <RegValue
              Name="iSerialNumber"
              Type="REG_DWORD"
              Value="00000003"
              />
          <RegValue
              Name="ManufacturerString"
              Type="REG_SZ"
              Value="Microsoft"
              />
          <RegValue
              Name="ProductString"
              Type="REG_SZ"
              Value="Windows Phone 8.1"
              />
        </RegKey>
        <RegKey
            KeyName="$(MfgModeUsbFn)\Configurations\Default"
            >
          <RegValue
              Name="InterfaceList"
              Type="REG_MULTI_SZ"
              Value="IpOverUsb"
              />
          <RegValue
              Name="MSOSCompatIdDescriptor"
              Type="REG_BINARY"
              
Value="28,00,00,00,00,01,04,00,01,00,00,00,00,00,00,00,00,01,4d,54,50,00,00,00,00,00,00,00,00,00,00,00,00,00,00
,00,00,00,00,00"
              />
        </RegKey>
        <RegKey
            KeyName="$(MfgModeUsbFn)\Interfaces\IpOverUsb"
            >
          <RegValue
              Name="InterfaceDescriptor"
              Type="REG_BINARY"
              Value="09,04,00,00,02,FF,FF,FF,00,07,05,81,02,00,02,00,07,05,02,02,00,02,00"
              />
          <RegValue
              Name="InterfaceGuid"
              Type="REG_SZ"
              Value="{30613563-7df3-4afb-80e0-e8c427c7e9bf}"



              />
          <RegValue
              Name="MSOSExtendedPropertyDescriptor"
              Type="REG_BINARY"
              
Value="74,01,00,00,00,01,05,00,05,00,84,00,00,00,01,00,00,00,28,00,44,00,65,00,76,00,69,00,63,00,65,00,49,00,6E
,00,74,00,65,00,72,00,66,00,61,00,63,00,65,00,47,00,55,00,49,00,44,00,00,00,4E,00,00,00,7B,00,32,00,36,00,66,00
,65,00,64,00,63,00,34,00,65,00,2D,00,36,00,61,00,63,00,33,00,2D,00,34,00,32,00,34,00,31,00,2D,00,39,00,65,00,34
,00,64,00,2D,00,65,00,33,00,64,00,34,00,62,00,32,00,63,00,35,00,63,00,35,00,33,00,34,00,7D,00,00,00,36,00,00,00
,04,00,00,00,24,00,44,00,65,00,76,00,69,00,63,00,65,00,49,00,64,00,6C,00,65,00,45,00,6E,00,61,00,62,00,6C,00,65
,00,64,00,00,00,04,00,00,00,01,00,00,00,34,00,00,00,04,00,00,00,22,00,44,00,65,00,66,00,61,00,75,00,6C,00,74,00
,49,00,64,00,6C,00,65,00,53,00,74,00,61,00,74,00,65,00,00,00,04,00,00,00,01,00,00,00,38,00,00,00,04,00,00,00,26
,00,44,00,65,00,66,00,61,00,75,00,6C,00,74,00,49,00,64,00,6C,00,65,00,54,00,69,00,6D,00,65,00,6F,00,75,00,74,00
,00,00,04,00,00,00,10,27,00,00,44,00,00,00,04,00,00,00,32,00,55,00,73,00,65,00,72,00,53,00,65,00,74,00,44,00,65
,00,76,00,69,00,63,00,65,00,49,00,64,00,6C,00,65,00,45,00,6E,00,61,00,62,00,6C,00,65,00,64,00,00,00,04,00,00,00
,01,00,00,00"
              />
        </RegKey>
      </RegKeys>
    </OSComponent>
  </Components>
</Package>

pkggen.exe exampleUSBFN.pkg.xml /config:pkggen.cfg.xml

You can then create the package by using pkggen.exe (included with the Windows Driver Kit):



Define a service that only runs in Manufacturing
Mode
7/13/2017 • 2 minutes to read • Edit Online

There may be cases where you want a service to be normally disabled but automatically run when the device is in
Manufacturing Mode. For example, your factory test suite would probably run in this configuration. You would set
your service start type to Disabled and then add a manufacturing profile override that makes your service auto-
start when using the appropriate manufacturing mode profile.

Here's an example manufacturing profile:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/how-to-define-a-service-that-only-runs-in-manufacturing-mode.md


<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
        Owner="Contoso"
        Component="MfgMode"
        SubComponent="FactoryTest"
        ReleaseType="Production"
        OwnerType="OEM">

    <Macros>
      <Macro Id="MfgMode" Value="$(hklm.control)\ManufacturingMode" />
      <Macro Id="CustomProfileServices" Value="$(MfgMode)\CustomProfile\Services" />
    </Macros>

    <Components>
      <!-- Definition for the service -->
      <Service
        Name="FactoryService"
        Start="Disabled"
        Type="Win32OwnProcess"
        ErrorControl="Ignore"
        DisplayName="OEMFactoryTestService"
        Description="A Sample OEM Factory Test Service">

        <Executable Source="$(BINARY_ROOT)\bin\factory\oem_factory_test_service.exe" />

        <!-- Failure actions should reset once per day, for security reasons -->
        <FailureActions ResetPeriod="86400">
          <Action Type="RestartService" Delay="1000"/>
          <Action Type="RestartService" Delay="1000"/>
          <Action Type="RestartService" Delay="1000"/>
          <!-- if it fails to start three times, services should just stop -->
          <Action Type="None" Delay="0"/>
        </FailureActions>

        <RequiredCapabilities>
          <!-- Needed to access and create RPC endpoints -->
          <RequiredCapability CapId="ID_CAP_INTEROPSERVICES" />
        </RequiredCapabilities>

      </Service>

      <OSComponent>
        <!-- Set the factory test service to auto-start when the device is in Manufacturing Mode -->
        <RegKeys>
          <RegKey KeyName="$(CustomProfileServices)\OEMFactoryTestService">
            <RegValue Name="Start" Type="REG_DWORD" Value="00000002" />
          </RegKey>
        </RegKeys>
      </OSComponent>

    </Components>
</Package>



Create a full operating system manufacturing profile
7/13/2017 • 2 minutes to read • Edit Online

Add apps to a custom manufacturing profile

HKEY_LOCAL_MACHINE\System\ControlSet001\Control\ManufacturingMode\<Profile Name>\Apps\OobeInstall

Find the name of the appFind the name of the app

dir /S MPAP_*.provxml

MPAP_systemsettings_001.provxml

Add the registry keys to your custom manufacturing profile package

When you boot into Manufacturing Mode, can you skip OOBE and preinstall apps to run your manufacturing tests.
Skipping OOBE can speed up manufacturing time.

To set this up, you add the apps that should be installed with the manufacturing profile. For more info about
manufacturing profiles, see Manufacturing Mode.

In a manufacturing mode profile, you must create a new registry key that lists the apps that should be installed
with the manufacturing profile:

Under the OOBEInstall registry key, you must create registry key (with REG_DWORD type) for each app. The
name of the registry key must match the filename of the app package.

For example, to add the Settings app to the manufacturing profile, you would add a registry key named
systemsettings.

Here are some things to consider when adding apps to a manufacturing profile:

The manufacturing profile must not disable any Windows services.
The value of the registry key is reserved. Only the registry key name is used.
The app can be a first or second party app, but the app package must be a part of the image.
The * wildcard can be used in the name of the app.
If you want the normal OOBE experience (with all apps installed), create a single registry key with the name of
\*.

The name of the registry key must match the filename of the app package. You can get a list of the apps that are on
the device by running the following command on the device's drive root:

This command returns a list of files, similar to the following:

The part of the filename after MPAP_ and before _0xx.provxml is what you should use for the registry key name.

You add the registry keys to your custom manufacturing profile package like you would with any other package.
For more info about packaging, see Creating Phone Packages.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/skip-oobe-and-preinstall-apps.md
https://msdn.microsoft.com/library/dn756642


<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
        Owner="Contoso"
        Component="MfgMode"
        SubComponent="Manufacturing.FactoryTestSample"
        ReleaseType="Production"
        OwnerType="OEM">

    <Macros>
      <Macro Id="MfgMode" Value="$(hklm.control)\ManufacturingMode" />
      <Macro Id="CustomProfile" Value="$(MfgMode)\CustomProfile" />
    </Macros>

    <Components>
        <OSComponent>
          <RegKeys>
            <RegKey KeyName="$(CustomProfile)\"/>
            <RegKey KeyName="$(CustomProfile)\Services"/>
            <RegKey KeyName="$(CustomProfile)\Apps"/>
            <RegKey KeyName="$(CustomProfile)\Apps\OobeInstall">
                <RegValue Name="FactoryTestOEMSample" Value="0" Type="REG_DWORD"/>
                <RegValue Name="systemsettings" Value="0" Type="REG_DWORD"/>
             </RegKey>
          </RegKeys>
        </OSComponent>
    </Components>
</Package>



Detect Manufacturing Mode
7/13/2017 • 2 minutes to read • Edit Online

_IRQL_requires_max_(APC_LEVEL)
NTKERNELAPI
BOOLEAN
ExIsManufacturingModeEnabled (
    VOID
    );

BOOLEAN ManufacturingModeEnabled = FALSE;

NTSTATUS
DriverEntry(
    PDRIVER_OBJECT DriverObject,
    PUNICODE_STRING RegistryPath
    )
{
...
    ManufacturingModeEnabled = ExIsManufacturingModeEnabled();
...
}

NTSTATUS
DoManufacturingOperation(
    VOID
    )
{
    if (ManufacturingModeEnabled == FALSE) {
        return STATUS_NOT_SUPPORTED;
    }
...
    return STATUS_SUCCESS;
}

WINBASEAPI
BOOL
WINAPI
GetOsManufacturingMode(
    _Out_ PBOOL pbEnabled
    );

You can determine whether the device is in Manufacturing Mode or not by using either a kernel mode or user
mode API.

In kernel mode, a new API has been defined in wdm.h:

Here's an example of how you might use it:

In user mode, the API is defined in sysinfoapi.h:

Here's an example of how you might use it:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/how-to-detect-manufacturing-mode.md


DWORD
DoManufacturingOperation(
    VOID
    )
{
    DWORD Error = ERROR_SUCCESS;
    BOOL ManufacturingModeEnabled = FALSE;

    if (!GetOsManufacturingMode(&ManufacturingModeEnabled)) {
        Error = GetLastError();
    }

    if ((Error != ERROR_SUCCESS) ||
        (ManufacturingModeEnabled == FALSE)) {
        return ERROR_NOT_SUPPORTED;
    }
...
    return ERROR_SUCCESS;
}



Enable or Disable Manufacturing Mode
7/13/2017 • 2 minutes to read • Edit Online

Enable or disable Manufacturing Mode with ffutool.exe

ffutool.exe -setBootMode <boot mode> <profile name>

ffutool.exe -setBootMode 1 CustomProfile

ffutool.exe -setBootMode 0

Enable Manufacturing Mode with a BCD setting

bcdedit.exe /set {default} mfgmode "default"

bcdedit.exe /set {default} mfgmode "CustomProfile"

If you want to test Manufacturing Mode, you can enable it by using ffutool.exe or by using a BCD setting.

Note The recommended way to support manufacturing mode on shipping devices is to have the firmware support
the Boot mode management UEFI protocol. For more info on this protocol, see Boot mode management UEFI
protocol.

If the device supports the boot mode UEFI protocol, you can enable or disable Manufacturing Mode with
ffutool.exe by using the setBootMode parameter. The syntax is as follows:

boot mode -- an integer that corresponds to the boot mode documented in EFI_BOOT_MODE_INFO
enumeration.
profile name -- the name of the manufacturing profile to enable. This is required when the boot mode is set to 1
and is ignored when the boot mode is set to 0.

The following example enables Manufacturing Mode and uses a manufacturing profile named CustomProfile:

The following example disables Manufacturing Mode, allowing the operating system to boot normally:

You can use the MfgMode BCD setting to test Manufacturing Mode with your custom manufacturing profiles.
MfgMode is a string value that is set to the name of your custom manufacturing profile.

For example, you can start the device in Manufacturing Mode using the default manufacturing profile by running
the following command on the device:

Or, you could start the device in Manufacturing Mode using a custom manufacturing profile named,
CustomProfile, by doing the following:

You can also enable it on an offline device that is plugged in and is in USB mass storage mode. For example:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/enable-manufacturing-mode.md


bcdedit.exe /store "D:\EFIESP\efi\Microsoft\Boot\BCD" /set {default} mfgmode "default"

Create a Manufacturing Mode BCD package

<?xml version="1.0" encoding="utf-8"?>
<BootConfigurationDatabase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/phone/2011/10/BootConfiguration">
  <Objects>

    <!-- Global Settings Group -->
    <Object SaveKeyToRegistry="false">
      <FriendlyName>Windows Loader</FriendlyName>
      <Elements>

        <Element>
          <DataType>
            <WellKnownType>Manufacturing Mode</WellKnownType>
          </DataType>
          <ValueType>
            <StringValue>Default</StringValue>
          </ValueType>
        </Element>

      </Elements>
    </Object>

  </Objects>
</BootConfigurationDatabase>

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
        Owner="Contoso"
        Component="MfgMode"
        SubComponent="ManufacturingModeBcd"
        ReleaseType="Production"
        Partition="EFIESP"
        OwnerType="OEM">

    <Components>
        <BCDStore Source=".\exampleBcd.bcd.xml"/>
    </Components>
</Package>

Note If you're using an older version of bcdedit.exe, you might have to use custom:22000140 instead of
mfgmode as the BCD setting name.

You can create a package that creates the MfgMode BCD entry and sets it to your custom manufacturing profile. To
do this, you must first create an XML file that references the BCD entry:

After that is created, you can reference it in a package XML file:

Note There is a Partition attribute defining that these BCD entries need to apply to the EFIESP partition. This
should be updated to be the partition where the BCD store for your device resides. If this is different from the
partition where the main operating system resides, other operations such as adding files and registry keys to the
main operating system partition cannot be done from the same package.

To create the package, you can use pkggen.exe (included with the Windows Driver Kit):



pkggen.exe exampleBcd.pkg.xml /config:pkggen.cfg.xml



Optional features for Manufacturing Mode
6/6/2017 • 2 minutes to read • Edit Online

FEATURE DESCRIPTION

The following features can be used with devices running in Manufacturing Mode.

Note All optional features included with Windows 10 Mobile can be used, too. For more info about the other
optional features, see Optional features for building images.

BCDEDIT Adds bcdedit.exe to the image for development support.
This should not be included in final retail images.

MFGMODEBCD Adds the BCD entry to enable Manufacturing Mode in the
full OS Image. You should remove this before the device
leaves the factory floor.

MFGSTARTUP Adds startup.bsc file to the Manufacturing Mode image
and is needed whenever the MOBILECOREBOOTSH
feature is used.

MFGDEVTOOLS Adds a collection of useful developer tools to the
Manufacturing Mode image, such as tlist.exe, sc.exe,
shutdown.exe. This should not be included in the final
Manufacturing Mode image.

MFGTELNETFTP Adds Telnet and TFTP servers to the Manufacturing Mode
image. You can leave them in the final image for servicing
since they only run when the device is in Manufacturing
Mode.

MFGTSHELL Adds TShell capability to the Manufacturing Mode image.
You can leave it in the final image for servicing since it only
runs when the device is in Manufacturing Mode.

MOBILECOREBOOTSH Enables the bootsh service (bootshscv) so that features in
startup.bsc, such as telnet and ftp, can be used. This is
required when the MFGTELNETFTP feature is specified. You
can leave it in the image for servicing since it only runs
when the device is in Manufacturing Mode.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/optional-features-for-manufacturing-mode.md
https://msdn.microsoft.com/library/windows/hardware/dn756780


Boot mode management UEFI protocol
7/13/2017 • 2 minutes to read • Edit Online

EFI_BOOT_MODE_MGMT_PROTOCOL

#define EFI_BOOT_MODE_MGMT_PROTOCOL_GUID \
   { 0xBE464946, 0x9787, 0x4FEB, { 0xBD, 0x71, 0x14, 0xC1, 0xC5, 0x2D, 0x69, 0xD1 } }

#define EFI_BOOT_MODE_MGMT_PROTOCOL_REVISION 0x00010000

typedef struct _EFI_BOOT_MODE_MGMT_PROTOCOL {
    UINT32                 Revision;
    EFI_SET_BOOT_MODE_INFO SetBootModeInfo;
    EFI_GET_BOOT_MODE_INFO GetBootModeInfo;
} EFI_BOOT_MODE_MGMT_PROTOCOL;

Requirements

Related topics

The boot mode management protocol is used to determine which boot mode the operating system should use
when it starts.

This section provides a detailed description of the EFI_BOOT_MODE_MGMT_PROTOCOL.

GUID

Revision number

Protocol interface structure

Members

Revision
The revision to which the EFI_BOOT_MODE_MGMT_PROTOCOL adheres. All future revisions must be
backward compatible. If a future version is not backward compatible, a different GUID must be used.

GetBootModeInfo
Determines the boot mode which the operating system should use when it starts. See
EFI_BOOT_MODE_MGMT_PROTOCOL.GetBootModeInfo

SetBootModeInfo
Specifies the boot mode the operating system should use when it starts, including an optional profile name. See
EFI_BOOT_MODE_MGMT_PROTOCOL.SetBootModeInfo

Header: User generated

Manufacturing Mode

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/boot-mode-management-uefi-protocol.md


EFI_BOOT_MODE_INFO enumeration
7/13/2017 • 2 minutes to read • Edit Online

Syntax
typedef enum _EFI_OS_BOOT_MODE {
    EfiOsBootModeFullOs = 0,
    EfiOsBootModeManufacturingOs = 1
    EfiOsBootModeMax
} EFI_OS_BOOT_MODE, *PEFI_OS_BOOT_MODE;

Constants

Related topics

Defines the possible boot modes that the operating system can use when it starts.

EfiOsBootModeFullOs
The device should boot normally into the operating system.

EfiOsBootModeManufacturingOs
The device is in manufacturing mode.

Boot mode management UEFI protocol

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/efi-boot-mode-info-enumeration.md


EFI_BOOT_MODE_MGMT_PROTOCOL.GetBootModeInfo
7/13/2017 • 2 minutes to read • Edit Online

typedef EFI_STATUS
(EFIAPI *EFI_GET_BOOT_MODE_INFO)(
    IN  struct _EFI_BOOT_MODE_MGMT_PROTOCOL *This,
    OUT EFI_OS_BOOT_MODE                    *BootMode,
    IN OUT UINT32                           *ProfileNameElements,
    OUT CHAR16                              *ProfileName
    );

Parameters

Return values

RETURN CODE DESCRIPTION

EFI_SUCCESS Success

EFI_NOT_FOUND The boot mode data was not found.

EFI_VOLUME_CORRUPTED A required storage partition is not initialized or is corrupted.

EFI_INVALID_PARAM An invalid parameter was passed to the function.

EFI_BUFFER_TOO_SMALL Not enough space in the provided buffer.

Requirements

Related topics

This function is used to retrieve the boot mode and optional profile name from the UEFI firmware.

This
[in] A pointer to the EFI_BOOT_MODE_MGMT_PROTOCOL instance.

BootMode
[out] A pointer to the enumeration that holds the boot mode of the device.

ProfileNameElements
[in] [out] A pointer to a UINT32 value that receives the number of characters in the profile name.

ProfileName
[out] A pointer to the name of the current profile.

Returns one of the following status codes:

Header: User generated

Boot mode management UEFI protocol

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/efi-boot-mode-mgmt-protocol-getbootmodeinfo.md


EFI_BOOT_MODE_MGMT_PROTOCOL.SetBootModeInfo
7/13/2017 • 2 minutes to read • Edit Online

typedef EFI_STATUS
(EFIAPI *EFI_SET_BOOT_MODE_INFO)(
    IN  struct _EFI_BOOT_MODE_MGMT_PROTOCOL *This,
    IN EFI_OS_BOOT_MODE                    *BootMode,
    IN UINT32                           *ProfileNameElements OPTIONAL,
    IN CHAR16                              *ProfileName OPTIONAL
    );

Parameters

Return values

RETURN CODE DESCRIPTION

EFI_SUCCESS Success

EFI_NOT_FOUND The boot mode data was not found.

EFI_VOLUME_CORRUPTED A required storage partition is not initialized or is corrupted.

EFI_INVALID_PARAM An invalid parameter was passed to the function.

EFI_BAD_BUFFER_SIZE The ProfileName name string is too long.

Requirements

Related topics

This function supplies a boot mode and optional profile name to the firmware to use on subsequent boots.

This
[in] A pointer to the EFI_BOOT_MODE_MGMT_PROTOCOL instance.

BootMode
[in] A pointer to the enumeration that holds the boot mode of the device.

ProfileNameElements
[in] A pointer to a UINT32 value of the number of characters in the profile name to set.

ProfileName
[in] A pointer to the name of the boot mode profile to set.

Returns one of the following status codes:

Header: User generated

Boot mode management UEFI protocol

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/efi-boot-mode-mgmt-protocol-setbootmodeinfo.md


Microsoft Manufacturing OS
7/13/2017 • 2 minutes to read • Edit Online

Working with MMOS

Developing user mode test applications

Microsoft Manufacturing OS (MMOS), an optimized configuration of the operating system, facilitates efficient
manufacturing. MMOS is intended to provide the following capabilities:

Fast boot time resulting from a smaller image that contains only the code necessary to support
manufacturing test execution. The smaller OS image can be flashed quickly, accelerating the manufacturing
process.

The ability to create an OEM-customized MMOS image that includes unique drivers and test applications.

Support for OEM-developed component-level testing, in addition to full-function quality and calibration
testing.

Access to low-level native APIs for direct testing of phone hardware components.

The ability to create a mechanism to remotely control the test application and retrieve test logs over a USB
communication channel.

No dependency on display or touch hardware, to allow for headless operation.

The ability to directly boot into MMOS in a manufacturing environment.

Automated launch of OEM test applications when MMOS is booted.

The ability to write to the DPP partition to store unique, per-phone data.

Battery charging is supported in both UEFI and MMOS. It is set using a feature setting, so partners can
turn it on and off as desired. For more info, see MMOS image definition.

This section describes how to build and flash an MMOS image.

To work with MMOS, complete the following tasks:

1. Create your test application or other manufacturing tools as packages. For more info, see Creating
packages.

2. Create a flashing protocol and add packages to support that functionality to MMOS. For more info, see
Flashing tools.

3. Create the MMOS image. For more info, see MMOS image definition.

4. Flash the MMOS image to the device. For more info, see Flash MMOS to the device.

5. Deploy manufacturing applications. For more info, see Deploy and test a user-mode test application in
MMOS.

6. Evaluate if you want to create a WIM to be able to run MMOS in RAM. For more info, see Working with
WIM MMOS images.

To create a user mode test applications to test the device in manufacturing, complete the following tasks:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/microsoft-manufacturing-os.md
https://msdn.microsoft.com/library/dn756642


Related topics

  <Components>
    <Service
      Name="SampleMMOSSvc"
      Start="Auto"
      …

1. Develop the user mode test application using the MMOS library. For more info, see Manufacturing test
environment supported APIs and Develop MMOS test applications.

2. A service can be used to start a user mode test application. If desired, the test application can communicate
with a test controller on a PC to control the testing process and to log results.

To configure the service to start automatically when the OS boots, set the Start attribute to "Auto" in the
service package configuration file.

This capability is only available in MMOS.

3. Some apps should only be allowed to run in MMOS. You can use an API to determine if MMOS is running
or not. For more info, see Determine if MMOS is running.

4. To cause the device to enter the connected standby power state, call the SetScreenOff function. For more
info, see Calling SetScreenOff to enter connected standby.

Develop MMOS test applications



MMOS image definition
7/13/2017 • 7 minutes to read • Edit Online

Creating an MMOS image

Creating OEM packagesCreating OEM packages

Specifying features in MMOSSpecifying features in MMOS

FEATURE DESCRIPTION

This section provides instructions for creating Windows 10 Mobile MMOS images. This process is similar to the process for
creating the primary OS image.

The MMOS image created during this process requires packages from the SoC manufacturer and the OEM in addition to those
provided by Microsoft. The OEM packages that are included in the sample MfgOEMInput.xml configuration file are for illustration
purposes only. OEMs should remove those example packages and replace them with their own OEM packages. It is up to the OEM
to determine which set to include in MMOS. OEMs can add additional OEM packages containing test applications and test
controllers, etc.

Important
All the imaging and packaging tools are located in %WPDKCONTENTROOT%\Tools\bin\i386. This path must be included in your
environment Path for the tools to work. You must run these tools from a Visual Studio command-line window as an Administrator
with access to MakeCat.exe in the environment path.

Adding content to an image is done by creating your own packages. OEM packages can be added to an image by modifying the
MfgOEMInput.xml file before creating an image with Windows Imaging and Configuration Designer (ICD).

For instructions on creating packages, see Creating packages.

You can use the Feature element in the MfgOEMInput.xml file to include optional packages provided by Microsoft. You can
modify the input XML file to support different features in MMOS for development, manufacturing, and retail service needs.

Manufacturing development and debugging environment

The following features are defined and supported in the manufacturing development and debugging environment. This
environment can be used to create test applications for use in manufacturing.

Important
The following features can only be used for test-signed packages and are not to be included in Customer Care WIM Images.

General features

ENABLE_BOOT_KEYS_TEST Enables a boot menu that is launched by pressing and holding the
power button. Use the Volume key to navigate and the Camera
key to select. This feature is mutually exclusive with
ENABLE_BOOT_KEYS_RETAIL.

MOBILECOREBOOTSH Enables the bootsh service (bootshscv) so that features in
startup.bsc, such as telnet and ftp, can be used.

LABIMAGE This feature causes the device to enter the FFU download mode
automatically when the device is booted. For more info, see Use
the flashing tools provided by Microsoft.

MFGTSHELL Enables TShell in MMOS and manufacturing mode. If you use this,
you need to set the TestSirepServer service to auto in your
manufacturing profile.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mmos-image-definition.md
https://msdn.microsoft.com/library/dn756642
https://msdn.microsoft.com/library/windows/hardware/dn789235


Important

FEATURE DESCRIPTION

FEATURE DESCRIPTION

Note

OPTIMIZED_BOOT Modifies the behavior of the OS boot process to start some system
processes and services before all device drivers are started.
Enabling this feature may decrease boot time, but it may also cause
regressions in boot behavior in some scenarios.

BOOTKEYACTIONS_RETAIL This feature enables a set of button actions for use in retail devices.

DISABLE_FFU_PLAT_ID_CHECK Disables the device platform validation in the Microsoft flashing
application. For more information about the platform check in
flashing, see Use the flashing tools provided by Microsoft.

The device platform validation for flashing must not be disabled
in retail images.

PERF_TRACING_TOOLS Contains tools for doing performance analysis, such as tools for
stopping and merging ETL tracing.

ENABLE_BOOT_PERF_BASIC_TRACING Enables boot performance tracing events to be generated.

ENABLE_BOOT_PERF_CPU_PROFILING_TRACING Enables CPU profiling events on top of what
ENABLE_BOOT_PERF_BASIC_TRACING enables.

Debug features

Use the following settings to specify the transport that is used for debugging. If a debugging feature is not specified, debugging
will not be enabled in MMOS.

KDNETUSB_ON Includes all kernel debugger transports and enables KDNET over
USB.

KDUSB_ON Includes all kernel debugger transports and enables KDUSB.

Do not include either KDUSB_ON or KDNETUSB_ON if you need to
enable MTP or IP over USB in the image. If the kernel debugger is
enabled in the image and the debug transports are used to
connect to the phone, the kernel debugger has exclusive use of
the USB port and prevents MTP and IP over USB from working.

KDSERIAL_ON Includes all kernel debugger transports and enables KDSERIAL with
the following settings: 115200 Baud, 8 bit, no parity.

KD Includes all kernel debugger transports in the image, but does not
enable the kernel debugger.

MFGCRASHDUMPSUPPORT This feature enables offline crash dump functionality by using the
wpcrdmp method for MMOS images. When the device crashes, it
activates wpcrdmp and saves a dump of the memory and SOC
subsystems to the disk for an offline investigation.

https://msdn.microsoft.com/library/windows/hardware/dn789235


FEATURE DESCRIPTION

FEATURE DESCRIPTION

Note This cannot be used with DEDICATEDDUMPONSDCARD.

Note This cannot be used with DEDICATEDDUMPONEEMC.

MWDBGSRV This feature adds support for the user mode debug server.

The previous DEBUGGERON feature has been deprecated.

Other debug features

Dumpsize setting features - The following three features must only
be used with the Test and Health image types. These features must
not be used with retail images. Only one dumpsize setting can be
selected at a time.

DUMPSIZE512MB Specifies a pre-allocated crash dump file size of 592 MB. This is
intended for a phone with 512 MB of memory.

DUMPSIZE1G Specifies a pre-allocated crash dump file size of 1104 MB. This is
intended for a phone with 1024 MB of memory.

DUMPSIZE2G Specifies a pre-allocated crash dump file size of 2128 MB. This is
intended for a phone with 2048 MB of memory.

Dump data storage location - The next two settings control if crash
dump data is stored on eMMC or if crash dump data is stored on
an SD card. Only one of these settings can be selected at a time.
These two features must only be used with the Test, Health and
Selfhost image types. These features must not be used with retail
images.

DEDICATEDDUMPONEMMC Specifies that the DedicatedDumpFile location as
c:\crashdump\dedicateddump.sys.

DEDICATEDDUMPONSD DEDICATEDDUMPONSD – Specifies that the DedicatedDumpFile
location as d:\dedicateddump.sys

When DEDICATEDDUMPONSD is used, crash dump will be disabled
if the user removes the SD card or if the card is not present when
the device booted. To re-enable crash dump:

1. Set this registry key 
HKLM\System\CurrentControlSet\Control\CrashControl\CrashDumpEnabled

to the value of 
HKLM\System\CurrentControlSet\Control\CrashControl\ExpectedCrashDumpEnabled

2. Reboot the device.



FEATURE DESCRIPTION

FEATURE DESCRIPTION

DBGCHKDISABLE This feature disables debugger connection checking and the
debugger connection status is ignored.

The effect on the debugger behavior is different depending on the
SoC that is being used.

For QC8x26 and QC8974 devices, include DBGCHKDISABLE
to ensure that offline dumps will be generated even if the
device is connected to a debugger. Otherwise, an Offline
Dump (Bug Check Code 0x14C dump) will not be created
but a raw dump will still be created.

For 8960 devices, include DBGCHKDISABLE to ensure that
offline dumps will be generated even if the device is
connected to a debugger. Otherwise, an Offline Dump (i.e.
Bug Check Code 0x14C dump) will not be created.

MSVCRT_DEBUG This feature adds support for explicit linking of debug c-runtime
libs by including msvcp120d.dll and msvcr120d.dll in the image.
For more information, see this topic on MSDN: CRT Library
Features.

MWDBGSRV This feature adds support for the user mode debug server.

NOLIVEDUMPS Disables non-fatal kernel error reports. These reports contain
debugging information for OS and driver developers.

TELEMETRYONSDCARD This feature enables temporary storage of debugging logs and files
on the SD card. This feature is only appropriate for test/self-host
images and only on devices with less than 8 GB of free space of
primary storage.

Customer Care WIM Images

The following features are supported in MMOS in the manufacturing production environment.

ENABLE_BOOT_KEYS_RETAIL Enables a set of buttons on the phone for use in retail device. This
feature is mutually exclusive with ENABLE_BOOT_KEYS_TEST (see
the previous table).

ENABLE_IP_OVER_USB Enables IP Over USB.

ENABLE_USB_COMPOSITE Enables the systems on a chip (SoC) provided composite USB stack
in MMOS.

Dual use features

These MMOS features can be used with either test or retail customer care images.

ENABLE_MMOS_CHARGING Enables battery charging when running in MMOS.

UEFI charging must be either disabled or enabled for MMOS to work. Only one of these options can be set at a time.

ENABLE_UEFI_CHARGING Enables battery charging when running in UEFI.

http://msdn.microsoft.com/library/abx4dbyh.aspx


Configuring the MMOS MfgOEMInput.xml fileConfiguring the MMOS MfgOEMInput.xml file

DISABLE_UEFI_CHARGING Disables battery charging when running in UEFI.

There are additional features that are defined in other image types of the operating system that are not supported in MMOS. This
list is not exhaustive, but it provides examples of features that are not supported in the manufacturing or retail environments:

TESTINFRASTRUCTURE

IMGFAKELED

L ABIMAGE

LOCATIONFRAMEWORKAPP

<Description>Manufacturing OS generation for ARM.fre</Description>
<Product>Manufacturing OS</Product>

1. Open the sample MfgOEMInput.xml file using a text editor. By default, this file is installed to
%WPDKCONTENTROOT%\OEMInputSamples\8960Fluid.

2. Add needed MMOS features as described previously.

3. Add any required OEM packages to the file.

4. Locate the Product element and confirm that it is set to " Manufacturing OS ".

You can optionally update the description to record information about the OS image.

5. Locate the SOC and Device elements and change them as necessary.

6. Add %WPDKCONTENTROOT%\Tools\bin\i386 to your environment Path variable.



Flash MMOS to the device
7/13/2017 • 2 minutes to read • Edit Online

After the MMOS image definition is complete, the image can be flashed to the device

c:\>sign <path to cat file>
c:\>ImageSigner SIGN <path to ffu> <path to cat file>

c:\>sign MMOS.cat
c:\>ImageSigner SIGN MMOS.ffu MMOS.cat

c:\>ffutool -flash <path to ffu image file>

c:\>ffutool -flash C:\MMOS\MMOS.ffu

Logging to ETL file: C:\Users\Nancy\AppData\Local\Temp\ffutool8276.etl 
Found device: 
Name: Contoso.DCD6000 Phone.DCD6000 
ID: 00000045-14ca-3016-8fbe-120000000000 
Flashing: MMOS.ffu 
[==================================================] 100.00% 
Transferred 157.88 MB in 50.56 seconds, overall rate 3.12 MB/s.

1. Flashing on the host side is accomplished through a connection established with WinUSB, the Microsoft
generic USB device driver. The necessary drivers are included by default in Windows 8 and Windows 10. In
Windows 7, the necessary drivers can be installed from Windows Update. To configure a Windows 7
computer to install the necessary drivers, click Start, type “Device Installation Settings”, select Yes, do this
automatically (recommended), and then click Save Changes.

2. Put the device in flashing mode by holding the volume up button while powering up the device. After the
device is in flashing mode, connect the USB cable to your computer.

3. Verify that the device is detected in Device Manager as WinUsb Device.

4. To be able to use the ffutool, sign, and ImageSigner tools, add %WPDKCONTENTROOT%\Tools\bin\i386
to your environment Path variable.

5. Prior to flashing the FFU file to the device, you must sign the FFU file using the following syntax in the
command prompt. The cat file is generated with the FFU, when using the ImgGen tool.

For example:

6. At a command prompt, run the ffutool command, which uses the following syntax:

For example:

7. You should see output similar to the following.

8. The device will reboot into MMOS. The display on the device will show a small rotating graphic.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/flash-mmos-to-the-phone.md


Working with WIM MMOS images
7/13/2017 • 2 minutes to read • Edit Online

Creating a WIM Image

ImgToWIM <FFUFileName> <WIMFileName> 

You can temporarily copy a WIM (Windows Imaging) image over to a device and then boot to that image running
in volatile RAM memory. This capability can be used to service the device using MMOS. For more info about
MMOS, see Microsoft Manufacturing OS. The advantage of using this approach for servicing is that you will not
need to reserve space on the retail OS for code that is only used in servicing. Minimizing the space that is
consumed by the OS is an important consideration in low cost devices.

Important
Only MMOS test images are currently supported. Retail signing is not currently supported.

Before you create a WIM image, you must complete the steps described in the following topics:

MMOS image definition

In addition, follow these guidelines to prepare an image so that it will operate properly when converted to a WIM
image.

<Microsoft>
  <Feature>MOBILECOREBOOTSH</Feature>
  <Feature>ENABLE_BOOT_KEYS_TEST</Feature>
  <Feature>ENABLE_IP_OVER_USB</Feature>
</Microsoft>

The following XML shows an example of the Microsoft features that can be used in a test WIM Image.

You may want to add additional features such as battery charging (ENABLE_MMOS_CHARGING)
depending on your needs. For additional info about the MMOS features, see MMOS image definition.

Do not include packages that access other partitions on the device. Because the WIM is loaded and running
in RAM, it is not able to access other partitions and the OS cannot contain packages that reference other
partitions.

After you complete the steps in the preceding topics, use the ImgToWIM command to convert the signed FFU
image to a WIM image. The ImgToWim executable is located in %WPDKCONTENTROOT%\Tools\bin\i386. The
usage is summarized here.

When you enter the ImgToWim command, you should see output that is similar to the following.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/working-with-wim-mmos-images.md


C:\TestWIM>ImgToWim MMOS.ffu MMOSWim.wim
Reading the image file: MMOS.ffu
ETW Log Path: C:\Users\USER1\AppData\Local\Temp\storage_session_1210.etl
OS Version: Microsoft Windows NT 6.2.9200.0
OpenDiskInternal: Creating empty virtual disk.
No mounted WP disks found.
Storage Service: Created a new image in 0.7 seconds.
AddAccessPath: Mount point for volume MainOS: C:\Users\USER1\AppData\Local\Temp
\oji20cvi.mq5.mnt\.

Creating WIM at 'C:\TestWIM\MMOSWim.wim' ...

Capturing 'MainOS'...
WIM creation complete.
DismountFullFlashImage:[2.87] Cleaning up temporary paths.
CleanupTemporaryPaths: Cleaning up temporary path C:\Users\USER1\AppData\Local\
Temp\oji20cvi.mq5.mnt\.
Storage Service: Dismounting the image in 2.9 seconds.

Booting from a WIM Image

ffutool -WIM <WIMFileName.wim>

Use the FFUTool WIM option to boot from a WIM image. The usage is summarized here.

To boot the device from a WIM image, complete the following steps.

C:\> ffutool -wim MMOSWim.wim
Found device:
Name:   Contoso.MSM8960.JD301_ATT.3.2.1
ID:     00000011-f151-a509-0000-000000000000
Booting WIM: MMOSWim.wim
WIM transfer completed in 26.550073 seconds.

1. Set up the PC side flashing tools.

2. Put the device in flashing mode by holding the volume up button while powering up the device. After the
device is in flashing mode, connect the USB cable to your computer.

3. Use the FFUTool command with the -WIM option to boot a device from a WIM image. It is located in
%WPDKCONTENTROOT%\Tools\bin\i386. When you enter the FFUTool -WIM command, you should
see output that is similar to the following.

The ffutool sends a WIM opcode to the device, along with information about the size of the image. Next a RAM
buffer is allocated that will hold image. The ffutool then transfers the WIM image to the device. Once it’s fully
transferred, the device boots into the WIM image in memory.

Note
The current MMOS WIM images may not display the rotating disc graphic but MMOS is still functional.



Creating a secure MMOS WIM image
7/13/2017 • 4 minutes to read • Edit Online

Installing the needed certificates on the phone

Creating a secure MMOS WIM image

You can use the SecWimTool to create a secure WIM image that can be used to service retail devices.

Before you can create a secure WIM, you must first create the WIM image itself. For info about how to create a
WIM image, see Working with WIM MMOS images.

To use the MMOS WIM in retail, it will need to be signed using retail certificates. More info will be provided in a
later release of this documentation about how to work with the retail images.

For the secure WIM to run on the device, the signing certificates must match the certificates in the Platform Key
(PK) that is provisioned on the device.

Before you run the tools, you must first provision the appropriate certificates on the device. To become familiar
with SecWimTool, partners can use the secure boot test tool to provision test (non-retail) certificates on the device.
Use the secure boot retail tool for retail device.

To create a secure wim image, complete the following steps.

C:\> ffutool -list
Name:   Contoso.DCD9X0X.BD301_ATT.3.2.1
ID:     00000011-f151-a509-0000-FF0000000000

C:\> SecWimTool -build MMOSwim.wim MMOS wim.secwim -platform Contoso.DCD9X0X.BD301_ATT.3.2.1

C:\> SecWimTool -extractcat MMOSwim.secwim MMOSwim.cat

1. Open an elevated developer prompt in the directory that contains the output from the ImgToWim image
generation process. For info about how to create a WIM image, see Working with WIM MMOS images.

Note
The image generation executables are located in %WPDKCONTENTROOT%\Tools\bin\i386. You can use
the set  command to add that path to your environment.

2. The platform ID must be used to create the WIM for a specific platform. The platform ID is set in using a
device platform XML file.

You can display the platform ID using the ffutool command with the -list option.

Build the unsigned secure WIM targeted for a specific platform using the -platform command option as
shown here. No output is returned if the command completes successfully.

3. Extract the catalog from the secure WIM image. No output is returned if the command completes
successfully.

4. You can sign the WIM with test certificates to test the WIM process. For a retail secure WIM, the FFU must

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/creating-a-secure-mmos-wim-image.md


Working with serial numbers

C:\> sign /pk MMOSwim.cat

signtool.exe sign /v /a /u 1.3.6.1.4.1.311.76.5.10 /r "Microsoft Testing Root Certificate Authority 
2010" /fd SHA256 /s my /c "1.3.6.1.4.1.311.21.8.7587021.7518
74.11030412.6202749.3702260.207.4167089.4524209"    "MMOSwim.cat"
The following certificate was selected:
    Issued to: User1
    Issued by: MSIT Test CodeSign CA 3
    Expires:   Sat Jun 21 15:05:01 2014
    SHA1 hash: F571C183F768638B424A59772A1AFB1168164AFC

Done Adding Additional Store
Successfully signed: MMOSwim.cat

Number of files successfully Signed: 1
Number of warnings: 0
Number of errors: 0
signed:  "MMOSwim.cat"
Sign.Cmd RC=0

C:\> SecWimTool -replacecat flashwim.cat MMOSwim.secwim

C:\> ffutool -wim MMOSwim.secwim

Found device:
Name:   Contoso.MSM8X0X.BD301_ATT.3.2.1
ID:     00000011-f151-a509-0000-FF0000000000
Booting WIM: MMOSwim.secwim
WIM transfer completed in 26.550073 seconds.

be signed by Microsoft.

Important
Information about signing with the final retail certificates will be provided in a later release of the
documentation.

To sign the catalog using the test image certificate, use this command.

This command will generate output that is similar to the following.

5. Replace the existing catalog with a signed catalog. No output is returned if the command completes
successfully.

6. Place the device in flashing mode.

7. Flash the WIM to the device to test it using the FFUTool.

The command will generate output that is similar to the following.

The serial number option can be used when including tools that should only be used for a specific device.

Serial Number- The serial number is a unique ID for the phone that is generated automatically. You can display
the serial number using the ffutool command with the -serial option.



C:\> ffutool -serial
Serial No. : 01000500000000000000000000001234

C:\> SecWimTool -build MMOSwim.wim MMOS wim.secwim -serial 01000500000000000000000000001234

Troubleshooting

An FFU error occurred: Device returned WIM boot failure status code 0x80000004.

SecWimTool command line reference

SecWimTool <command> <arguments>

SecWimTool -build <WIM> <output file> [-platform <ID>] [-serial <serial number>]

secwim -extractcat <path to .secwim> [<output file>]

secwim -replacecat <path to catalog> <path to .secwim>

Related topics

To build a secure WIM targeted for a specific device, use the –serial command option as shown here.

When you flash the image if the PK doesn’t match, you will receive this message.

The following summarizes the command syntax and the four command-line options for SecWimTool.

-build - Packs the specified WIM into a secwim that is suitable for signing and transferring to a retail device.

Platform - Includes targeting information for a specific platform type that the WIM is intended for. This
option must be used to target the WIM for a specific platform.

Serial - Includes the serial number of a specific device the WIM will be used on. This option can be used
when including tools that should only be used for a specific device.

-extractcat - Retrieves the catalog from the secure WIM file, and writes it either to the output file (if specified) or
stdout.

-replacecat - Replaces the catalog in the specified .secwim with the contents of the new catalog.

-? - Displays command line help. Use secwimtool -<command> -?  for command level help.

Working with WIM MMOS images



Develop MMOS test applications
7/13/2017 • 2 minutes to read • Edit Online

Test development in MMOS

Libraries in MMOS

Developing user-mode tests in MMOS is very similar to developing user-mode applications.

Use the following steps to create, deploy, and test a MMOS test application.

#include <stdio.h>
#include <Windows.h>

int main()
{
    int i = 0;
    for(;;)
    {    
        wprintf(L"Test");
        Sleep(500);
        if (i == 12)
        {
            wprintf(L"Done");
            break;
        }
        i++;
    }
    return 0;
}

sign.cmd ApplicationForDrivers.exe

1. Create an app.

2. Add code to test the desired component and display or send those results as desired. For example, this
sample code can be used to display a console message in MMOS.

3. Build the test application in Visual Studio.

4. Locate the binaries generated when you built the app. Typically they are in a subdirectory of the projects
folder, such as \MyProject\arm\debug\.

5. Sign the executable by using the sign.cmd script in the “%WPDKCONTENTROOT%\Tools\bin\i386” folder,
as shown in the example below.

6. To test your app, copy it to the device in the C:\Data\test directory by using FTP and run it via Telnet. For
more info, see Deploy and test a user-mode test application in MMOS.

Adding a lib in MMOS is similar to adding a lib in the production OS. Currently, this default lib location for the kit
is configured in Visual Studio.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/develop-mmos-test-applications.md


$(WPDKInstallDir)lib\$(KitOs)\wp_um\$(Platform)
$(WPDKInstallDir)Tools\WPE\CRT\lib\$(Platform)

$(WPDKContentRoot)include\mmos

$(WPDKContentRoot)lib\win8\mmos\arm

Security in MMOS

* This is not a failure in CI, but a problem with the failing binary.
* Please contact the binary owner for getting the binary correctly signed.

To add a lib in Visual Studio, select Project > Properties > Configuration Properties > VC++ Directories >
Include Directories. To use the MMOS libraries, append the following directory to the path.

Add the arm directory. In Visual Studio, select Project > Properties > Configuration Properties > Linker >
General > Additional Library Directories. To use the MMOS libraries, append the following directories to the
path.

In development environments, user-mode test binaries can be test signed (not production signed). Use the
process described in Sign binaries and packages to test sign the binaries.

If the test binaries are not signed and code integrity checking is active as it normally is, you will receive an error
message similar to the following in the debug window.

https://msdn.microsoft.com/library/windows/hardware/dn789217


Deploy and test a user-mode test application in
MMOS
7/13/2017 • 3 minutes to read • Edit Online

Preparing the device

Running Virtual Ethernet and determining the IP address of the device

To copy files to an MMOS image and run programs, you can use FTP and Telnet over a Virtual Ethernet
connection.

Important
The USB drivers and protocols described here must not be used in manufacturing or retail servicing. They are
provided as a convenience for engineering bring-up.

Engineering builds of the OS typically include Ping, FTP, and Telnet servers. To confirm that these are active in the
OS, examine the startup configuration or establish a debug connection to MMOS to view the files that are loaded.

To configure a device to support TCP/IP over USB, you must install the necessary tools and use the BCDEdit tool
to modify the device’s boot options that are stored in the BCD file.

Virtual Ethernet creates a connection between the device's USB connection and the TCP/IP transport on the PC.
connecting the device or powering it on, start Virtual Ethernet on the PC. VirtEth.exe is located in the
“%ProgramFiles(x86)%\Microsoft Windows Phone 8 KDBG Connectivity\bin” folder.

A Virtual Ethernet console window will open. Leave this window open to maintain the connection to the phone;
closing the window closes the connection.

NIC UP: 00-11-38-EA-88-7E : SUCCESS

C:\>arp -a

Interface: 10.178.1.40 --- 0xb
  Internet Address      Physical Address      Type
  10.178.0.1            cc-ef-48-a7-6f-3f     dynamic
  10.178.1.94           00-11-38-ea-88-7e     dynamic
  10.178.3.255          ff-ff-ff-ff-ff-ff     static
  ... 

1. With Virtual Ethernet running, connect and power on the phone. When the device is connected, you will see
lines of output that include the MAC address of the device. Virtual Ethernet reports the device’s MAC
address in output similar to the following:

Note the 12-digit device MAC address from the VirtEth console window and use it in the next step to
determine the device's TCP/IP address.

2. Open a new command-prompt window and type arp -a. Output similar to the following will be displayed.

Use the IP address that is associated with the device MAC address to connect to the device via FTP and Telnet.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/deploy-and-test-a-user-mode-test-application-in-mmos.md


Establishing an FTP connection

Establishing a Telnet session

Troubleshooting: Confirming TCP/IP connectivity

Debugging in MMOS

Enabling debug supportEnabling debug support

<Microsoft>
  ...
  <Feature>KDNETUSB_ON</Feature>
   ...
</Microsoft>

Enabling communication settingsEnabling communication settings

Establishing the debug connectionEstablishing the debug connection

To browse and copy files via FTP:

Open Windows Explorer and type: FTP:\\W.X.Y.Z in the address bar, replacing W.X.Y.Z with the IP address of
the device.

You should see the files on the device listed. Use Windows Explorer to copy files to or from the device, such as
executable test programs or logs of test results.

To close the FTP connection, unmount the phone file system by selecting Safely Remove Hardware in the
Windows notification area.

Make sure Telnet is enabled on the PC. To enable Telnet in the Windows operating system, select Control Panel >
Programs and Features > Turn Windows features on or off. In the Windows Features list, select Telnet
Client, and then click OK.

To establish a Telnet session with the device:

Open a command-prompt window and type: telnet W.X.Y.Z, replacing W.X.Y.Z with the IP address of the device

The command prompt window that appears is cmd.exe running on the device. From that command prompt, you
can run commands on the device, such as executing test applications that you included in the MMOS image.

You can use ping to test the TCP/IP connection with the device:

Open a command-prompt window and type: pingW.X.Y.Z, replacing W.X.Y.Z with the IP address of the device

The command should indicate that the packets were returned. If this does not work, one common issue to
investigate is the firewall configuration on the PC.

To enable debugger support in MMOS, both communication and OS settings must be modified.

To enable debugging support in MMOS, specify the following internal optional feature in the MfgOEMInput.xml
file.

This adds the required packages to the MMOS image. For more info about working with the MfgOEMInput.xml
file, see MMOS image definition.

To enable the OS, communication settings must be changed after the image is flashed.

To connect to MMOS for debugging, use WinDbg to specify the key and port that you configured earlier by using



windbg.exe -k net:Port=50000,Key=1.2.3.4

BCDEdit.



Determine if MMOS is running
6/6/2017 • 2 minutes to read • Edit Online

You can check to see if MMOS is running the same way that you check when running in Manufacturing Mode. For
more info, see Detect Manufacturing Mode.

Note You should not query the ManufacturingOS registry setting as this key is obsolete.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/determine-if-mmos-is-running.md


Manufacturing test environment supported APIs
6/6/2017 • 2 minutes to read • Edit Online

MMOS.Lib

Supported APIs

Microphone, audio and audio routingMicrophone, audio and audio routing

DisplayDisplay

The manufacturing test environment (MTE) supports APIs and techniques that are designed for use only in
manufacturing. This section describes the specific libraries that are supported in MTE.

MMOS.Lib provides a mirror interface to the Windows 8 mincore.lib. For general information about mincore.lib,
see Windows API sets.

The primary user-mode native APIs for use in MTE are defined in the MMOS library (.lib) files installed by the
Windows Driver Kit (WDK) as %WPDKCONTENTROOT%\Lib\ folder.

The following sections provide a preview of the features that the provided MMOS APIs allow for testing.
Additional information about the MMOS supported APIs will be provided in a later release of this documentation.
The API header sub-folders and Windows SDK headers are located in the “%ProgramFiles(x86)%\Windows
Kits\10\include\” folder. These APIs can be used in user-mode applications for MMOS. For more info on creating
and running MMOS applications, see the Develop MMOS test applications topic.

The audio and audio routing APIs allow test apps to test the audio and audio routing capabilities. Some scenarios
that test apps can test are playing frequencies on each of the different audio end-points. The microphone can be
tested using the audio APIs. The following header files contain the audio and audio routing APIs.

Mmos\audiotunerapi.h

Mmos\audiotunerdef.h

Mmos\audiotunerprop.h

Km\ksmedia_phone.h

Um\initguid.h

Um\avrt.h (Windows SDK)

ctime.h (Windows SDK)

Um\audioclient.h (Windows SDK)

Um\mmdeviceapi.h (Windows SDK)

Um\functiondiscoverykeys.h (Windows SDK)

You can use the Direct3D to display information. For general info, see this MSDN link Direct3D 11 Graphics. The
following header files contain the D3D APIs.

Um\D3DWrapper.h

Um\D3D11.h (Windows SDK)

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/manufacturing-test-environment-supported-apis.md
http://msdn.microsoft.com/library/windows/desktop/Hh802935.aspx
http://msdn.microsoft.com/library/windows/desktop/ff476080.aspx


CameraCamera

SensorsSensors

LEDLED

SD CardSD Card

TouchTouch

VibratorVibrator

Hardware buttonsHardware buttons

FM radioFM radio

You can use the Media Foundation CaptureEngine APIs to work with the camera. For general info about working
with Media Foundation, see Media Foundation Programming Reference on MSDN. For information about the
IMFCaptureEngine interface, see this MSDN topic, IMFCaptureEngine interface. The following header files contain
interfaces that may be useful for camera testing.

Um\mfapi.h

Um\mfobjects.h

Um\mfidl.h

Um\mfreadwrite.h

Um\mfcaptureengine.h

Um\wincodec.h

For more information about sensors and APIs that are used for testing in MMOS, see the Sensors topic.

The LED APIs allow test apps to test the notification LED by calling different IOCTLs to cause the notification LED
to turn on, turn off, or blink. The following header file contains the LED APIs.

Mmos\hwn.h

The SD card APIs allow test apps to test the SD card driver by calling different IOCTLs to test cases such as
reading and writing to the card. The following header file contains the SD card APIs.

Um\sffdisk.h

For more info about testing the Touch controller, see the Access the touch interface in MMOS topic. The following
header files contain the touch APIs.

Um\InputDriverRawSamples.h

Um\WinPhoneInput.h

The vibrator APIs allow test apps to test the vibrator on the device by calling different IOCTLs. The IOCTLs allow
the apps to test various speeds and periods of the vibrator driver on the device. The following header file contains
the vibrator APIs.

Mmos\hwn.h

For more information about hardware buttons, see the Hardware buttons topic. The following header file contains
the hardware button APIs.

UM\ntddkbd.h

The FM radio APIs allow test apps to test the FM radio tuner on the phone by calling FM IOCTLs. The IOCTLs
allow apps to test various scenarios such as tuning to a frequency or seeking. The following header files contain
the FM radio APIs.

http://msdn.microsoft.com/library/windows/desktop/ms704847.aspx
http://msdn.microsoft.com/library/windows/desktop/hh447846.aspx


Wi-FiWi-Fi

Related topics

Mmos\audiotunerapi.h

Mmos\audiotunerprop.h

For more information about Wi-Fi testing APIs, see the Wi-Fi manufacturing API topic. The following header file
contains the Wi-Fi APIs.

Um\wifimte.h

Calling SetScreenOff to enter connected standby



Manufacturing Mode Phone Call Testing APIs
7/19/2017 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

These APIs are used by phone manufacturers to test phone call functionality while the device is booted into
Manufacturing Mode.

MfgPhoneDial Causes the phone to dial a call.

MfgPhoneEndCall Ends a phone call.

MfgPhoneGetSimLineCount Gets the number of currently detected SIM slots.

MfgPhoneGetSimLineDetail Retrieves a struct that contains the current details for a
given SIM-based phone line.

MfgPhoneGetSpeaker Returns a boolean indicating whether the phone speaker is
being used, as opposed to the handset earphone.

MfgPhoneInitialize Initializes the phone system and the internal state of the
API implemented by DLL.

MfgPhoneSetSimLineEventNotifyCallback Callback-based notification mechanism for receiving
events on SIM-based phone lines.

MfgPhoneSetSpeaker Sets a value indicating whether the phone speaker should
be used, as opposed to the handset earphone.

MfgPhoneUninitialize Uninitializes the phone system and the internal state of
the API implemented by DLL.

MFGPHONE_CALLSTATUS Provides information about the status of the call.

MFGPHONE_LINESYSTEMTYPE Provides information about the type of line system.

MFGPHONE_REGISTRATIONSTATE Provides information about the state of the phone line?
call?

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/manufacturing-mode-phone-call-testing-apis.md


TOPIC DESCRIPTION

MFGPHONE_SIMLINEDETAIL Provides information about a particular SIM-based phone
line.

MFGPHONE_SIMSTATE Provides information about the state of the SIM.



MfgPhoneDial function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneDial(
  _In_ UINT    SimSlot,
  _In_ PCWSTR  DialNumber
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Causes the phone to dial a call.

MfgPhoneDial is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

SimSlot [in]
The SIM-based phone line to use.

DialNumber [in]
The phone number to dial.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphonedial.md


MfgPhoneEndCall function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneEndCall(
  _In_ UINT SimSlot  
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Ends a phone call.

MfgPhoneEndCall is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

SimSlot [in]
The SIM-based phone line whose call should be ended.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphoneendcall.md


MfgPhoneGetSimLineCount function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneGetSimLineCount(
  _Out_ PUINT SimLineCount
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Gets the number of currently detected SIM slots.

MfgPhoneGetSimLineCount is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

SimLineCount [out]
Pointer to a UINT that specifies the number of currently detected SIM slots. Both active and inactive S IM slots are
included in the count.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphonegetsimlinecount.md


MfgPhoneGetSimLineDetail function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneGetSimLineDetail(
  _In_  UINT                     SimSlot,
  _Out_ PMFGPHONE_SIMLINEDETAIL  SimLineDetail,
  _In_  ULONG                    SimLineDetailSize,
  _Out_ PULONG                   RequiredSize
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Retrieves a struct that contains the current details for a given SIM-based phone line.

MfgPhoneGetSimLineDetail is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

SimSlot [in]
Specifies the SIM-based phone line.

SimLineDetail [out]
Pointer to a MFGPHONE_SIMLINEDETAIL struct that contains the current details for the SIM-based phone line
specified by SimSlot.

SimLineDetailSize [in]
Specifies the size of the SimLineDetail parameter.

RequiredSize [out]
Specifies the required size for the SimLineDetail parameter.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphonegetsimlinedetail.md


MfgPhoneGetSpeaker function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneGetSpeaker(
  _Out_ PBOOL pbSpeakerOn
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Returns a boolean indicating whether the phone speaker is being used, as opposed to the handset earphone.

MfgPhoneGetSpeaker is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

pbSpeakerOn [out]
TRUE if the speaker is being used, otherwise FALSE.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphonegetspeaker.md


MfgPhoneInitialize function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneInitialize(void);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Initializes the phone system and the internal state of the API implemented by DLL.

MfgPhoneInitialize is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

This function has no parameters.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphoneinitialize.md


MfgPhoneSetSimLineEventNotifyCallback function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneSetSimLineEventNotifyCallback(
  _In_ MFGPHONE_SIMLINEEVENT_NOTIFY_CALLBACK  Callback,
  _In_ PVOID                                  Context
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Callback-based notification mechanism for receiving events on SIM-based phone lines.

MfgPhoneSetSimLineEventNotifyCallback is for phone manufacturers and can only be called in
Manufacturing Mode.

Syntax

Parameters

Callback [in]
The callback function to call when the event occurs.

Context [in]
The context.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphonesetsimlineeventnotifycallback.md


MfgPhoneSetSpeaker function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneSetSpeaker(
  _In_ BOOL bSpeakerOn
);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Sets a value indicating whether the phone speaker should be used, as opposed to the handset earphone.

MfgPhoneSetSpeaker is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

bSpeakerOn [in]
TRUE if the speaker should be used, otherwise false.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphonesetspeaker.md


MfgPhoneUninitialize function
6/6/2017 • 2 minutes to read • Edit Online

HRESULT APIENTRY MfgPhoneUninitialize(void);

Mfgphone.h (include Mfgphone.h)

MFGPHONE.DLL

Uninitializes the phone system and the internal state of the API implemented by DLL.

MfgPhoneUninitialize is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Parameters

This function has no parameters.

Return value

S_OK is returned upon success and an error code is returned otherwise.

Requirements

Header

DLL

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphoneuninitialize.md


MFGPHONE_CALLSTATUS enumeration
6/6/2017 • 2 minutes to read • Edit Online

typedef enum _MFGPHONE_CALLSTATUS { 
  MFGPHONE_CALLSTATUS_UNKNOWN   = 0,
  MFGPHONE_CALLSTATUS_IDLE      = 1,
  MFGPHONE_CALLSTATUS_CALLING   = 2,
  MFGPHONE_CALLSTATUS_INCOMING  = 3,
  MFGPHONE_CALLSTATUS_ACTIVE    = 4
} MFGPHONE_CALLSTATUS;

Mfgphone.h (include Mfgphone.h)

Provides information about the status of the call.

MFGPHONE_CALLSTATUS is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Constants

MFGPHONE_CALLSTATUS_UNKNOWN
The call status is unknown.

MFGPHONE_CALLSTATUS_IDLE
The call status is idle.

MFGPHONE_CALLSTATUS_CALLING
The call status is calling.

MFGPHONE_CALLSTATUS_INCOMING
The call status is incoming.

MFGPHONE_CALLSTATUS_ACTIVE
The call status is active.

Requirements

Header

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphone-callstatus.md


MFGPHONE_LINESYSTEMTYPE enumeration
6/6/2017 • 2 minutes to read • Edit Online

typedef enum _MFGPHONE_LINESYSTEMTYPE { 
  MFGPHONE_LINESYSTEMTYPE_UNKNOWN   = 0,
  MFGPHONE_LINESYSTEMTYPE_GSM       = 1,
  MFGPHONE_LINESYSTEMTYPE_CDMA      = 2,
  MFGPHONE_LINESYSTEMTYPE_IMS       = 3
} MFGPHONE_LINESYSTEMTYPE;

Mfgphone.h (include Mfgphone.h)

Provides information about the type of line system.

MFGPHONE_LINESYSTEMTYPE  is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Constants

MFGPHONE_LINESYSTEMTYPE_UNKNOWN
The line system type is unknown.

MFGPHONE_LINESYSTEMTYPE_GSM
The type of line system is GSM.

MFGPHONE_LINESYSTEMTYPE_CDMA
The type of line system is CDMA.

MFGPHONE_LINESYSTEMTYPE_IMS
The type of line system is IMS.

Requirements

Header

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphone-linesystemtype.md


MFGPHONE_REGISTRATIONSTATE enumeration
6/6/2017 • 2 minutes to read • Edit Online

typedef enum _MFGPHONE_REGISTRATIONSTATE { 
  MFGPHONE_REGISTRATIONSTATE_UNKNOWN           = 0,
  MFGPHONE_REGISTRATIONSTATE_NOSIGNAL          = 1,
      MFGPHONE_REGISTRATIONSTATE_UNREGISTERED  = 2,
  MFGPHONE_REGISTRATIONSTATE_REGISTERING       = 3,
  MFGPHONE_REGISTRATIONSTATE_REGISTERED        = 4,
  MFGPHONE_REGISTRATIONSTATE_DENIED            = 5
} MFGPHONE_REGISTRATIONSTATE;

Mfgphone.h (include Mfgphone.h)

Provides information about the state of the phone line? call?

MFGPHONE_REGISTRATIONSTATE  is for phone manufacturers and can only be called in Manufacturing
Mode.

Syntax

Constants

MFGPHONE_REGISTRATIONSTATE_UNKNOWN
The registration state is not known.

MFGPHONE_REGISTRATIONSTATE_NOSIGNAL
There is no signal to detect the registration state.

MFGPHONE_REGISTRATIONSTATE_UNREGISTERED
The registration state is unregistered.

MFGPHONE_REGISTRATIONSTATE_REGISTERING
The registration state is registering.

MFGPHONE_REGISTRATIONSTATE_REGISTERED
The registration state is registered.

MFGPHONE_REGISTRATIONSTATE_DENIED
The registration state is denied.

Requirements

Header

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphone-registrationstate.md


MFGPHONE_SIMLINEDETAIL structure
6/6/2017 • 2 minutes to read • Edit Online

typedef struct _MFGPHONE_SIMLINEDETAIL {
  UINT                       SimSlot;
  MFGPHONE_SIMSTATE          SimState;
  MFGPHONE_REGISTRATIONSTATE RegistrationState;
  WCHAR  [64]                NetworkName;
  MFGPHONE_LINESYSTEMTYPE    LineSystemType;
  UINT                       SignalStrength;
  MFGPHONE_CALLSTATUS        CallStatus;
} MFGPHONE_SIMLINEDETAIL, *PMFGPHONE_SIMLINEDETAIL;

Mfgphone.h (include Mfgphone.h)

Provides information about a particular S IM-based phone line. This struct is retrieved via the
MfgPhoneGetSimLineDetail function.

MFGPHONE_SIMLINEDETAIL iis for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Members

SimSlot
The SIM-based phone line to which the details in this struct pertain.

SimState
An enum specifying the current state of the SIM-based phone line.

RegistrationState
An enum specifying the current registration state of the phone line.

NetworkName
WCHAR containing the name of the network.

LineSystemType
An enum specifying the line system type of the phone line.

SignalStrength
Unsigned Integer containing the signal strength of the phone line.

CallStatus
An enum specifying the call status of the phone line.

Requirements

Header

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphone-simlinedetail.md


MFGPHONE_SIMSTATE enumeration
6/6/2017 • 2 minutes to read • Edit Online

typedef enum _MFGPHONE_SIMSTATE { 
  MFGPHONE_SIMSTATE_UNKNOWN   = 0,
  MFGPHONE_SIMSTATE_NONE      = 1,
  MFGPHONE_SIMSTATE_ACTIVE    = 2,
  MFGPHONE_SIMSTATE_INVALID   = 3,
  MFGPHONE_SIMSTATE_LOCKED    = 4,
  MFGPHONE_SIMSTATE_DISABLED  = 5
} MFGPHONE_SIMSTATE;

Mfgphone.h (include Mfgphone.h)

Provides information about the state of the SIM.

MFGPHONE_SIMSTATE  is for phone manufacturers and can only be called in Manufacturing Mode.

Syntax

Constants

MFGPHONE_SIMSTATE_UNKNOWN
The SIM state is unknown.

MFGPHONE_SIMSTATE_NONE
The SIM state is none. There is no SIM.

MFGPHONE_SIMSTATE_ACTIVE
The SIM state is active.

MFGPHONE_SIMSTATE_INVALID
The SIM state is invalid.

MFGPHONE_SIMSTATE_LOCKED
The SIM state is locked.

MFGPHONE_SIMSTATE_DISABLED
The SIM state is disabled.

Requirements

Header

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/mfgphone-simstate.md


Access the touch interface in MMOS
7/13/2017 • 3 minutes to read • Edit Online

Touch sample requirements

Touch sample code

#define TOUCH_RAW_SAMPLES_DEVICE_NAME L"\\\\.\\TouchRaw0"

#include "sample.h"
#include <cfgmgr32.h>
#include <strsafe.h>

int main()
{
    HANDLE testDriver = INVALID_HANDLE_VALUE;
    BOOL exit = FALSE;
    INT32 i;
    TouchInfo touchInfo = {0};

    //
    // Open an exclusive handle to the device to get raw samples
    //
    testDriver = CreateFile(
        L"\\\\.\\TouchRaw0",
        GENERIC_READ,
        0,
        NULL,
        OPEN_EXISTING,
        0,
        NULL);

    if (INVALID_HANDLE_VALUE == testDriver)
    {
        goto exit;
    }

    //
    // Loop, printing touches to the debugger.
    // Release in upper-left corner ends the test.

The touch controller output can be captured and used in MMOS with proper touch driver support. The touch
interface sample illustrates how you can gather touch coordinates in MMOS to implement manufacturing tests.

The sample code requires that the Microsoft.Input.TchHID.spkg package to be included in the image (either the
Main OS or MMOS). The Microsoft.Input.TchHID.spkg package includes tchhid.sys, which implements the
CreateFile and Readfile functions used by the sample code.

This sample user-mode application displays the touch coordinates received by the touch screen driver.

The sample app uses the CreateFile function to open an exclusive handle to the device to receive raw touch
samples. The device name "TouchRaw0" is exposed by tchhid.sys, the HID touch class driver provided by Microsoft
and included in Microsoft.Input.TchHID.spkg.

After the handle is successfully opened, the application loops until a touch contact point is received near the top-
left corner of the screen. The application reads and displays the coordinates and the associated touch contact ID.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/access-the-touch-interface-in-mmos.md


    // Release in upper-left corner ends the test.
    //
    while (!exit)
    {
        DWORD touchInfoBytesRead = 0;

        //
        // Wait for data
        //
        if (!ReadFile(
            testDriver,
            &touchInfo,
            sizeof(TouchInfo),
            &touchInfoBytesRead,
            NULL))
        {
            goto exit;
        }

        if (touchInfoBytesRead == 0)
        {
            goto exit;
        }

        //
        // Print to debugger
        //
        for (i=0; i<touchInfo.ContactCount; i++)
        {
            WCHAR infoString[MAX_PATH] = {0};

            StringCchPrintf(
                infoString,
                MAX_PATH,
                L"%d: Contact ID %d, at (%d,%d) is %s\r\n",
                GetTickCount(),
                touchInfo.ContactArray[i].ContactID,
                touchInfo.ContactArray[i].ScreenX,
                touchInfo.ContactArray[i].ScreenY,
                FLAGS_TO_STRING(touchInfo.ContactArray[i].Flags));

            OutputDebugString(infoString);
        }

        //
        // Look for program exit
        //
        for (i=0; i<touchInfo.ContactCount; i++)
        {
            if ((touchInfo.ContactArray[i].ScreenX < 50) &&
                (touchInfo.ContactArray[i].ScreenY < 50) &&
                (touchInfo.ContactArray[i].Flags & InputEventFlag_Up))
            {
                OutputDebugString(L"Touch below (50,50), quitting!\r\n");
                exit = TRUE;
            }
        }
    }

exit:
    if (testDriver != INVALID_HANDLE_VALUE)
    {
        CloseHandle(testDriver);
    }

    return 0;
}



#pragma once

#include <windows.h>
#include <initguid.h>
#include <devguid.h>

//
// This device name is used to access raw touch samples from user mode.
//

#define TOUCH_RAW_SAMPLES_DEVICE_NAME L"\\\\.\\TouchRaw0"

enum InputEventFlag
{
    InputEventFlag_None     = 0x0000,

    InputEventFlag_Down     = 0x0001,
    InputEventFlag_Move     = 0x0002,
    InputEventFlag_Hold     = 0x0002,
    InputEventFlag_Up       = 0x0004,

    InputEventFlag_Empty    = 0x1000,
    InputEventFlag_Invalid  = 0x2000,

    InputEventFlag_TestSync = 0x8000
};

typedef struct _TouchContact
{
    UINT16         ContactID;
    UINT16         Flags;            // See InputEventFlag_*
    INT16          ScreenX;          // Screen Space X-Position
    INT16          ScreenY;          // Screen Space Y-Position
    INT16          WindowX;          // Ignore
    INT16          WindowY;          // Ignore
} TouchContact;

typedef struct _TouchInfo
{
    UINT16         Size;             // Size, in bytes, of this structure (includes n contacts)
    UINT16         Flags;            // Ignore
    UINT32         TimeStamp;        // Driver timestamp
    HANDLE         Source;           // Ignore
    UINT32         SessionID;        // Ignore
    INT32          ContactCount;     // Count of touch contact data points
    TouchContact   ContactArray[10]; // Collection of contacts
} TouchInfo;

#define FLAGS_TO_STRING(x) \
    (x & InputEventFlag_Down) ? L"Down" : \
    (x & InputEventFlag_Move) ? L"Move" : \
    (x & InputEventFlag_Up)   ? L"Up"   : \
    L"Unknown"

Building and deploying the sample application

The application uses the TouchInfo and TouchContact data structures, which are defined in
%WPDKCONTENTROOT%\include\um\WinPhoneInput.h. The header code is shown here.

To build the user-mode test application, complete the following steps.

1. Create a new user-mode application project in Visual Studio. For more info, see Develop MMOS test
applications

2. Add the sample code and the header file to the project.



3. Build the solution, ensuring that it is generated successfully.

4. Disable code integrity in MMOS, or sign the test executable. For more info, see "Security in MMOS," in
Develop MMOS test applications.

5. Deploy the executable to the device and run the application. For more information, see Deploy and test a
user-mode test application in MMOS.



Calling SetScreenOff to enter connected standby
7/13/2017 • 2 minutes to read • Edit Online

Syntax
HRESULT SetScreenOff();

Parameters

Return Value

Remarks

Example

#include <ManufacturingConnectedStandbyControl.h>
SetScreenOff();

Requirements

Calling the SetScreenOff function turns the screen and backlight off, which causes the phone to enter the
connected standby power state. This lower power state can be helpful for testing power usage.

Important
This function is for use only in the Microsoft Manufacturing OS.

None

HRESULT

There is not an equivalent function to return the device to a full power state.

To use SetScreenOff, include the header and call without any parameters.

Header: ManufacturingConnectedStandbyControl.h

Library: ManufacturingConnectedStandbyControl.lib

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/calling-setscreenoff-to-enter-connected-standby.md


Resetting a device during manufacturing
6/6/2017 • 2 minutes to read • Edit Online

ResetPhoneEx

The topic provides information about resetting a device during the manufacturing process.

You can reset the device using the ResetPhoneEx API while preserving the following data.

Map data.

Runtime configuration data.

Preinstalled apps.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/resetting-a-phone-during-manufacturing.md


Wi-Fi manufacturing API
6/6/2017 • 2 minutes to read • Edit Online

In this section

As part of the manufacturing process, you must run tests to ensure that the components are integrated,
functioning, and calibrated properly, and that they meet all regulatory requirements.

The API members documented in this section are interfaces defined for IHVs to use to write tests applications
for the Wi-Fi chipset. This API set requires that the Wi-Fi driver conform to the driver OID specification.

This test API must only be used in manufacturing mode. For more info, see Determine if MMOS is running.

The following interfaces are defined for this API.

WlanMTEEnumAdapters
Returns the list of the adapters that are recognized by the Wi-Fi stack.

WlanMTEOpenHandle
Opens a handle to the driver based on the interface GUID specified and returns the handle to the caller.

WlanMTECloseHandle
Closes a handle to the driver previously opened by WlanMTEOpenHandle.

WlanMTERegisterCallbackHandler
Registers a handler that will be called whenever the driver invokes a callback for a manufacturing functionality
event.

WlanMTEDeRegisterCallbackHandler
Unregisters a callback handler so that it will no longer be called when a manufacturing-related functionality
event occurs.

WlanMTEGetVendorInfo
Requests vendor-specific information, such as the vendor ID and vendor description.

WlanMTEResetAdapter
Resets the Wi-Fi adapter.

WlanMTEQueryMacAddress
Queries the MAC address of the Wi-Fi adapter.

WlanMTEQueryPhyTypes
Queries the list of 802.11 PHY types configured on the adapter.

WlanMTEStartSelfTest
Starts a preconfigured set of self-tests.

WlanMTEQuerySelfTestResult
Queries the driver for the results of a previously requested self-test.

WlanMTERxSignal
Queries information about the received signal at a specific band and channel.

WlanMTETxSignal
Requests the driver to transmit a signal at the specified band and channel.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wi-fi-manufacturing-api.md


Related topics

WlanMTEQueryADC
Requests the value of the transmitted signal when performed over an open loop.

WlanMTESetData
Requests that the driver write data to a specified location and offset from that location.

WlanMTEQueryData
Queries the driver for data at a specific location and offset from that location.

WlanMTESleep
Requests that the driver to go to sleep either for a specified time interval or indefinitely until an awake request is
sent.

WlanMTEAwake
Requests that the driver wake up from its current sleep state.

Adding Wi-Fi manufacturing test support to the OID interface



WlanMTEEnumAdapters
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEEnumAdapters(
    __out_opt   WLAN_MTE_ADAPTER_LIST  **ppWlanAdapterList
);

Parameters

Return Value

Requirements

Related topics

Returns the list of adapters that are recognized by the Wi-Fi stack.

ppWlanAdapterList
[out] A list of detected Wi-Fi adapters.

If the function succeeds, the return value is ERROR_SUCCESS. Otherwise, the function returns a system error
code.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmteenumadapters.md


WlanMTEOpenHandle
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEOpenHandle(
    __in    GUID    *pAdapterGuid,
    __out   HANDLE  *phAdapter
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Remarks

Requirements

Related topics

Opens a handle on the driver based on the interface GUID specified and returns the handle to the caller.

pAdapterGuid
[in] A pointer to the GUID identifying the Wi-Fi adapter on which the handle is to be opened.

phAdapter
[out] A pointer to the Wi-Fi handle, if it was opened successfully.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails one of the system error codes is returned. The following table lists the error codes that may
be returned.

ERROR_INVALID_PARAMETER Returned if the pAdapterGuid or phAdapter parameters
are NULL.

ERROR_INVALID_STATE Returned if the current DOT11 operation mode cannot
be retrieved.

The list of Wi-Fi interface GUIDs can be obtained by calling WlanMTEEnumAdapters.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmteopenhandle.md


WlanMTECloseHandle
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTECloseHandle(
    __in    HANDLE  hAdapter
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

Closes a handle to the driver previously opened by WlanMTEOpenHandle.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the library has not been initialized, or if the
adapter handle specified by hAdapter is invalid.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmteclosehandle.md


WlanMTERegisterCallbackHandler
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTERegisterCallbackHandler(
    __in    HANDLE                          hAdapter,
    __in    WLAN_MTE_NOTIFICATION_CALLBACK Callback
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Remarks

typedef VOID (WINAPI *WLAN_MTE_NOTIFICATION_CALLBACK)(
    __in    PDOT11_MANUFACTURING_CALLBACK_PARAMETERS    pMTECallback,
    __in    PVOID                                       pvReserved
    );

Requirements

Related topics

Registers a handler that will be called whenever the driver invokes a callback for a manufacturing functionality
event.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

Callback
[in] The handler function being registered by the application for manufacturing callbacks.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the adapter handle specified by the hAdapter
parameter is invalid or NULL.

The callback function has the following prototype:

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmteregistercallbackhandler.md


WlanMTEDeRegisterCallbackHandler
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEDeRegisterCallbackHandler(
    __in    HANDLE                          hAdapter
);

Parameters

Remarks

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

Unregisters a callback handler so that it will no longer be called when a manufacturing-related functionality event
occurs.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

The calling application must have previously registered a callback by calling WlanMTERegisterCallbackHandler

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the adapter handle specified by the hAdapter
parameter is invalid or NULL.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtederegistercallbackhandler.md


WlanMTEGetVendorInfo
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEGetVendorInfo(
    __in                        HANDLE  hAdapter,
    __out                       ULONG   *puVendorId,
    __in                        ULONG   uOutBufLen,
    __out_bcount(uOutBufLen)    PUCHAR  pucOutBuffer
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

Requests vendor-specific information, such as the vendor ID and vendor description.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

puVendorId
[out] The vendor ID.

uOutBufLen
[in] The length of the buffer for retrieving the vendor description.

pucOutBuffer
[out] The buffer that will contain the vendor description string.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the puVendorID, uOutBufLen, or pucOutBuffer
parameter is NULL.

ERROR_INVALID_HANDLE Returned if the adapter handle specified by the hAdapter
parameter is invalid.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtegetvendorinfo.md


WlanMTEResetAdapter
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEResetAdapter(
    __in        HANDLE                  hAdapter,
    __in        DOT11_RESET_REQUEST     *pDot11ResetRequest,
    __in        WLAN_MTE_RESET_CALLBACK ResetCallback,
    __in        PVOID                   pvContext
);

Parameters

Remarks

typedef VOID (WINAPI *WLAN_MTE_RESET_CALLBACK)(
    __in    DWORD   dwError,
    __in    PVOID   pvContext
    );

Return Value

Resets the Wi-Fi adapter. The application can specify an optional callback and context handle to be invoked when
the operation is complete.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

pDot11ResetRequest
[in] Information about the reset request. If the application requires the reset in order to update the MAC address, it
should specify either dot11_reset_type_mac or dot11_reset_type_phy_and_mac in order for the updated MAC
address to be written to the DPP. Note that the MAC address change will only be valid when the device has booted
in manufacturing mode.

ResetCallback
[in, optional] The callback handler to be invoked on reset completion.

pvContext
[in, optional] If the callback is specified, this context value is provided when the handler is called.

The callback function for Wi-Fi reset adapter notifications has the following prototype:

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmteresetadapter.md


ERROR CODE DESCRIPTION

Requirements

Related topics

ERROR_INVALID_PARAMETER Returned when the pDot11ResetRequest parameter is
NULL or the pDot11ResetRequest type is invalid.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTEQueryMacAddress
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEQueryMacAddress(
    __in    HANDLE              hAdapter,
    __out   DOT11_MAC_ADDRESS   *pDot11MacAddress
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

Returns the MAC address of the Wi-Fi adapter.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

pDot11MacAddress
[out] The current MAC address of the Wi-Fi adapter.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned when the pDot11MacAddress parameter is
NULL.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtequerymacaddress.md


WlanMTEQueryPhyTypes
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEQueryPhyTypes(
    __in    HANDLE              hAdapter,
    __out   PWLAN_MTE_PHY_LIST *ppPhyList
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

Returns the list of 802.11 PHY types configured on the adapter.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

ppPhyList
[out] The list of available PHY types as described in DOT11_PHY_TYPE enumeration.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the ppPhyList parameter is NULL.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtequeryphytypes.md
http://msdn.microsoft.com/library/ff548741.aspx


WlanMTEStartSelfTest
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEStartSelfTest(
    __in                        HANDLE                              hAdapter,
    __in                        DOT11_MANUFACTURING_SELF_TEST_TYPE  eTestType,
    __in                        ULONG                               uTestID,
    __in                        PVOID                               pvContext,
    __in                        ULONG                               uPinBitMask,
    __in                        ULONG                               uInBufLen,
    __in_bcount_opt(uInBufLen)  PUCHAR                              pucInBuffer
);

Parameters

typedef enum DOT11_MANUFACTURING_SELF_TEST_TYPE {
        DOT11_MANUFACTURING_SELF_TEST_TYPE_INTERFACE = 1,
        DOT11_MANUFACTURING_SELF_TEST_TYPE_RF_INTERFACE,
        DOT11_MANUFACTURING_SELF_TEST_TYPE_BT_COEXISTENCE
    } DOT11_MANUFACTURING_SELF_TEST_TYPE, * PDOT11_MANUFACTURING_SELF_TEST_TYPE;

Remarks

Starts a preconfigured set of self-tests.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

eTestType
[in] The type of self-test requested. The values of eTestType are defined by the
DOT11_MANUFACTURING_SELF_TEST_TYPE enumeration, shown below:

uTestID
[in] The ID for the self-test requested.

pvContext
[in] The context that uniquely identifies this request in the callback and in the subsequent results query.

uPinBitMask
[in] The bit mask for adapter pins to be tested.

uInBufLen
[in] The length of the buffer for passing in any additional information about the self-test.

pucInBuffer
[in] The buffer that will contain additional information about the self-test.

On completion of the self-test, the application’s callback handler is called, if one was registered, with the
dot11ManufacturingCallbackType set to dot11_manufacturing_callback_self_test_complete, and the result
of the self-test is included.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtestartselftest.md


Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned when the uInBufLen parameter is present but
the pucInBuffer parameter is NULL.

ERROR_INVALID_HANDLE Returned if the adapter handle specified by the hAdapter
parameter is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTEQuerySelfTestResult
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEQuerySelfTestResult(
    __in                            HANDLE                              hAdapter,
    __in                            DOT11_MANUFACTURING_SELF_TEST_TYPE  eTestType,
    __in                            ULONG                               uTestID,
    __in                            PVOID                               pvContext,
    __out                           BOOLEAN                             *pbResult,
    __out                           ULONG                               *puPinFailedBitMask,
    __out                           ULONG                               *puBytesWrittenOut,
    __in                            ULONG                               uOutBufLen,
    __out_bcount_opt(uOutBufLen)    PUCHAR                              pucOutBuffer
);

Parameters

typedef enum DOT11_MANUFACTURING_SELF_TEST_TYPE {
        DOT11_MANUFACTURING_SELF_TEST_TYPE_INTERFACE = 1,
        DOT11_MANUFACTURING_SELF_TEST_TYPE_RF_INTERFACE,
        DOT11_MANUFACTURING_SELF_TEST_TYPE_BT_COEXISTENCE
    } DOT11_MANUFACTURING_SELF_TEST_TYPE, * PDOT11_MANUFACTURING_SELF_TEST_TYPE;

Queries the driver for the results of a previously requested self-test.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

eTestType
[in] The type of self-test requested. The values of eTestType are defined by the
DOT11_MANUFACTURING_SELF_TEST_TYPE enumeration, shown below:

uTestID
[in] The ID for the self-test requested.

pvContext
[in] The context that was specified in the original self-test request.

pbResult
[out] The final result of the self-test. True if passed, False if failed.

puPinFailedBitMask
[out] The bit mask for adapter pins that failed the test.

puBytesWrittenOut
[out] The number of bytes of optional data returned from the self-test results.

uOutBufLen
[in] The length of the buffer for returning any additional information about the self-test.

pucOutBuffer

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtequeryselftestresult.md


Remarks

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

[out] The buffer of length *puBytesWrittenOut that provides additional information about the self-test. The value of
*puBytesWrittenOut must be less than or equal to the value of uOutBufLen.

The application must have received a dot11_manufacturing_callback_self_test_complete callback prior to
calling this command. It should also provide the same context value that was used in the original self-test request
in order to the get the results for the appropriate self-test request.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the pbResult, puPinFailedBitMask, or
puBytesWrittenOut parameter is NULL, or if the test type
specified by the eTestType parameter is invalid.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

ERROR_OUTOFMEMORY Returned if sufficient memory to perform the operation
could not be allocated.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTERxSignal
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTERxSignal(
    __in    HANDLE      hAdapter,
    __out   BOOLEAN     *pbEnabled,
    __in    DOT11_BAND  Dot11Band,
    __in    ULONG       uChannel,
    __out   LONG        *pPowerLevel
);

Parameters

typedef enum DOT11_BAND {
        dot11_band_2p4g = 1,
        dot11_band_4p9g,
        dot11_band_5g
    } DOT11_BAND, * PDOT11_BAND;

Return Value

Queries information about the received signal at a specific band and channel.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

pbEnabled
[out] True if the driver detected a signal at the specified band and channel. False if no signal was detected.

Dot11Band
[in] The band on which the signal is to be detected. The values of the Dot11Band parameter are defined by the
DOT11_BAND enum, shown below:

uChannel
[in] The channel on which the signal is to be detected. The channel range dependa on the band and on the
supported PHY types.

pPowerLevel
[out] The power level of the received signal detected at the antenna, returned as RSSI measured in dBm. This is
valid only if bEnabled is True.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmterxsignal.md


ERROR CODE DESCRIPTION

Requirements

Related topics

ERROR_INVALID_PARAMETER Returned if the pbEnabled, Dot11Band, uChannel, or
pPowerLevel parameter is NULL.

ERROR_INVALID_HANDLE Returned if the adapter handle specified by the hAdapter
parameter is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTETxSignal
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTETxSignal(
    __in    HANDLE      hAdapter,
    __in    BOOLEAN     bEnable,
    __in    BOOLEAN     bOpenLoop,
    __in    DOT11_BAND  Dot11Band,
    __in    ULONG       uChannel,
    __in    LONG        SetPowerLevel,
    __out   LONG        *pADCPowerLevel
);

Parameters

typedef enum DOT11_BAND {
        dot11_band_2p4g = 1,
        dot11_band_4p9g,
        dot11_band_5g
    } DOT11_BAND, * PDOT11_BAND;

Requests the driver to transmit a signal at the specified band and channel.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

bEnable
[in] If a value is set, the transmission is enabled. Otherwise, transmission at the specified band and channel is
disabled.

bOpenLoop
[in] When set to True, the driver must use an open loop power control and return the signal value in the
pADCPowerLevel parameter. If this parameter is set and the hardware does not support open loop power control,
an ERROR_NOT_SUPPORTED exception is returned.

Dot11Band
[in] The band on which the signal is to be detected. The values of the Dot11Band parameter are defined by the
DOT11_BAND enum, shown below:

uChannel
[in] The channel on which the signal is to be transmitted. The channel range depends on the band and supported
PHY types.

SetPowerLevel
[in] The power level of the transmitted signal, in dBm.

pADCPowerLevel
[out, optional] The current signal level detected at the antenna, returned as a RAW value. The interpretation of this
value is implemented by the IHV. This return parameter is valid if bOpenLoop is True and the hardware supports
it.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtetxsignal.md


Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists one of the error
codes that may be returned.

ERROR_INVALID_PARAMETER Returned when the Dot11Band or uChannel parameter is
NULL, or if bOpenLoop is present but pADCPowerLevel is
NULL.

ERROR_INVALID_HANDLE Returned if the adapter handle specified by the hAdapter
parameter is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTEQueryADC
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEQueryADC(
    __in    HANDLE      hAdapter,
    __in    DOT11_BAND  Band,
    __in    ULONG       uChannel,
    __out   LONG        *pADCPowerLevel
    );

Parameters

typedef enum DOT11_BAND {
        dot11_band_2p4g = 1,
        dot11_band_4p9g,
        dot11_band_5g
    } DOT11_BAND, * PDOT11_BAND;

Return Value

ERROR CODE DESCRIPTION

Requests the value of the transmitted signal when performed over an open loop.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

Band
[in] The band on which the signal is to be detected. The values of the Dot11Band parameter are defined by the
DOT11_BAND enum, shown below:

uChannel
[in] The channel on which the signal is being transmitted. The channel range will depend on the band and
supported PHY types.

pADCPowerLevel
[out] The current signal level detected at the antenna returned as a RAW value. The interpretation of this value will
be implemented by the IHV. This parameter is valid only if the device supports open loop power and is currently
transmitting a signal on the open loop.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the Dot11Band, uChannel, or
pADCPowerLevel parameter is NULL.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtequeryadc.md


ERROR CODE DESCRIPTION

Remarks

Return Value

ERROR CODE DESCRIPTION

Requirements

Related topics

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

If open loop power is not supported, the driver will return ERROR_NOT_SUPPORTED .

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists one of the error
codes that may be returned.

ERROR_INVALID_PARAMETER Returned when the uInBufLen parameter is present but
the pucInBuffer parameter is NULL.

ERROR_INVALID_HANDLE The hAdapter handle is invalid.

ERROR_OUTOFMEMORY There was insufficient memory to allocate to perform the
function.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTESetData
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTESetData(
    __in                    HANDLE  hAdapter,
    __in                    ULONG   uKey,
    __in                    ULONG   uOffset,
    __in                    ULONG   uInBufLen,
    __in_bcount(uInBufLen)  PUCHAR  pucInBuffer
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Requests that the driver write data to a specific location defined by a key and offset value.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

uKey
[in] The key for the write request.

uOffset
[in] The offset for the write request.

uInBufLen
[in] The length of the buffer containing the data to be written.

pucInBuffer
[in] The buffer containing the data to be written.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned when the uInBufLen parameter is present but
the pucInBuffer parameter is NULL.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtesetdata.md


Requirements

Related topics

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTEQueryData
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEQueryData(
    __in                        HANDLE  hAdapter,
    __in                        ULONG   uKey,
    __in                        ULONG   uOffset,
    __out                       ULONG   *puBytesWrittenOut,
    __in                        ULONG   uOutBufLen,
    __out_bcount(uOutBufLen)    PUCHAR  pucOutBuffer
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Queries the driver for data stored at a specific location defined by a key and offset value.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

uKey
[in] The key for the query request.

uOffset
[in] The offset for the query request.

puBytesWrittenOut
[out] The number of bytes of data returned from the query request.

uOutBufLen
[in] The length of the buffer for returning the information requested.

pucOutBuffer
[out] The buffer that will contain the data returned per the query request.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_PARAMETER Returned if the puBytesWrittenOut, uOutBufLen, or
pucOutBuffer parameter is NULL.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtequerydata.md


ERROR CODE DESCRIPTION

Requirements

Related topics

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

Header: wifimte.w

Wi-Fi manufacturing API



WlanMTESleep
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTESleep(
    __in                    HANDLE  hAdapter,
    __in                    ULONG   uSleepTime,
    __in                    PVOID   pvContext
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Remarks

Requests that the driver to go to sleep either for a specified time interval, or indefinitely until an awake request is
sent.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

uSleepTime
[in] The time in milliseconds for the adapter to remain in sleep mode. If a value of −1 is specified, the adapter
sleeps until a WlanMTEAwake request is sent.

pvContext
[in] The context that uniquely identifies this request in the callback.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists one of the error
codes that may be returned.

ERROR_INVALID_PARAMETER Returned if the uSleepTime parameter is NULL.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

During sleep mode, all radios are turned off and the Wi-Fi chip is powered off. When the adapter reawakens, the
application’s callback handler, if one was registered with WlanMTERegisterCallbackHandler, is called with the
dot11ManufacturingCallbackType set to dot11_manufacturing_callback_sleep_complete and the result of
the sleep operation is included.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmtesleep.md


Requirements

Related topics

Header: wifimte.w

WlanMTEAwake

Wi-Fi manufacturing API



WlanMTEAwake
7/13/2017 • 2 minutes to read • Edit Online

Syntax
DWORD WlanMTEAwake(
    __in                    HANDLE  hAdapter
);

Parameters

Return Value

ERROR CODE DESCRIPTION

Remarks

Requirements

Related topics

Requests that the driver wake up from its current sleep state.

hAdapter
[in] The handle to the Wi-Fi adapter, obtained by calling WlanMTEOpenHandle.

If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the system error codes. The following table lists the error codes that
may be returned.

ERROR_INVALID_HANDLE Returned if the hAdapter handle is invalid.

ERROR_OUTOFMEMORY Returned when sufficient memory to perform the
operation cannot be allocated.

The driver must have been put into the sleep state using the WlanMTESleep function before this function is called.
If the driver is not in a sleep state when this function is called, it returns STATUS_INVALID_PARAMETER.

Header: wifimte.w

Wi-Fi manufacturing API

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/wlanmteawake.md


Adding Wi-Fi manufacturing test support to the OID
interface
6/6/2017 • 2 minutes to read • Edit Online

Assumptions

Driver requirements

To ensure that all device components are integrated, functioning correctly, calibrated properly, and meet all
regulatory requirements, OEMs run a number of standard ad-hoc tests to ensure that any problems are found and
corrected before the device goes to retail. These tests are also occasionally run at retail outlets to check for proper
component operation. The implementation of these test interfaces and mechanisms is performed by hardware
vendors (IHVs).

This section describes an extension to the existing Wi-Fi OID documentation so that IHVs can implement a
standard set of interfaces that OEMs can use to create test applications.

To perform these manufacturing tests, the device must be operating in a special operation mode called
manufacturing mode. In manufacturing mode, only specific parts of the operating system are loaded in order to
enable the proper execution of the component tests. Normal Wi-Fi operations, such as scanning and automatically
connecting to networks, are disabled when the device is running in manufacturing mode.

Manufacturing mode can be entered in the manufacturing environment or during customer service. Writing to the
Device Provisioning Partition (DPP) can only be performed in the manufacturing environment. If an OID that
writes to the DPP is invoked in a non-manufacturing environment, the attempt to write to the DPP fails.
Manufacturing operations should have only a transient effect on the system, and the state should not persist
across reboots.

The Wi-Fi miniport driver must be able to operate in normal mode or manufacturing test mode, and it must be
able to switch between modes at any time. The driver determines the appropriate mode during initialization by
querying a specific registry key.

The following illustration shows the architecture of the manufacturing test environment.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/adding-wi-fi-manufacturing-test-support-to-the-oid-interface.md
http://msdn.microsoft.com/library/ff560670.aspx


In this section
Reporting operating mode capabilities
Describes the requirements and behavior for reporting changes with drivers operating in manufacturing test
mode.

Supporting updated OID behavior in manufacturing mode
Describes the updated OIDs that must be supported by the Wi-Fi miniport driver.

Supporting existing OID commands in manufacturing mode
Describes the existing OIDs that must be supported by the Wi-Fi miniport driver.

Supporting new OID commands for manufacturing mode
Describes the new OIDs that must be supported by the Wi-Fi miniport driver.

Supporting new callbacks for manufacturing mode
Describes the new OID callback that must be supported by the Wi-Fi miniport driver.



Reporting operating mode capabilities
6/6/2017 • 2 minutes to read • Edit Online

Related topics

If a Wi-Fi driver supports running in manufacturing mode, it should add manufacturing mode to its list of
supported capabilities. You can query the supported operation mode capabilities by using the
OID_DOT11_OPERATION_MODE_CAPABILITY command, which will return information on the operation
modes supported by the driver. For more info about OID_DOT11_OPERATION_MODE_CAPABILITY , see
Supporting updated OID behavior in manufacturing mode.

To switch the driver ’s operation mode to manufacturing mode, use the
OID_DOT11_CURRENT_OPERATION_MODE  command to ensure that manufacturing testing will not conflict
with the driver ’s behavior in any of its other modes. For more info about
OID_DOT11_CURRENT_OPERATION_MODE , see Supporting updated OID behavior in manufacturing mode.

Adding Wi-Fi manufacturing test support to the OID interface

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/reporting-operating-mode-capabilities.md


Supporting updated OID behavior in manufacturing
mode
7/13/2017 • 2 minutes to read • Edit Online

OID_DOT11_OPERATION_MODE_CAPABILITY

#define DOT11_OPERATION_MODE_UNKNOWN            0x00000000
#define DOT11_OPERATION_MODE_STATION            0x00000001
#define DOT11_OPERATION_MODE_AP                 0x00000002
#define DOT11_OPERATION_MODE_EXTENSIBLE_STATION 0x00000004
#define DOT11_OPERATION_MODE_EXTENSIBLE_AP      0x00000008
#define DOT11_OPERATION_MODE_WFD_DEVICE         0x00000010
#define DOT11_OPERATION_MODE_WFD_GROUP_OWNER    0x00000020
#define DOT11_OPERATION_MODE_WFD_CLIENT         0x00000040
#define DOT11_OPERATION_MODE_MANUFACTURING      0x40000000
#define DOT11_OPERATION_MODE_NETWORK_MONITOR    0x80000000

typedef struct _DOT11_OPERATION_MODE_CAPABILITY {
    ULONG uReserved;
    ULONG uMajorVersion;
    ULONG uMinorVersion;
    ULONG uNumOfTXBuffers;
    ULONG uNumOfRXBuffers;
    ULONG uOpModeCapability;
} DOT11_OPERATION_MODE_CAPABILITY, * PDOT11_OPERATION_MODE_CAPABILITY;

OID_DOT11_CURRENT_OPERATION_MODE

typedef struct _DOT11_CURRENT_OPERATION_MODE {
    ULONG uReserved;
    ULONG uCurrentOpMode;
} DOT11_CURRENT_OPERATION_MODE, * PDOT11_CURRENT_OPERATION_MODE; 

When running in manufacturing mode, Wi-Fi miniport drivers must add support for the following updated OIDs.

The OID_DOT11_OPERATION_MODE_CAPABILITY command is called in query mode to return the list of
operation modes supported by the driver. This command functions as previously documented, but drivers are now
required to support a new operation mode, DOT11_OPERATION_MODE_MANUFACTURING, which is the
context in which manufacturing operations are performed. For complete documentation of this OID, see
OID_DOT11_OPERATION_MODE_CAPABILITY on MSDN.

The OID_DOT11_CURRENT_OPERATION_MODE  command can be called in either set or query mode to
configure or return the driver ’s current operation mode.

This command functions as previously documented, but the driver is now required to support the
DOT11_OPERATION_MODE_MANUFACTURING operation mode. For complete documentation of this OID,
see OID_DOT11_CURRENT_OPERATION_MODE on MSDN.

uCurrentOpMode
[in] Specifies the driver operation mode to be set. This parameter also functions as a placeholder for the driver to
return the operation mode when called in query mode. If the driver does not support the requested operation
mode, it should return NDIS_STATUS_BAD_VERSION .

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/supporting-updated-oid-behavior-in-manufacturing-mode.md
http://msdn.microsoft.com/library/ff569396.aspx
https://msdn.microsoft.com/library/windows/hardware/ff569132


Related topics
Adding Wi-Fi manufacturing test support to the OID interface



Supporting existing OID commands in manufacturing
mode
6/6/2017 • 2 minutes to read • Edit Online

OID_GEN_SUPPORTED_GUIDS

OID_GEN_VENDOR_ID

OID_GEN_VENDOR_DESCRIPTION

OID_GEN_CURRENT_LOOKAHEAD

OID_PM_ADD_WOL_PATTERN

OID_DOT11_RESET_REQUEST

When running in manufacturing mode, Wi-Fi miniport drivers must add support for the following existing OIDs.

The OID_GEN_SUPPORTED_GUIDS command is called in query mode to return the set of supported GUIDS.
For complete documentation, see OID_GEN_SUPPORTED_GUIDS on MSDN.

Note
This OID is typically called for compatibility purposes. The driver can choose to ignore it, if desired, and return
NDIS_STATUS_NOT_SUPPORTED instead.

The OID_GEN_VENDOR_ID command is called in query mode to return the 3-byte IEEE-registered vendor code
followed by a single byte assigned by the vendor that identifies a particular NIC. For complete documentation, see
OID_GEN_VENDOR_ID on MSDN.

The OID_GEN_VENDOR_DESCRIPTION  command is called in query mode to return a NULL-terminated
string that describes the NIC in ANSI format. For complete documentation, see
OID_GEN_VENDOR_DESCRIPTION on MSDN.

The OID_GEN_CURRENT_LOOKAHEAD command is called in set mode to specify the number of bytes of
received packet data to be sent to the protocol driver. For complete documentation, see
OID_GEN_CURRENT_LOOKAHEAD on MSDN.

Note
This OID is typically called for compatibility purposes. The driver can choose to ignore it, if desired, and return
NDIS_STATUS_NOT_SUPPORTED instead.

The OID_PM_ADD_WOL_PATTERN  command is called in set mode to specify the WOL pattern. For complete
documentation, see OID_PM_ADD_WOL_PATTERN on MSDN.

Note
This OID is typically called for compatibility purposes. The driver can choose to ignore it, if desired, and return
NDIS_STATUS_NOT_SUPPORTED instead.

The OID_DOT11_RESET_REQUEST command is called in query mode to return the IEEE MAC address used by
the driver. For complete documentation, see OID_DOT11_RESET_REQUEST on MSDN.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/supporting-existing-oid-commands-in-manufacturing-mode.md
http://msdn.microsoft.com/library/ff569641.aspx
http://msdn.microsoft.com/library/ff569651.aspx
http://msdn.microsoft.com/library/ff569649.aspx
http://msdn.microsoft.com/library/ff569574.aspx
http://msdn.microsoft.com/library/ff569764.aspx
http://msdn.microsoft.com/library/ff569409.aspx


OID_DOT11_CURRENT_ADDRESS

OID_DOT11_SUPPORTED_PHY_TYPES

OID_DOT11_CURRENT_PHY_ID

OID_DOT11_HARDWARE_PHY_STATE

OID_DOT11_NIC_POWER_STATE

Related topics

The OID_DOT11_CURRENT_ADDRESS command is called in query mode to return the IEEE MAC address
used by the driver. For complete documentation, see OID_DOT11_CURRENT_ADDRESS on MSDN.

The OID_DOT11_SUPPORTED_PHY_TYPES command is called in query mode to request the list of PHY types
supported by the 802.11 station. For complete documentation, see OID_DOT11_SUPPORTED_PHY_TYPES on
MSDN.

The OID_DOT11_CURRENT_PHY_ID command is called in set mode to set the current PHY ID. For complete
documentation, see OID_DOT11_CURRENT_PHY_ID on MSDN.

The OID_DOT11_HARDWARE_PHY_STATE  command is called in query mode to return the PHY power state.
For complete documentation, see OID_DOT11_HARDWARE_PHY_STATE on MSDN.

The OID_DOT11_NIC_POWER_STATE  command is called in query mode to return the NIC power state. For
complete documentation, see OID_DOT11_NIC_POWER_STATE on MSDN.

Adding Wi-Fi manufacturing test support to the OID interface

http://msdn.microsoft.com/library/ff569125.aspx
http://msdn.microsoft.com/library/ff569426.aspx
http://msdn.microsoft.com/library/ff569135.aspx
http://msdn.microsoft.com/library/ff569370.aspx
http://msdn.microsoft.com/library/ff569392.aspx


Supporting new OID commands for manufacturing
mode
7/13/2017 • 7 minutes to read • Edit Online

OID_DOT11_MANUFACTURING_TEST

typedef struct _DOT11_MANUFACTURING_TEST {
    DOT11_MANUFACTURING_TEST_TYPE dot11ManufacturingTestType;
    ULONG uBufferLength;
    UCHAR ucBuffer[1];
} DOT11_MANUFACTURING_TEST, * PDOT11_MANUFACTURING_TEST;

typedef enum _DOT11_MANUFACTURING_TEST_TYPE {
    dot11_manufacturing_test_unknown = 0,
    dot11_manufacturing_test_self_start = 1,
    dot11_manufacturing_test_self_query_result = 2,
    dot11_manufacturing_test_rx = 3,
    dot11_manufacturing_test_tx = 4,
    dot11_manufacturing_test_set_data = 5,
    dot11_manufacturing_test_query_data = 6,
    dot11_manufacturing_test_sleep = 7,
    dot11_manufacturing_test_awake = 8,
    dot11_manufacturing_test_IHV_start = 0x80000000,
    dot11_manufacturing_test_IHV_end = 0xffffffff
} DOT11_MANUFACTURING_TEST_TYPE, * PDOT11_MANUFACTURING_TEST_TYPE;

dot11_manufacturing_test_self_start

When running in manufacturing mode, Wi-Fi miniport drivers must add support for the following new OID
commands. The driver should ensure that the device is currently in manufacturing mode prior to calling any of
these commands. For more info, see Determine if MMOS is running. Some of the parameters specified in the API
may be IHV-specific.

OID_DOT11_MANUFACTURING_TEST is called as a method request in the driver to perform a specific test. This
OID should never be used during normal operation.

dot11ManufacturingTestType
[in] Specifies the manufacturing test to be run. The data type for this member is one of the values of the
DOT11_MANUFACTURING_TEST_TYPE  enumeration.

The DOT11 manufacturing test type enumeration is defined as follows:

uBufferLength
[in] The length, in bytes, of the DOT11_MANUFACTURING_TEST structure and any additional data specific to
the test appended at the end.

ucBuffer
[in] The buffer containing optional data as specified by the dot11DiagnosticsTestType member.

The dot11_manufacturing_test_self_start command is called to request the driver to test WL AN IC connectivity,
FEM IC connectivity, or the WL AN-BT coexistence interface.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/supporting-new-oid-commands-for-manufacturing-mode.md


typedef struct _DOT11_MANUFACTURING_SELF_TEST_SET_PARAMS {
    DOT11_MANUFACTURING_SELF_TEST_TYPE SelfTestType;
    ULONG uTestID;
    ULONG uPinBitMask;
    PVOID pvContext;
    ULONG uBufferLength;
    UCHAR ucBufferIn[1];
} DOT11_MANUFACTURING_SELF_TEST_SET_PARAMS, *PDOT11_MANUFACTURING_SELF_TEST_SET_PARAMS;

DOT11_DIAGNOSTIC_SELF_TEST_BT_COEXISTENCE  is only applicable if the WL AN and Bluetooth chips are
on separate ICs. If they are on the same module, this test is not supported and the miniport should return
NDIS_STATUS_NOT_SUPPORTED .

When called, the driver should run the requested tests as defined in the
DOT11_MANUFACTURING_SELF_TEST_SET_PARAMS structure and return success when the tests have
been started. On completion, whether the tests have succeeded or failed, the driver should indicate the test status
by using the NDIS_STATUS_DOT11_MANUFACTURING_CALLBACK callback handler, with the
dot11ManufacturingCallbackType set to dot11_manufacturing_callback_self_test_complete and the status
describing the result of the test. The driver will then call the OID_DOT11_MANUFACTURING_TEST oid with the
dot11_manufacturing_test_self_query_result command to query the detailed result of the test.

SelfTestType
[in] Specifies the type of self-test to be run by the driver. The data type for this member is the
DOT11_MANUFACTURING_SELF_TEST_TYPE  enumeration with one of the following values:

DOT11_MANUFACTURING_SELF_TEST_INTERFACE

Control and data interface to WL AN

Clock request

Sleep clock

Interrupt and power supply lines

All related connections

DOT11_MANUFACTURING_SELF_TEST_RF_INTERFACE

Control and RF interface to FEM IC

FEM power supply

Transmit signal on loopback path from TX interface to RX interface and validate.

DOT11_MANUFACTURING_SELF_TEST_BT_COEXISTENCE

Set line states from Bluetooth side and read line states from WL AN side

Verify each pin’s state

uTestID
[in] ID of the test to be run.

uPinBitMask
[in] Bit mask of pins to be tested.

pvContext
[in] The context value to be returned to the application by using
dot11_manufacturing_callback_self_test_complete callback when the driver has completed the tests.



dot11_manufacturing_test_self_query_result

typedef struct _DOT11_MANUFACTURING_SELF_TEST_QUERY_RESULTS {
    DOT11_MANUFACTURING_SELF_TEST_TYPE SelfTestType;
    ULONG uTestID;
    BOOLEAN bResult;                    // PASS/FAIL
    ULONG uPinFailedBitMask;            // Detected PIN faults
    PVOID pvContext;
    ULONG uBytesWrittenOut;
    UCHAR ucBufferOut[1];               // Additional output from self-test (optional)
} DOT11_MANUFACTURING_SELF_TEST_QUERY_RESULTS, *PDOT11_MANUFACTURING_SELF_TEST_QUERY_RESULTS;

dot11_manufacturing_test_rx

uBufferLength
[in, optional] The length of the buffer containing additional input for the self-test.

ucBufferIn
[in, optional] The buffer that contains additional input for the self-test.

This command gets the results of a previously requested self-test. It should only be called when the driver has
indicated that the self-test is complete by using the NDIS_STATUS_DOT11_MANUFACTURING_CALLBACK
with the dot11ManufacturingCallbackType set to dot11_manufacturing_callback_self_test_complete and the
status describing the result of the test.

SelfTestType
[in] Specifies the type of self-test whose result is being queried. The data type for this member is the
DOT11_MANUFACTURING_SELF_TEST_TYPE  enumeration.

uTestID
[in] ID of the test to be run.

bResult
[out] The result of the test. True if the test passed, False if it failed.

uPinFailedBitMask
[out] The bit mask of any detected PIN faults.

pvContext
[in] The context used when the driver indicated that the tests were complete.

uBytesWrittenOut
[out] The length of the buffer that contains any additional returned output from the self-test.

ucBufferOut
[in, out, optional] The buffer of length uBytesWrittenOut that contains additional output from the self-test.

The dot11_manufacturing_test_rx read-only command tests and verifies that there is connectivity between the
antenna port and WL AN IC.

To test this connectivity, a signal generator generates a non-modulated carrier wave (CW) at a certain frequency
and power that will be measured and returned by the device under test (DUT). If the band and/or channel setting
are inconsistent, then the driver returns STATUS_INVALID_PARAMETER.



typedef struct _DOT11_MANUFACTURING_FUNCTIONAL_TEST_RX {
    BOOLEAN bEnabled;
    DOT11_BAND Dot11Band;
    ULONG uChannel;
    LONG  PowerLevel;
} DOT11_MANUFACTURING_FUNCTIONAL_TEST_RX, * PDOT11_MANUFACTURING_FUNCTIONAL_TEST_RX;

dot11_manufacturing_test_tx

typedef struct _DOT11_MANUFACTURING_FUNCTIONAL_TEST_TX {
    BOOLEAN bEnable;
    BOOLEAN bOpenLoop;
    DOT11_BAND Dot11Band;
    ULONG uChannel;
    ULONG uSetPowerLevel;
    LONG  ADCPowerLevel;
} DOT11_MANUFACTURING_FUNCTIONAL_TEST_TX, * PDOT11_MANUFACTURING_FUNCTIONAL_TEST_TX;

bEnabled
[out] True if the driver detected a signal at the specified band and channel. False if no signal was detected.

Dot11Band
[in] The band on which the signal is to be detected.

uChannel
[in] The channel on which the signal is to be detected. The channel range depends on the band and supported
PHYs.

PowerLevel
[out] The power level of the received signal detected at the antenna, returned as the RSSI measured in dBm. This is
valid only if bEnabled is True.

The dot11_manufacturing_test_tx set-only command validates the connection from the chipset to the FEM
output.

To perform this test, a signal analyzer is physically connected to the antenna port and the DUT is requested to
transmit a CW with specific band, channel, and power level settings. The driver also measures its own ADC reading
for the transmitted signal and returns it to the application.

bEnable
[in] If set, this command enables transmission. If not set, transmission at the specified band and channel are
disabled.

bOpenLoop
[in] If set to true, this parameter indicates that the driver is requested to use an open loop power control and
return the read signal value in ADCPowerLevel. If set to false, the driver will not use an open loop power control.

If this value is set and the hardware does not support open loop power control, the driver returns
NDIS_STATUS_NOT_SUPPORTED .

Dot11Band
[in] The band on which the signal is to be transmitted.

uChannel
[in] The channel on which the signal is to be transmitted. The channel range depends on the band and supported
PHYs.

uSetPowerLevel



dot11_manufacturing_test_set_data

typedef struct _DOT11_MANUFACTURING_TEST_SET_DATA {
    ULONG uKey;
    ULONG uOffset;
    ULONG uBufferLength;
    UCHAR ucBufferIn[1];
} DOT11_MANUFACTURING_TEST_SET_DATA, * PDOT11_MANUFACTURING_TEST_SET_DATA;

dot11_manufacturing_test_query_data

typedef struct _DOT11_MANUFACTURING_TEST_QUERY_DATA {
    ULONG uKey;
    ULONG uOffset;
    ULONG uBufferLength;
    ULONG uBytesRead;
    UCHAR ucBufferOut[1];
} DOT11_MANUFACTURING_TEST_QUERY_DATA, * PDOT11_MANUFACTURING_TEST_QUERY_DATA;

[in] The power level of the transmitted signal. This is returned as a percentage of the maximum possible power
level.

ADCPowerLevel
[out, optional] The current signal level detected at the antenna, returned as a RAW value. The interpretation of this
value is specified by the IHV.

This must be set if bOpenLoop is True and the hardware supports it.

The dot11_manufacturing_test_set_data set-only command enables the application to write data at a specific
location.

uKey
[in] The key is IHV specific and can be either a reference to a specific register or an entry from a named table.

uOffset
[in] The offset within the data.

uBufferLength
[in] The number of data bytes to be contained in the buffer of additional test data.

ucBufferIn
[in] The buffer containing the additional test data of length uBufferLength.

The dot11_manufacturing_test_query_data command enables the application to read data at a specific location.

uKey
[in] The key is IHV specific and can be either a reference to a specific register or an entry from a named table.

uOffset
[in] The offset within the data.

uBufferLength
[in] The number of data bytes to be read in the buffer.

uBytesRead
[out] The actual number of data bytes read by the driver.

ucBufferOut



dot11_manufacturing_test_sleep

typedef struct _DOT11_MANUFACTURING_TEST_SLEEP {
    ULONG uSleepTime;
    PVOID pvContext;
} DOT11_MANUFACTURING_TEST_SLEEP, * PDOT11_MANUFACTURING_TEST_SLEEP;

dot11_manufacturing_test_awake

Related topics

[out] Contains the data read by the driver.

The dot11_manufacturing_test_sleep command instructs the Wi-Fi chipset to go into its lowest power state, for
either a specified time or indefinitely.

For this test, all radios should be turned off and the Wi-Fi chipset should be powered off. The test verifies that Wi-
Fi can enter the sleep state, that the current consumption is within the specified limits, and that there is no current
drawn when Wi-Fi is switched off.

The driver can be awakened from the sleep state at any time by using the dot11_manufacturing_test_awake
command. If the sleep time-out is set to −1, the driver should sleep indefinitely unless asked to wake up by using
dot11_manufacturing_test_awake. When the driver wakes up, either due to the time-out expiring or as a result
of the awake command, it should indicate its awake status by using the
NDIS_STATUS_DOT11_MANUFACTURING_CALLBACK callback handler with the
dot11ManufacturingCallbackType set to dot11_manufacturing_callback_sleep_complete.

uSleepTime
[in] The amount of time for the driver to sleep, in milliseconds. If set to −1, the driver enters sleep state until
awakened by using the dot11_manufacturing_test_awake command.

pvContext
[in] The context used when the driver returns the test completion state to the application by using
dot11_manufacturing_callback_sleep_complete.

The dot11_manufacturing_test_awake command causes the Wi-Fi chipset to wake up from its lowest-power
sleep state. The driver returns STATUS_INVALID_PARAMETER if this command is sent when the chipset is
already awake.

Adding Wi-Fi manufacturing test support to the OID interface



Supporting new callbacks for manufacturing mode
7/13/2017 • 2 minutes to read • Edit Online

NDIS_STATUS_DOT11_MANUFACTURING_CALLBACK

typedef enum _DOT11_MANUFACTURING_CALLBACK_TYPE {
    dot11_manufacturing_callback_unknown = 0,
    dot11_manufacturing_callback_self_test_complete = 1,
    dot11_manufacturing_callback_sleep_complete = 2,
    dot11_manufacturing_callback_IHV_start = 0x80000000,
    dot11_manufacturing_callback_IHV_end = 0xffffffff
} DOT11_MANUFACTURING_CALLBACK_TYPE, * PDOT11_MANUFACTURING_CALLBACK_TYPE;

typedef struct DOT11_MANUFACTURING_CALLBACK_PARAMETERS {
#define DOT11_MANUFACTURING_CALLBACK_REVISION_1  1
    NDIS_OBJECT_HEADER                Header;
    DOT11_MANUFACTURING_CALLBACK_TYPE dot11ManufacturingCallbackType;
    ULONG                             uStatus;
    PVOID                             pvContext;
} DOT11_MANUFACTURING_CALLBACK_PARAMETERS, * PDOT11_MANUFACTURING_CALLBACK_PARAMETERS;

Related topics

When running in manufacturing mode, Wi-Fi miniport drivers must add support for the following new callback.

The NDIS_STATUS_DOT11_MANUFACTURING_CALLBACK callback is used to indicate completion status for
certain requests. The data structure used for this callback is defined here.

dot11_manufacturing_callback_self_test_complete
dot11_manufacturing_callback_self_test_complete is called by the driver when a requested self-test is
completed by the driver. This callback must return the context for self-test request as well as the self-test result. The
driver then calls the OID_DOT11_MANUFACTURING_TEST OID with the
dot11_manufacturing_test_self_query_result command to obtain the detailed result of the test.

dot11_manufacturing_callback_sleep_complete
dot11_manufacturing_callback_sleep_complete is called when a requested sleep command is executed by the
driver. This callback must return the context for the sleep request as well as the status, whether success or failure.
This callback is also called by the driver when the application sends a request to wake the driver from a sleep state.

Adding Wi-Fi manufacturing test support to the OID interface

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/supporting-new-callbacks-for-manufacturing-mode.md


Flashing tools
6/6/2017 • 3 minutes to read • Edit Online

Flashing tools comparison

SCENARIO
MICROSOFT FFU
ENGINEERING TOOL

OEM CUSTOM FFU
TOOL

SOC PROVIDED
MANUFACTURING
FLASHING TOOL GANG PROGRAMMER

OEM custom flashing tool

SoC provided manufacturing flashing tool

Gang programmer

Each manufacturer has different techniques and tooling that they will use to manufacture and service a Windows
10 Mobile device. The best technical expertise regarding manufacturing resides within those who built the OEM
manufacturing line. This means that the OEM will need to determine which flashing and manufacturing process
will work best for them. OEM service centers may have unique needs that will also influence the selection of
flashing tools. The OEM will need to determine how to test and validate that the selected tools and processes
meets their cost, quality, and other unique manufacturing objectives.

The OEM uses the Microsoft supplied imaging tools to create the FFU OS images that are flashed to the device.

The OEM may need to develop a custom flashing tool to address the life cycle needs of the device. Other flashing
options have limitations that the OEM should understand before deciding to use them.

The following table summarizes the flashing tool options.

Engineering and
Development

Yes Yes Yes N/A

Manufacturing No Yes Yes Yes

Service Center Yes Yes No N/A

To create a flashing tool for manufacturing, the OEM must develop their own tools customized to their
manufacturing environment and equipment.

Depending on the OEMs requirements, the flashing tools may also need to address a number of scenarios
described in Field service scenarios.

For more info, see Developing custom OEM flashing tools.

For information on the SoC provided manufacturing flashing tools, contact the SoC provider.

There are a number of options available to the OEM to flash binary images. The OEM can use their unique
flashing tools as well as gang programmer technologies to manufacture the device if they find that those options
are more suitable to their environment.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/flashing-tools.md


FFUTool support limitations

FFUTool known issues

USB hub activity may cause flashing failuresUSB hub activity may cause flashing failures

USB cable length is limited to 3 feetUSB cable length is limited to 3 feet

Flashing time per phoneFlashing time per phone

If the OEM uses a gang programmer they will need to develop a custom tool to convert the FFU image to a raw
binary image. The conversion tool will need to:

1. Open a raw binary file in the format expected by the gang programmer.

2. Read in the FFU file and parse the file data as specified in FFU image format.

3. Write out the data referenced in the FFU BLOCK_DATA_ENTRY elements to the raw file.

4. When there are no more entries, write out any metadata or padding needed for the raw format and then
close the raw binary file.

The Microsoft provided FFUTool full flash update (FFU) technology is designed for engineering development,
and testing purposes; it is not supported for use in manufacturing. Each OEM must determine if the FFUTool is
suitable for use in their service center environments.

Using the FFUTool has a number of significant limitations that are summarized here.

Some USB hubs have been known to cause reliability issues even when flashing devices in serial due to hardware
interference to the streaming FFU data.

Multiple devices that share a single USB hub cannot be connected and disconnected while other connected
device are flashing. This uncovers a known hardware issue with some USB controllers. For more info, see
KB908673. You should not unplug USB devices when device flashing is underway.

Flashing may be less reliable when using USB cables longer than 3 feet (.91 meters), or if your flashing setup
contains consecutive cables that total to more than 3 feet. This is due to hardware limitations of data transfer in
longer cables.

You will need to evaluate whether the flashing time per device meets their objectives for your manufacturing line.

http://support.microsoft.com/kb/908673


Developing custom OEM flashing tools
6/6/2017 • 2 minutes to read • Edit Online

UEFI flashing application

PC flashing application

OEMs can use the full flash update (FFU) image format and simple UEFI USB protocols to create custom flashing
tools. An OEM custom flashing tool can integrate in with existing systems and support a range of scenarios
discussed in Flashing tools.

The OEM must flash the device from a UEFI application using a specific image layout that is discussed in FFU
image format.

This diagram summarizes the communication flow from the PC flashing tool to the device using the UEFI simple
Windows Phone I/O protocol.

For more info on available USB APIs see, UEFI flashing protocols.

The image is transferred to the device that is running the UEFI flashing application using a simple PC side client
program. The PC application establishes a USB connection to the device and writes the data over that connection.
The validation and verification of the image occurs in the UEFI flashing application running on the device.

The following diagram summarizes the overall flow of the OEM custom flashing PC application and the UEFI
application.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/developing-custom-oem-flashing-tools.md
https://msdn.microsoft.com/windows/hardware/dn917884.aspx


Checking SMBIOS values before flashing

Engineering devices and blank device IDsEngineering devices and blank device IDs

Implementing signed image validation

Note
This diagram illustrates one possible solution. The OEM is encouraged to modify this approach to create an
optimal solution that best suits their needs.

To ensure that the correct image is flashed to the proper device, the OEM must check the SMBIOS system
information structure values on the device. The check must confirm that the device platform ID values in the
image, matches the SMBIOS system information structure values on the phone. Either the
Manufacturer.Family.ProductName.Version or Manufacturer.Family.ProductName from SMBIOS must match the
value in the image before flashing can proceed.

The device platform ID string is shown below.

Manufacturer.Family.ProductName.Version

With a new engineering device, the OEM can use the SMBIOS values to determine if it is acceptable to flash an
image that contains test signed certificates. The OEM may determine that test signed images may have blank
system information structure values, where production signed images must have SMBIOS system information
structure values that have been populated.

FFU images contain elements such as hashes, signatures and catalogs, which must be used to validate the image.



UEFI flashing protocols

Related topics

For more info, see Implementing image integrity validation in custom flashing tools.

UEFI USB function protocol
Describes the EFI_USBFN_IO_PROTOCOL.

UEFI simple I/O protocol
Describes the EFI_SIMPLE_WINPHONE_IO_PROTOCOL.

UEFI check signature protocol
Describes the EFI_CHECKSIG_PROTOCOL.

Flashing tools

Manufacturing

https://msdn.microsoft.com/library/windows/hardware/dn789231
https://msdn.microsoft.com/library/windows/hardware/dn772121
https://msdn.microsoft.com/library/windows/hardware/dn772115


Flashing security requirements
6/6/2017 • 2 minutes to read • Edit Online

Flashing security requirements summary

Recommended flashing solution

Before flashing occurs, all OEM flashing mechanisms must validate cryptographic signatures in the image that
chain to keys owned by the OEM. This validation of the cryptographic signature on the image must be done on the
device (not on a desktop flashing tool) and must be done before the image is flashed to eMMC memory. This
requirement is intended to protect devices from being compromised by users attempting to subvert the security
protections in the system. Mechanisms that can flash or update the state of the device (debuggers, memory
inspectors, etc.) and that are not properly secured could be used by an attacker to circumvent the device’s security
mechanisms.

The implemented solutions must be fully resilient even if the device is reverse engineered (that is, even if the user
understands the operation of the security code in the firmware or SoC).

Security on retail devices must also meet the following requirements:

Only secure flashing technologies can be included on retail devices.

Images to be flashed must be cryptographically signed through a process that is controlled and verified by
the OEM or Microsoft.

Cryptographic signatures on images to be flashed must be verified by code on the device immediately
before flashing.

Code that verifies cryptographic signatures on the device must be tamper proof, and cryptographic key
material on the device used for verification must be trustworthy at the point in time that it is used.

Sufficiently large encryption algorithms must be used—at a minimum, RSA 2048 with SHA-256.

The flashing tool must check the SMBIOS device identification values before flashing. For more info, see
Developing custom OEM flashing tools.

The flashing tool must implement image integrity validation to protect against tampered images. For more
info, see Developing custom OEM flashing tools.

Industry best practices for source code development and supply chain security must be followed.

A threat model must be applied to identify priority risks, threats, and vulnerabilities.

The following diagram illustrates a flashing solution that conforms to the flashing security requirements. Images to
be flashed must be signed by the OEM signing authority using documented procedures, ensuring that there is a
high level of control and security throughout the process. The component that initiates the flashing operation must
perform a cryptographic verification of the signature on the image to be flashed using trustworthy key material
immediately before flashing.

The cryptographic key should be stored so that it is tied either to secure boot key material (OEM_PK_HASH or
UEFI Variable PK) or to a public key that is embedded in a binary that is cryptographically validated by secure boot.
It is not acceptable to store the public or private key in the DPP, or in any other unsigned and unvalidated file store.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/flashing-security-requirements.md


Related topics
Developing custom OEM flashing tools

Implementing image integrity validation in custom flashing tools



FFU image format
7/13/2017 • 7 minutes to read • Edit Online

The following diagram shows both V1 and V2 FFU format. A major changed introduced in V2 FFU format is the
support for multiple data stores – each store contains sector-based data targeting a unique physical partition.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/ffu-image-format.md


Security header region

#define SECURITY_SIGNATURE "SignedImage "

typedef struct _SECURITY_HEADER
{
    UINT32 cbSize;            // size of struct, overall
    BYTE   signature[12];     // "SignedImage "
    UINT32 dwChunkSizeInKb;   // size of a hashed chunk within the image
    UINT32 dwAlgId;           // algorithm used to hash
    UINT32 dwCatalogSize;     // size of catalog to validate
    UINT32 dwHashTableSize;   // size of hash table
} SECURITY_HEADER;

Image header region

cbSize
The size of the SECURITY_HEADER struct. Used in conjunction with the signature string to identify the FFU
security header.

Signature string
A hard-coded ASCII string of "SignedImage " that identifies this image as a secure FFU image.

Chunk size in KB
The size of chunks used to generate the hash table. Used to break the image up into hashable chunks for
validation against the hash table entries and ensure the image has not been tampered with since creation.

Hash algorithm ID
Defines which hash algorithm was used to generate the hash table.

Catalog size
The size in bytes of the catalog after the security header.

Hash table size
The size in bytes of the hash table after the security header and catalog.

Security header, byte count: cbSize

Signed Catalog, byte count: dwCatalogSize

A catalog file containing the hash of the hash table blob that will be signed and must match one of the certificates
on the device. This approach allows checking for a signature up front without having the full image on the device
before flashing. Streaming data is checked as it is received against the hash table entries.

Hash table data, byte count: dwHashTableSize

The actual hashes for each chunk of the base image. Chunk validation begins at the image header and ends at the
end of the FFU.

Padding - next section starts on a chunk boundary, byte count: variable

After the hash table padding (blank space) is added to fill out to current chunk. This ensures that the full secure
header, catalog, and hash table end at a chunk boundary and the actual image header and beyond are chunk
aligned.

cbSize
The size in bytes of the ImageHeader struc. Used in conjunction with the signature string to identify the FFU
image header.

Signature string



#define FFU_SIGNATURE "ImageFlash  "

typedef struct _IMAGE_HEADER
{
    DWORD  cbSize;           // sizeof(ImageHeader)
    BYTE   Signature[12];    // "ImageFlash  "
    DWORD  ManifestLength;   // in bytes
    DWORD  dwChunkSize;      // Used only during image generation.
} ImageHeader;

Store header region
Store headerStore header

A hard-coded string of "ImageFlash " that identifies this image as an FFU image.

Manifest Length
The size in bytes of the manifest data immediately following the image header.

Chunk size
The size of chunks used to generate the hash table. Used to break the image up into hashable chunks for
validation against the hash table entries and ensure the image has not been tampered with since creation. This
should match the chunk size in the secure header. Used only during image validation.

Image header, byte count: cbSize

Manifest data, byte count: ManifestLength

The manifest contains the description of the device layout and the payload included in the FFU.

Padding byte count: variable

After the manifest padding (blank space) is added to fill out to current chunk. This ensures that the data that
follows begins on a chunk boundary.

Store header, byte count: STORE_HEADER_V1_0_SIZE (248 bytes)
The store header contains metadata that describes the payload. This includes update type, validation size, data
size, and versioning. Some information is redundant, but is included for convenience.

The store header contains the DWORD count/length fields that describe the validation & write descriptor
sections. This allows those sections to be copied out and processed later.

In V1 FFU format, you should see only one store header. In V2 FFU format, you should expect to see a number of
store headers, depending on the value defined by the NumOfStores struct.

Validation descriptor region
The validation descriptor region is a collection of VALIDATION_ENTRY structs. There are
dwValidateDescriptorCount of them, and the overall byte count of the region is dwValidateDescriptorLength.

Write descriptor region
The write descriptor region is a collection of BLOCK_DATA_ENTRY structs. There are dwWriteDescriptorCount of
them, and the overall size in bytes of the region is dwWriteDescriptorLength.

MajorVersion, MinorVersion
Major and minor versions of the store header.

FullFlashMajorVersion, FullFlashMinorVersion
Major and minor versions of the full flash update file format.

The following table shows the version values for V1 and V2 ffu image formats.



V1 V2

typedef struct _STORE_HEADER
{
    UINT32 dwUpdateType; // indicates partial or full flash
    UINT16 MajorVersion, MinorVersion; // used to validate struct
    UINT16 FullFlashMajorVersion, FullFlashMinorVersion; // FFU version, i.e. the image format
    char szPlatformId[192]; // string which indicates what device this FFU is intended to be written to
    UINT32 dwBlockSizeInBytes; // size of an image block in bytes – the device’s actual sector size may differ
    UINT32 dwWriteDescriptorCount; // number of write descriptors to iterate through
    UINT32 dwWriteDescriptorLength; // total size of all the write descriptors, in bytes (included so they can 
be read out up front and interpreted later)
    UINT32 dwValidateDescriptorCount; // number of validation descriptors to check
    UINT32 dwValidateDescriptorLength; // total size of all the validation descriptors, in bytes
    UINT32 dwInitialTableIndex; // block index in the payload of the initial (invalid) GPT
    UINT32 dwInitialTableCount; // count of blocks for the initial GPT, i.e. the GPT spans blockArray[idx..
(idx + count -1)]
    UINT32 dwFlashOnlyTableIndex; // first block index in the payload of the flash-only GPT (included so safe 
flashing can be accomplished)
    UINT32 dwFlashOnlyTableCount; // count of blocks in the flash-only GPT
    UINT32 dwFinalTableIndex; // index in the table of the real GPT
    UINT32 dwFinalTableCount; // number of blocks in the real GPT
    UINT16 NumOfStores; // Total number of stores (V2 only)
    UINT16 StoreIndex; // Current store index, 1-based (V2 only)
    UINT64 StorePayloadSize; // Payload data only, excludes padding (V2 only)
    UINT16 DevicePathLength; // Length of the device path (V2 only)
    CHAR16 DevicePath[1]; // Device path has no NUL at then end (V2 only)
} STORE_HEADER;

MajorVersion 1 2

MinorVersion 0 0

FullFlashMajorVersion 2 2

FullFlashMinorVersion 0 0

Note

The OEM should not flash the image to the device unless the version of the image matches these values.

NumOfStores (V2 only)
Number of stores and their payloads in this FFU.

StoreIndex (V2 only)
Current store index, starting from 1.

StorePayloadSize (V2 only)
Size of the store payload in bytes, excluding padding.

DevicePathLength (V2 only)
Size of the device path that follows, in characters, without including the terminating null character.

DevicePath (V2 only)
Actual device path that the store is targeted for. This should be the same as device path retrieved from UEFI
protocol: DEVICE_PATH_TO_TEXT_PROTOCOL. ConvertDevicePathToText()



Validation EntriesValidation Entries

typedef struct _VALIDATION_ENTRY
{
    UINT32 dwSectorIndex;
    UINT32 dwSectorOffset;
    UINT32 dwByteCount;
    BYTE rgCompareData[1]; // size is dwByteCount
} VALIDATION_ENTRY;

Block data entriesBlock data entries

enum DISK_ACCESS_METHOD
{
    DISK_BEGIN  = 0,
    DISK_END    = 2
};

typedef struct _DISK_LOCATION
{
    UINT32 dwDiskAccessMethod;
    UINT32 dwBlockIndex;
} DISK_LOCATION; 

typedef struct _BLOCK_DATA_ENTRY
{
    UINT32 dwLocationCount;
    UINT32 dwBlockCount;
    DISK_LOCATION rgDiskLocations[1];
} BLOCK_DATA_ENTRY;

Validation entries, element count: dwValidateDescriptorCount, byte count: dwValidateDescriptorLength

The validation section is used only for partial updates. It contains a set of VALIDATION_ENTRY structs. Each
validation entry contains a byte array and a range on disk to compare. If the data in the validation entry matches
the data on disk, that validation entry is confirmed. If and only if all validation entries are confirmed, the partial
update is safe to apply to the device.

Validation entry, byte count: variable

Each VALIDATION_ENTRY struct describes a location on disk that whose data should match the byte array in
that entry.

Block data entries, element count: dwWriteDescriptorCount, byte count: dwWriteDescriptorLength

The block data entries describe how to write the data to disk. It is possible to write a single area of the disk more
than once or to write the same data to multiple places on the disk, allowing for a compressed payload. The write
descriptor region is composed of BLOCK_DATA_ENTRY structs. Each entry has a size and a byte array, and an
array of locations to write to disk.

The fields dwFlashOnlyTableIndex and dwFlashOnlyTableCount are used to determine the last block entry
that is necessary to lay out all of the partitions required to re-flash the device. If all of the blocks up to and
including this block are successfully flashed to the device, the device can be re-flashed without requiring any
silicon vendor or OEM code.

Block data entry, byte count: variable

Each block data entry describes a block of data in the store data section. Each entry describes the number of data
blocks and the locations to which they should be written on disk. The accessMethod is used like the accessMethod
in SetFilePointer, meaning that it gives meaning to the blockIndex.



PaddingPadding

Image payload region

Related topics

Padding – to allow the next section to start on a block boundary, byte count: variable

The payload of block data to be written to disk, byte count: variable.

This is an array of data blocks. Each data block consists of BytesPerBlock bytes, where BytesPerBlock is defined
in the store header.

In V1 FFU format, you should see only one image payload region. in V2 FFU format, you should expect to see a
number of image payload regions depending on the value defined by the NumOfStores struct.

Flashing tools



Implementing image integrity validation in custom
flashing tools
6/6/2017 • 2 minutes to read • Edit Online

Checking the signature on the catalog and checking the hash of the
table of hashes

Checking the data against the hash table entries

The FFU image contains a signed catalog file, a hash within the catalog, and a table of hashes corresponding to
each chunk of the image. The hash table contents are generated using the SHA256 secure hash algorithm. Three
checks must be performed before the image is flashed:

Catalog signature validation - Validating the signature of the signed catalog file helps to verify that the
image came from a trusted source.

Hash of the table of hashes validation - Validating the hash of the table of hashes in the table helps to
verify that the image has not been tampered with.

Data chunk validation using the hash table entries - The FFU application must check each chunk
against its corresponding chunk hash before flashing the image to the device.

The goal in signature validation is to make sure that the signature in the catalog matches the PK certificate on the
phone. This approach allows checking for a signature up front without having the full image on the device before
flashing. The signature check assumes that catalog contains a SHA1 hash.

Microsoft provides a UEFI protocol which exposes a function for this purpose, EFI_CHECK_SIG_AND_HASH. For
more information, see UEFI check signature protocol. This function also validates the hash of the table of hashes.

Example code flow

1. Establish pointers to catalog and hash table data.

2. Determine the size of the catalog and hash table data in bytes.

3. Use the UEFI check signature protocol to call EFI_CHECK_SIG_AND_HASH, passing the pointers and data
sizes.

4. Based on the EFI return code either continue to process the image, or post a security message such as
EFI_SECURITY_VIOL ATION.

Note
If secure boot is not enabled on the device, a signature check in not performed.

The OEM flashing tool must check the data against the hash table entries. For info about the flashing tool,
Developing custom OEM flashing tools.

Example code flow

A number of valid approaches can be used; an example is provided here to serve as a common point of reference.

1. Get the new hash data from the hash table in the image header.

2. Set up a loop to process chunks of data in the image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/implementing-image-integrity-validation-in-custom-flashing-tools.md
https://msdn.microsoft.com/library/windows/hardware/dn772115
https://msdn.microsoft.com/library/windows/hardware/dn772115


Error handling

Clean up and exit

Encryption library

Related topics

3. Get a pointer to the hash of the current chunk of data.

4. Compare the hash of the current chunk of data against the hash table data using a function such as
memcmp.

5. If the two hashes match, increment the pointer and get ready to check the next chunk of data.

6. If the two hashes do not match, stop all processing of the image and post a security message such as
EFI_SECURITY_VIOLATION .

7. Continue processing until there is no more data in the image to process.

For info on the FFU elements discussed here, see FFU image format.

Standard error handling code techniques should be used. A few common situations to handle are listed here:

Missing catalog data

Insufficient resources

Empty image

Follow standard practice and clean up any created arrays or other objects before exiting the flashing code. The exit
process should return the final EFI_STATUS value. For example, if the image is valid, you can return a value of 
EFI_SUCCESS .

Locate and include an appropriate encryption library in the image to support hash validation, such as
EFI_HASH_PROTOCOL.

Developing custom OEM flashing tools



Field service scenarios
6/6/2017 • 3 minutes to read • Edit Online

Scenarios can help to identify security vulnerabilities in field service processes. Each scenario should be reviewed
to verify that a secure solution has been implemented by the OEM.

Device refurbishing Mobile operators and OEMs can refurbish devices by
using a variety of approaches. The first refurbishment
scenario occurs when customers return phones to the
mobile operator for whatever reason. In this case, the
devices are typically shipped to regional OEM service
centers where they are reflashed with the current OEM
image.

The second refurbishment scenario occurs when
customers are experiencing problems with the operation
of the device. The customer brings the device back to the
mobile operator store, and the store associate runs basic
diagnostics. The associate can attempt to reset the phone
to factory settings or reflash the device OS by using
flashing tools provided by Microsoft (FFU) or the OEM. If
this fails, the store associate can decide to send the device
to an OEM service center. Before the device leaves the
control of the mobile operator and is returned to the
OEM, some mechanism is used to remove all the
customer data.

The renewal of the device at the OEM service center is the
third refurbishment scenario. The device can be reflashed
using whatever tools the OEM service center is equipped
with. Some OEMs will use OS-level flashing technology,
meaning they cannot reflash the device if the modem-
level boot loader or software is broken. Others will be able
to reflash the modem and OS partitions.

Phone troubleshooting Field test and diagnostics apps can be used by the mobile
operator store, mobile operator service centers, and OEM
service centers to perform specific tests on a phone in two
different scenarios.

The first troubleshooting scenario is when the customer is
experiencing difficulties with the device and a diagnostic
test is run to gather information on the reported issue.

The second scenario is when the mobile operator or OEM
service centers seek to establish quality status of a device.
This scenario is the more general form of the previous
troubleshooting scenario. This is because there could be
more reasons than customer difficulties that would trigger
the need for diagnostics and testing of retail phones. For
example, to perform field quality measures, the test could
be initiated to perform random-sample testing.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/field-service-scenarios.md


Related topics

Engineering flashing The engineering staffs of silicon vendors and OEMs need
access to flashing technologies during development of
hardware and software for the phones. This scenario is
typically supported by low-level technologies such as
JTAG, UEFI-based flashing, or OEM-specific flashing
technologies. Which technology is selected depends on
issues being worked on, development processes, and the
supporting tools. The granularity of flashing options
varies; lower-level tools have more flexibility in choosing
which partitions can be flashed.

Engineering diagnostics The engineering staffs of silicon vendors and OEMs need
access to diagnostics technologies during development of
hardware and software for the phones. These scenarios
are typically supported by technologies provided by the
SV or OEM that will be disabled on retail devices. Some of
the SV technologies provide a broad set of capabilities—
including features that support reading and writing to
flash memory—that must be disabled before the device is
shipped.

Mobile operator trials There may be a need to flash OS images to the device to
support mobile operator trials.

Production manufacturing The process of flashing phones during manufacturing
varies per OEM. Some OEMs use gang programmers that
can flash a number of units at a time; others use the
flashing technology described in this documentation. For
more info on the flashing process, see Flashing tools.

Rework manufacturing Some OEMs have a process in place to rework phones
that fail manufacturing quality control. Because the device
is completely assembled, it may not be possible to use a
gang programmer; this rework can be accomplished by
using tethered flashing technologies similar to the
customer return refurbishment scenario.

Remanufacturing There can be a need to repurpose existing phone
inventory for a different region or mobile operator by
replacing the existing OS with one customized for the new
market.

Manufacturing



Using a host PC to reboot a device to flashing mode
and get version information
7/13/2017 • 6 minutes to read • Edit Online

Understanding the Windows Portable Devices API

Discovering Windows 10 Mobile devices that are connected to the host
computer

Examples and additional resourcesExamples and additional resources

When a Windows 10 Mobile device is connected to a host PC via a USB cable, you can perform the following tasks
in an application that is running on the host PC. These tasks are useful in certain manufacturing or customer care
scenarios.

Reboot the device into flashing mode.

Retrieve version information from the device.

The host app uses the Windows Portable Devices API to accomplish these tasks.

The Windows Portable Devices (WPD) API is a COM-based API that enables computers to communicate with
attached devices. To learn more about this API, refer to the following resources:

Windows Portable Devices: This section of the MSDN library provides architecture guidance and reference
documentation for the Windows Portable Devices API.

Portable Devices COM API Sample: This sample demonstrates how to use the Windows Portable Devices
API to perform a variety of tasks, including enumerating connected devices, reading properties of content
on a connected device, and sending MTP commands to a device.

Portable Devices Services COM API Sample: This sample demonstrates how to use the Windows Portable
Devices API to perform a variety of operations on device services, including enumerating services and
service content.

Before the host app can reboot a device to flashing mode or retrieve version information from the device, the host
apps must discover all devices that are connected to the computer.

0x59f12ea9, 0x53ce, 0x452d, 0x97, 0x11, 0xca, 0x4e, 0xea, 0xf1, 0x80, 0x89

1. Create an IPortableDeviceManager object and use the IPortableDeviceManager ::GetDevices function to get
the collection of device IDs for all connected devices.

2. Enumerate through the collection of device IDs to determine which connected device is a Windows 10
Mobile For each device ID, create an IPortableDevice object and then use the IPortableDevice::Content and
IPortableDeviceContent::Properties functions to retrieve the value of the
WPD_DEVICE_MODEL_UNIQUE_ID device property for the device. If the device is a Windows 10 Mobile
device, the value of the WPD_DEVICE_MODEL_UNIQUE_ID property is a GUID with the following value.

The following code examples in the Portable Devices COM API Sample demonstrate the following related tasks:

Creating an IPortableDeviceManager object: see the ChooseDevice  function in DeviceEnumeration.cpp.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/using-a-host-computer-to-reboot-a-phone-to-flashing-mode-and-get-phone-version-information.md
http://msdn.microsoft.com/library/windows/desktop/dd388998.aspx
http://code.msdn.microsoft.com/windowsdesktop/Portable-Devices-COM-API-fd4a5f7d
http://code.msdn.microsoft.com/windowsdesktop/Portable-Devices-COM-API-b1e2db21
http://msdn.microsoft.com/library/windows/desktop/dd388688.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388693.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319361.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375688.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388540.aspx
http://code.msdn.microsoft.com/windowsdesktop/Portable-Devices-COM-API-fd4a5f7d
http://msdn.microsoft.com/library/windows/desktop/dd388688.aspx


Rebooting a Windows 10 Mobile device into flashing mode

Examples and additional resourcesExamples and additional resources

Retrieving version information from a Windows 10 Mobile device

Getting the device IDs of all connected devices: see the EnumerateAllDevices  function in
DeviceEnumeration.cpp.

Retrieving device properties: see the ReadContentProperties  function in ContentProperties.cpp.

For more info about enumerating devices and retrieving device properties, see the following articles:

Enumerating Devices

Device Properties

Retrieving Properties for a Single Object

After you have an IPortableDevice object that represents a Windows 10 Mobile device, you can send an MTP
command to reboot the phone into flashing mode.

1. Create an IPortableDeviceValues object and configure it to set up the MTP command parameters:

a. Call IPortableDeviceValues::SetGuidValue. Pass
WPD_PROPERTY_COMMON_COMMAND_CATEGORY to the key parameter and pass
WPD_COMMAND_MTP_EXT_EXECUTE_COMMAND_WITHOUT_DATA_PHASE.fmtid to the Value
parameter.

b. Call IPortableDeviceValues::SetUnsignedIntegerValue. Pass
WPD_PROPERTY_COMMON_COMMAND_ID to the key parameter and pass
WPD_COMMAND_MTP_EXT_EXECUTE_COMMAND_WITHOUT_DATA_PHASE.pid to the Value
parameter.

c. Call IPortableDeviceValues::SetUnsignedIntegerValue again. Pass
WPD_PROPERTY_MTP_EXT_OPERATION_CODE to the key parameter and pass the value 0x9401
to the Value parameter. This value represents the MTP command that reboots the phone into
flashing mode.

d. Create an IPortableDevicePropVariantCollection object.

e. Call IPortableDeviceValues::SetIPortableDevicePropVariantCollectionValue. Pass
WPD_PROPERTY_MTP_EXT_OPERATION_PARAMS to the key parameter and pass the
IPortableDevicePropVariantCollection object to the pValue parameter.

2. Call IPortableDevice::SendCommand to send the MTP command. Pass the initialized IPortableDeviceValues
object to the pParameters parameter. This operation sends the MTP command to reboot the phone into
flashing mode.

The following code examples demonstrate how to set up MTP command parameters and send an MTP command:

Issuing the GetNumObjects Command: This topic in the MSDN library demonstrates how to send the
standard GetNumObjects MTP command.

The SendhintsCommand  function in ContentEnumeration.cpp in the Portable Devices COM API Sample.

For more information about sending MTP commands using the Windows Portable Devices API, see Supporting
MTP Extensions.

After you determine the device ID for a Windows 10 Mobile device that is connected to the host computer, you can

http://msdn.microsoft.com/library/windows/desktop/dd319331.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319322.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375726.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319361.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319461.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375671.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375681.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375681.aspx
https://msdn.microsoft.com/library/windows/hardware/ff597589
https://msdn.microsoft.com/library/windows/hardware/ff597632
https://msdn.microsoft.com/library/windows/hardware/ff597589
http://msdn.microsoft.com/library/windows/desktop/dd375691.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319461.aspx
http://msdn.microsoft.com/library/windows/desktop/ff384842.aspx
http://code.msdn.microsoft.com/windowsdesktop/Portable-Devices-COM-API-fd4a5f7d
http://msdn.microsoft.com/library/windows/desktop/ff384848.aspx


Open the MtpDuDeviceServiceOpen the MtpDuDeviceService

Retrieve version information from the deviceRetrieve version information from the device

use a Windows 10 Mobile-specific device service named MtpDuDeviceService to retrieve version information
from the device.

Note
If the device is protected with a PIN, the MtpDuDeviceService is only available if the PIN has been entered and the
device is unlocked.

First, enumerate through the device services to open an IPortableDeviceService object for the
MtpDuDeviceService.

1. Get an array of IDs for all device services supported by the device. To do this, cast the existing
IPortableDeviceManager object to an IPortableDeviceServiceManager and call the
IPortableDeviceServiceManager ::GetDeviceServices method. Pass the device ID for the Windows 10
Mobile device to the pszPnPDeviceID parameter and the value GUID_DEVINTERFACE_WPD_SERVICE to
the guidServiceCategory parameter. The array of service IDs is returned in the pServices parameter.

2. Iterate through the array of service IDs, and perform the following tasks for each service ID:

a. Create an IPortableDeviceService object and call the IPortableDeviceService::Open function to open
the service. Pass the current service ID to the pszPnPServiceID parameter.

b. Get the service object ID by calling the IPortableDeviceService::GetServiceObjectID function. You
need the service object ID to access properties of the service.

c. Use the IPortableDeviceService::Content and IPortableDeviceContent::Properties functions to
retrieve the collection of properties for the service (an IPortableDeviceProperties object).

d. Create an IPortableDeviceKeyCollection object and add the WPD-defined WPD_OBJECT_NAME
property key to this collection. This property key indicates that you are retrieving the display name
for the service.

e. Call the IPortableDeviceProperties::GetValues function to retrieve an IPortableDeviceValues object
that contains the property values. Pass the service object ID to the pszObjectID parameter and the
initialized IPortableDeviceKeyCollection object to the pKeys parameter.

f. Call the IPortableDeviceValues::GetStringValue function, and pass the WPD-defined
WPD_OBJECT_NAME property key to the key parameter.

g. If the IPortableDeviceValues::GetStringValue function returns the string MtpDuDeviceService, you
have found the service object you need to retrieve version information from the phone. Exit the loop
and proceed to the next section.

If the name of the service is not MtpDuDeviceService, call the IPortableDeviceService::Close
function, iterate to the next service ID returned by
IPortableDeviceServiceManager ::GetDeviceServices, and return to step 2.

After you have opened an IPortableDeviceService object for the MtpDuDeviceService, you can use this object to
retrieve version information from the device

1. Use the IPortableDeviceService::Content and IPortableDeviceContent::Properties functions to retrieve the
collection of properties for the service (an IPortableDeviceProperties object).

2. Create an IPortableDeviceKeyCollection object and add a PROPERTYKEY value to this collection that
specifies the version data you want to retrieve from the device. The PROPERTYKEY value must have the
following structure:

The fmtid field must have the following GUID value:

http://msdn.microsoft.com/library/windows/desktop/dd319445.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388688.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319402.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319408.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319319.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319445.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319453.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319449.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319445.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388540.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388696.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388548.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388714.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319461.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388548.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375661.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375661.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319441.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319408.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319445.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319445.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388540.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388696.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388548.aspx
http://msdn.microsoft.com/library/windows/desktop/bb773381.aspx
http://msdn.microsoft.com/library/windows/desktop/bb773381.aspx


Examples and additional resourcesExamples and additional resources

DEVICE DATA TO RETRIEVE PID VALUE

0x9BFC64C1, 0x19C9, 0x4F3D, 0xA1, 0x4D,  0xC8,  0xDB,  0xE0,  0x47,  0x5D,  0x13

The pid field must have one of the values shown in the table below

The build string for the image on the device Use the data returned by the following pid values to
construct the build string:

4 (the name of the internal Microsoft branch
the OS was built from)

6 (the Windows build number)

7 (the Windows 10 Mobile build number)

8 (the time stamp for the build)

An example build string is
WPMAIN.9600.12186.20130906-1624.

The OS version 12

The OEM device name 15

The firmware version 16

The SoC version 17

The radio software version 18

The radio hardware version 19

The bootloader version 20

The platform ID (from SMBIOS). 29

3. Call the IPortableDeviceProperties::GetValues function to retrieve an IPortableDeviceValues object that
contains the requested version information. Pass the service object ID to the pszObjectID parameter and the
initialized IPortableDeviceKeyCollection object to the pKeys parameter.

4. Call the IPortableDeviceValues::GetStringValue function. For the key parameter, pass the same
PROPERTYKEY value that you used earlier. This function returns the requested version information in the
pValue parameter.

The following code examples in the Portable Devices Services COM API Sample demonstrate the following
related tasks:

Enumerating through device services: see the EnumerateContactsServices  function in
ServiceEnumeration.cpp.

http://msdn.microsoft.com/library/windows/desktop/dd388714.aspx
http://msdn.microsoft.com/library/windows/desktop/dd319461.aspx
http://msdn.microsoft.com/library/windows/desktop/dd388548.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375661.aspx
http://msdn.microsoft.com/library/windows/desktop/bb773381.aspx
http://code.msdn.microsoft.com/windowsdesktop/Portable-Devices-COM-API-b1e2db21


Reading properties of a service: see the ReadContentProperties  function in ContentProperties.cpp.

For more info about working with device services, see Opening a service, Accessing service object properties and
Retrieving Object Properities.

http://msdn.microsoft.com/library/windows/desktop/dd375706.aspx
http://msdn.microsoft.com/library/windows/desktop/dd743198.aspx
http://msdn.microsoft.com/library/windows/desktop/dd375722.aspx


Disabling the initial setup process
7/13/2017 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  Owner="Contoso"
  Component="Shell"
  SubComponent="DisableOOBE"
  OwnerType="OEM"
  ReleaseType="Production" xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00">

  <Macros>
    <Macro Id="hklm.shell" Value="$(hklm.microsoft)\Shell"/>
  </Macros>

  <Components>
    <OSComponent>
      <RegKeys>
        <RegKey KeyName="$(hklm.shell)\OOBE">
          <RegValue Name="OobeHeadless" Type="REG_DWORD" Value="00000001" />
        </RegKey>
      </RegKeys>
    </OSComponent>
  </Components>
</Package>

Related topics

To disable the device's initial setup process (also sometimes called the out-of-box experience or OOBE) in a Test,
Health, or Production image that is used during manufacturing, include the SKIPOOBE imaging feature in the
OEMnput.xml file that is used to build the image.

The SKIPOOBE feature sets the OobeHeadless registry value (a REG_DWORD value under the
HKEY_LOCAL_MACHINE\Software\Microsoft\Shell\OOBE entry) to 1. Alternatively, you can configure this
registry value directly in one of your own packages. The following example demonstrates a package XML file that
sets this registry value.

Specifying files and registry entries in a package project file

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/disabling-the-initial-setup-process.md
https://msdn.microsoft.com/library/dn789219


Reset protection
7/13/2017 • 9 minutes to read • Edit Online

Turn on Reset Protection in your images

Reset Protection helps you secure a device in case it is stolen. It must be enabled on the device during
manufacturing time.

Reset Protection consists of the following parts:

Reset and reactivation protection – The stolen device cannot be reused by resetting or flashing the device.
When a user performs a factory reset on the device, they will be asked to enter the Microsoft Account
credentials that are associated with that device. Additionally, if the device is flashed with a new image and Reset
Protection is turned on, the Microsoft Account credentials that were associated with that device is required to
finish OOBE and use the device.
Anti-rollback protection – If Reset Protection is enabled, the stolen device cannot be flashed to an earlier
version of the operating system that did not support Reset Protection.

To turn on Reset Protection, you must configure two secure UEFI variables:

ANTI_THEFT_ENABLED –This variable needs to be set with a value that will be provided by Microsoft and
indicates that the device can support Reset Protection. The operating system enables Reset Protection on the
device based on this setting. This variable is in the 1A597235-6378-4910-9F8B-720FEE9357A3 namespace.
DBX - This variable must contain the image hashes of the builds to which the device cannot be rolled back.
These image hashes are provided by Microsoft. This variable is in the
EFI_IMAGE_SECURITY_DATABASE_GUID namespace.

There are two ways to turn on reset protection in your images:

Option 1: Enable it by using oeminput.xml

On retail devices, you enable Reset Protection by adding the RESET_PROTECTION feature to the OEMInput.xml
file. When you include this feature, the device’s UEFI secure boot keys for Reset Protection are provisioned as a
scheduled task that will run once at first boot into main operating system and will not run again. For more info on
the optional features that are available, see OOptional features for building images.

Note If you’re building a test image, use RESET_PROTECTION_INTERNAL instead.

Option 2: Enable when provisioning secure boot keys

Reset Protection is enabled on a device by provisioning UEFI secure boot keys and is a two-step process:

1. Anti-Rollback provisioning -- The DBX variable must be updated to contain the hashes for the builds that
did not support Reset Protection. Specifically, the sample scripts that create PK, KEK, DB and DBX variables
will be modified to add in the DBX variable the list of hashes provided by Microsoft. The list of hashes will
be supplied by Microsoft in a file called OEM_RollbackHashes.bin. The DBX variable must be signed with
the OEM certificate.

The following excerpt includes the changes to the script that creates the DBX variable:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/reset-protection.md
https://msdn.microsoft.com/library/windows/hardware/dn756780


How do I update a retail image with Reset Protection?

Bootable WIM files and MMOS

Reverse logistics

How to get started using reverse logisticsHow to get started using reverse logistics

Register your companyRegister your company

write-progress -activity "Making secure boot variables" -status "Creating DBX"
# add SHA256 hashes from the supplied file to the DBX variable
$hashes = Get-Content .\OEM_RollbackHashes.bin
format-sb-hashes "dbx" $ownerGuid $hashes

2. Reset and Reactivation Protection provisioning -- After setting the DBX variable, you must also set the
ANTI_THEFT_ENABLED authenticated variable. The content of this variable will be provided by Microsoft in
the OEM_ResetProtection_Enable_Resource.bin file. The name of the variable is
ANTI_THEFT_ENABLED and the namespace GUID is 1A597235-6378-4910-9F8B-720FEE9357A3. You
can set this in the same way as the secure boot keys.

When you submit an update, Reset Protection should not be included as part of the update. However, when you
build image, Reset Protection should be included in the oeminput.xml file. We recommend the following steps to
update a retail image with Reset Protection enabled:

1. When you’re developing an image, the RESET_PROTECTION optional feature should be included in the
oeminput.xml file.

2. Before you submit the packages for signing, you should remove the RESET_PROTECTION optional feature
from the oeminput.xml file.

3. After you receive the packages signed by Microsoft, you must add the RESET_PROTECTION optional feature
back to your oeminput.xml file.

When using Reset Protection on a device, the MMOS or bootable WIM files that support this device must be built
on a version of the tools that support Reset Protection. We recommend that the version of the device image and
the version of MMOS match.

With reverse logistics, you can get information about the status of Reset Protection on a device, such as the device
IMEI, or check if Reset Protection is currently enabled on the device. You can also use this to remove Reset
Protection if you have the appropriate recovery key for that device. Reverse logistics can help you in refurbishment
scenarios where Reset Protection is turned on, but you don’t have the Microsoft Account credentials that are
required to turn it off. We’ve provided sample code on how to use reverse logistics in the Portable Devices COM
API Sample.

In order to use Microsoft's automated reverse logistics program, organizations need to sign up for an account with
the Microsoft Dashboard and perform the following tasks:

Purchase an Authenticode signing certificate.
Install the certificate on all machines that will be used to submit requests.
Assign an administrator(s) to manage the program.
For each user in your company who will contribute submissions to the Dashboard, add the Microsoft account
for the user and grant each user the Reverse Logistics permission. To grant permissions, click Your Profile
and then click Permissions.

Your company may already have an account with the Microsoft Dashboard. In that case, you will need to find the
administrator of your account with the Dashboard. To find the administrator, click Administration and then click

https://code.msdn.microsoft.com/windowsdesktop/Portable-Devices-COM-API-fd4a5f7d
https://sysdev.microsoft.com/


Add users for your companyAdd users for your company

Set up your workstation for reverse logisticsSet up your workstation for reverse logistics

PrerequistesPrerequistes

ProcessProcess

My Administrators. We recommend adding a reverse logistics manager as an additional administrator so it's
easier to approve users' reverse logistics requests. The administrators responsibilities include approving requests
to join the company, approving request for permissions, and removing users after they leave the company.For
more information, see Manage users and permissions.

If your company does not yet have an account with then Dashboard, here is how to get started:

Get a code signing certificate

Establish a company

In order to use revers logistics, you must purchase a standard class 3 certificate, NOT an EV certificate.
Make sure you establish your company with the same name that you used to purchase the certificate.
This is the name that will be exposed to users.

Make sure you save this certificate and that it is accessible. You will need to install it on multiple computers later in
this section. We recommend that you save a copy of the certificate on a thumb drive, or something easily
accessible.

After you register your company, add other users who need reverse logistics permission:

The first person to register a company becomes an administrator for that company account.
Subsequent users need to register by using a Microsoft account. On the top right-hand corner of the
Dashboard, click Register to add yourself to your company and request the Reverse Logistics permission
under Additional Permissions Request.
The administrator receives notification and approves the request.

For more information about signing in to the Dashboard, see Before you sign in.

You need a workstation that runs Windows 7 or later and has browser access to the internet.
Each reverse logistics submitter must have his or her own Microsoft account; account credentials should not be
shared amongst multiple people.
Only computers that have the certificate installed locally will be able to perform reverse logistics.

1. Plug in the thumb drive that contains the certificate you purchased.
2. On each computer where you plan to submit reverse logistics requests, sign in as a local Administrator and

install the code signing certificate:
a. Open a command prompt.
b. Type mmc  and press ENTER.
c. On the File menu, click Add/Remove Snap-in.
d. Click Add.
e. In the Add Standalone Snap-in dialog box, select Certificates.
f. Click Add.
g. In the Certificates Snap-in dialog box, select Computer account and click Next.
h. In the Select Computer dialog box, click Finish.
i. On the Add/Remove Snap-in dialog box, click OK.
j. In the Console Root window, click Certificates (Local Computer) to view the certificate stores for the

computer.
k. In the Actions pane, under Certificates, select More Actions, then All Tasks, and then Import:

https://msdn.microsoft.com/library/windows/hardware/br230781.aspx
https://msdn.microsoft.com/library/windows/hardware/hh801887.aspx
https://msdn.microsoft.com/library/windows/hardware/br230795.aspx
https://sysdev.microsoft.com/
https://msdn.microsoft.com/library/windows/hardware/br230782.aspx


Authentication and UseAuthentication and Use

API specificationAPI specification

RequestRequest

l. Click Browse and find the certificate you purchased.
m. Click OK. The certificate should be installed in you Personal certificate store.

The next step is to create a client tool on a provisioned workstation to submit reverse logistics requests. You will
need to create a third-party app with Microsoft account. The app will use a browser to allow a user to enter
credentials using a Microsoft account website. That will grant access to your tool to get the appropriate token to
call the Reverse Logistics API. For more information about how to build the app, see Mobile and Windows desktop
apps, and use "dds.reverse_logistics" scope (instead of "wl.basic") to get the appropriate token.

After your tool has the token, it can call the Reverse Logistics API with that token, your client certificate, and the
target IMEI in order to retrieve the recovery key for the target device.

Reverse Logistics API endpoint:

POST
https://cs.dds.microsoft.com/Command/ExternalClientCert/AdministrativeUnprotect/%7BPartnerName%7D/%7B
DeviceId%7D

{PartnerName} should be replaced with an end-user readable string that will be included in an email to the user
whose Microsoft account is protecting the phone.

{DeviceId} should be replaced with a string in one of the following formats (leaving the square brackets and
replacing the text inside and including the curly braces):

ImeiOrMeid[{IMEI or MEID of the device}]
Duid[{DUID of the device}]

Include the Microsoft account user token in the “Authorization” header of the request.

The certificate provisioned with the Dashboard for your organization must be used as the client certificate for

https://msdn.microsoft.com/library/hh826529.aspx
https://cs.dds.microsoft.com/Command/ExternalClientCert/AdministrativeUnprotect/%7BPartnerName%7D/%7BDeviceId%7D


ResponseResponse

{
  "UnprotectResult": "{UnprotectResult}"
  "RecoveryKey": "{RecoveryKey}"
}

UnprotectResult will be a string value of the enum specified below:

    /// <summary>
    /// Result of the unprotect operation
    /// </summary>
    public enum UnprotectResult
    {
        /// <summary>
        /// Device was not found in DDS
        /// </summary>
        DeviceNotFound,

        /// <summary>
        /// Device was already unprotected
        /// </summary>
        DeviceAlreadyUnprotected,

        /// <summary>
        /// Device has been unprotected
        /// </summary>
        DeviceUnprotected,

        /// <summary>
        /// IF we find more than 1 device, we don&#39;t currently have a way to resolve the conflict. So, we 
don&#39;t unprotect.
        /// </summary>
        MultipleDevicesFound,
    }

mutual HTTPS.

Response codes:

200: Success.
400: The request is malformed.
401: The request is unauthorized. Your organization may not be provisioned properly, the user may not be
provisioned with the organization, or there may be a problem or mismatch with the client certificate or the
Microsoft account user token. The response may include text giving a reason for the authorization problem.
404: The API path or device specified was not found.
500: An unexpected error. If this persists, contact Microsoft for resolution of the issue.
503: Storage error. If this persists, contact Microsoft for resolution of the issue.



 

Building and flashing mobile images
7/12/2017 • 2 minutes to read • Edit Online

1. Define, customize, and build an image

2. Sign an image

3. Flash an image to a device

Here's information to help you build and flash images to your Windows 10 Mobile device.

To build a customized image that can be flashed to mobile devices, you can use either the new Windows Imaging
and Configuration Designer (ICD) or classic ImgGen.cmd, or a hybrid of these methods using the Windows ICD
command-line interface. See Customizations for Windows 10 Mobile to help you decide which method you need
to use to meet your device customization needs.

Using Windows ICD : This tool walks you through the process of creating images for Windows 10 Mobile
using the Windows provisioning framework. Use this tool if you are building a device that is based on a
reference design from a SoC vendor. To learn more about the tool, see Windows Imaging and
Configuration Designer. To start building a mobile image, see Build a mobile image using Windows ICD.

Using ImgGen.cmd: If you're building a device based on your own hardware design or using MCSF
customization answer files and other assets that were generated using the legacy tools that shipped in
Windows Phone 8.1, you can generate a customized mobile image using this tool. To get started, see
Building a mobile image using ImgGen.cmd.

Using a hybrid method: If you want to use an OEMInput.xml file to fully define the contents of your
image, take advantage of all the new runtime settings, enterprise policies, and enrollment settings available
in Windows provisioning and also be able to fully customize the device hardware and connectivity settings,
preload apps, and add assets such as ringtones and localized strings through MCSF, you can use a hybrid
approach using the Windows ICD CLI to build your image. To learn more, see Build a mobile image using
a hybrid method.

No matter which method you used to customize and build your image, you'll need to cryptographically sign your
image before you can deploy it to a device.

Sign a full flash update (FFU) image

Use the information in the following topics to learn about flashing and update tools:

Use the flashing tools provided by Microsoft

Update packages on a device and get package update logs

Update packages in an .FFU image file

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/building-and-flashing-images.md
https://msdn.microsoft.com/library/windows/hardware/mt481438
https://msdn.microsoft.com/library/windows/hardware/dn916113


Build a mobile image using Windows ICD
7/12/2017 • 5 minutes to read • Edit Online

To build a mobile image using the Windows ICD UI

To build a mobile image using the Windows ICD CLI

Windows Imaging and Configuration Designer (ICD) is a Windows provisioning tool that lets you streamline
customizing and provisioning a Windows image. It offers both a GUI or command-line interface that you can use
to:

Configure settings and policies for a mobile image, including new customizations primarily focused on
enterprise and education-specific scenarios such as bulk enrollment and enterprise policies, and then build the
customized image.
Create a multivariant image by creating a provisioning package that defines targets and adds conditions that
specify when settings for a variant will be applied, and then using the provisioning package as input to building
a mobile image.

Use Windows ICD if you are building a device that is based on a reference design from a SoC vendor or if you are
looking for a simple and streamlined process for creating a mobile image.

The Windows ICD user interface (UI) provides an easy-to-use interface to build a customized mobile image. The
UI shows all the settings that you can configure for a single variant mobile image and it then guides you through a
step-by-step process to build, and even flash, the customized image.

However, be aware that there are some settings that are not available through the Windows provisioning
framework and so these are not available to configure using Windows ICD. This includes MCSF settings not
supported in Windows Provisioning as well as the support for data assets (such as ringtones, localized strings, and
so on).

If you don't need to configure these settings or assets for your image, you can use the Windows ICD UI to build
your customized, single variant mobile image by following the instructions in Build and deploy an image for
Windows 10 Mobile.

If you want to configure the available mobile settings in the Windows provisioning framework but want more
flexibility in building your image, you can use the Windows ICD command-line interface (CLI). Using the Windows
ICD CLI, you can:

Choose how you define the packages and features contained in your image—either by using an OEMInput.xml
file or a BSP.config.xml file as one of the inputs.
Build a single variant mobile image.
Create a provisioning package with multivariant settings, which you can use as one of the inputs for creating a
multivariant mobile image.

Whether you're building a multivariant or single variant image, you must choose how you want to define the
contents of the image. This determines the packages or features that will be part of the image and can include
hardware support, languages, market-specific apps or functionality, and so on.

Define the contents of the image

1. Using a BSP.config.xml file. You can download these as part of the BSP kit or you can generate your own
BSP.config.xml file by running the BSP kit configuration tools from the SoC vendor and selecting your

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/build-a-mobile-image-using-windows-icd.md
https://msdn.microsoft.com/library/windows/hardware/mt573153
https://msdn.microsoft.com/library/windows/hardware/dn916106


component drivers.

The BSP.config.xml file is required if you tried or want to use the Windows ICD UI to build your image. If
you are building a mobile image for a hardware reference design, you should already have the
BSP.config.xml file for your hardware reference design.

2. Using an OEMInput.xml file. An OEMInput.xml file describes the required and optional elements that are
used to define the mobile image. If you are creating a mobile image for a hardware reference design or for
your own hardware design, and you also want to add your own features as part of the image, the
OEMInput.xml file allows you to do this.

The mobile kit includes OEMInput.xml samples that you can use as a starting point. You can find these in
the Windows install folder, C:\Program Files (x86)\Windows Kits\10\OEMInputSamples on x64 host
computers or C:\Program Files\Windows Kits\10\OEMInputSamples on x86 host computers.

To learn more about OEMInput contents and other features you can add to your image, see OEMInput file
contents and Optional features for building images. If you are already familiar with OEMInput.xml and want
to know how to add your own feature into the image and other functionality available to you, see the other
topics under Define the image using OEMInput and feature manifest files.

To build a mobile image, you must also have a provisioning package or Windows provisioning answer file to use as
inputs. These files specify the customization settings and assets that you want to include in your image.

You can use the Windows ICD UI to generate a provisioning package by configuring the settings and then
exporting a provisioning package.

You can use the Windows ICD UI to quickly generate a Windows provisioning answer file. Whenever you
start a new project using the UI, Windows ICD always creates a customizations.xml in your project folder.
This is typically found in your Documents\Windows Imaging and Configuration Designer
(WICD)\Project_Name folder. If you want to create one from scratch, see Windows provisioning answer file
to understand the schema and then see Windows Provisioning settings reference to learn about the settings
available for you to configure.

Note We recommend using the Windows ICD UI to easily generate either the provisioning package or the
Windows provisioning answer file.

Follow these instructions to build a single variant mobile image:

Build a single variant mobile image

1. See Getting started with Windows ICD and follow the instructions on launching the Windows ICD CLI.

2. Build an image for Windows 10 Mobile using the Windows ICD CLI.

Windows supports a mechanism that allows you to create a single image that can work for multiple markets. You
can dynamically configure languages, branding, apps, and settings based on conditions. Building a mobile image
that contains multivariant settings is only possible through the Windows ICD CLI.

The process for building a multivariant mobile image is similar to building a single variant mobile image except
that you must create a provisioning package with multivariant settings first and then you must use this package as
one of the inputs when you are ready to build the image.

Follow these instructions to build multivariant mobile image:

Build a multivariant mobile image

1. Create the provisioning package. For more information, see Create a provisioning package with multivariant
settings.

You will use this package as one of the inputs for the next step.

https://msdn.microsoft.com/library/windows/hardware/dn916153
https://msdn.microsoft.com/library/windows/hardware/dn953942
https://msdn.microsoft.com/library/windows/hardware/dn916112
https://msdn.microsoft.com/library/windows/hardware/dn916115#to_build_a_mobile_image
https://msdn.microsoft.com/library/windows/hardware/dn916108


Related topics

2. Build an image for Windows 10 Mobile using the Windows ICD CLI.

Building and flashing mobile images

Build a mobile image using a hybrid method

https://msdn.microsoft.com/library/windows/hardware/dn916115#to_build_a_mobile_image


 

Build a mobile image using ImgGen.cmd
7/13/2017 • 17 minutes to read • Edit Online

Getting packages for the image

You can use ImgGen.cmd to generate an image for a Windows 10 Mobile device that is based on your own
hardware design or if you're using MCSF customization answer files and other assets that were generated using
the legacy tools that shipped in Windows Phone 8.1.

Here's the high-level view of the steps you'll take to build an image using ImgGen.cmd:

1. Identify the packages to include in the image. For more info, see Getting packages for the image.

2. Reference the packages by adding them to one or more feature manifest files, and save those files in the
root directory for Microsoft packages, for example, %WPDKCONTENTROOT%\MSPackages. For more
info, see Specifying packages to include in images by using feature manifest files.

3. For each device platform, do the following:

a. Create a device platform package, and save it in the root directory for Microsoft packages. For
more info, see Set device platform information.

b. Reference the device platform package in a feature manifest file by using the
OEMDevicePlatformPackages element.

You can include several device platforms in a feature manifest file. The OEMInput file will specify
which device to use by its DeviceName.

Image creation will fail unless a valid device platform package is specified for the image.

4. Create an OEMInput file that specifies the device platform, the feature manifest files, and other attributes
used to define the image. For more info, see Creating an OEMInput file to define the image.

5. Create an MCSF customization answer file. At minimum, specify the required device platform information
and the information required for the mobile operator network. For more info, see Customization answer
file and Phone metadata in DeviceTargetingInfo.

Note If you want to support multivariant settings in the answer file, the same set of conditions are
supported in MCSF as in Windows provisioning. See the section Target, TargetState, Condition and
priorities in Create a provisioning package with multivariant settings for a list of supported conditions but
be sure to follow the schema for a MCSF customization answer file when you specify your Targets in the
answer file.

6. Run the ImgGen.cmd to build the image. For more info, see Using ImgGen.cmd to generate the image
below.

7. Sign the image so that it can be flashed to a device. For more info, see Sign a full flash update (FFU)
image.

Before building an image, you must first identify all the packages you need for the image. Generally, there are
three categories of packages that are used to build an image:

Microsoft packages. These include all OS and Microsoft-implemented driver packages required for any
image, as well as additional platform-specific driver and firmware packages (for example, packages for
components specific to a particular device resolution or SoC). These packages are included with the

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/building-a-phone-image-using-imggencmd.md
https://msdn.microsoft.com/library/windows/hardware/dn757452
https://msdn.microsoft.com/library/windows/hardware/dn772214
https://msdn.microsoft.com/library/windows/hardware/dn916108


 Creating an OEMInput file to define the image

ECHO %WPDKCONTENTROOT%

MobileOS and must be installed under %WPDKCONTENTROOT%\MSPackages. You can use the
following command to display the current value of WPDKCONTENTROOT.

Feature manifest files abstract the location and groupings of packages that Microsoft provides. This allows
for the specification of a group of related packages by specifying a single feature name. For example,
specifying the TESTINFRASTRUCTURE feature includes multiple packages that support test execution.
For more info, see Optional features for building images.

SoC vendor packages. These include packages for drivers and firmware components implemented by
the SoC vendor. For more info about these packages, refer to documentation provided by the SoC vendor.

Note
Several UEFI packages are required from the SoC vendor to create bootable images. These packages vary
depending on the layout of the device and the SoC vendor. Most of the packages populate binary
partitions on the device. For more info about creating binary partition packages to populate these
partitions, see Specifying components in a package project file. The EFI system partition (ESP) is
populated using Microsoft content and OEM content.

OEM packages. These are packages created by OEMs for content such as drivers and applications. For
info about creating packages, see Creating packages.

To define the image, you must create an OEMInput file. This is an XML file that specifies the following:

The type of image to generate. For example, you specify whether the image contains only Microsoft
production packages or a mixture of production and test packages in the ReleaseType element, and you
specify what screen resolution the image will support in the Resolution element.

Note
OEMs have some control over what Microsoft packages are included in the image by choosing different
values for the ReleaseType element or by referencing Microsoft-defined features under the Features
element. For more info, see Specifying packages to include in images by using feature manifest files later
in this topic.

The OEM packages to include in the image. To specify which OEM packages are included in the image,
create a feature manifest file and reference this in the OEMInput file. For more info, see Specifying
packages to include in images by using feature manifest files later in this topic.

For a full list of the supported elements in the OEMInput file, see OEMInput file contents.

OEMs should use sample OEMInput files included with the MobileOS as the starting point for their own images.
These sample files provide the starting configuration for a set of standard image types, including retail,
production, test, and manufacturing images. OEMs should extend each file with the packages that contain the
drivers, applications, and other components needed for their specific device. These sample files are available
under %WPDKCONTENTROOT%\OEMInputSamples. For guidance about how maintain an OEMInput file so
that the latest changes to the Microsoft sample files can be integrated into it, see Configuring the OEMInput file
to integrate feature changes from the Microsoft samples later in this topic.

OEMs should contact the SoC vendor for the feature manifest files that are used for a specific device and include
these in the OEMInput file.

Note
The OEMInput XML file supports explicit paths and environment variables. If you use environment variables in

https://msdn.microsoft.com/library/windows/hardware/dn789218


Image typesImage types

IMAGE TYPE DESCRIPTION OEMINPUT SAMPLE

paths to packages and other files, the environment variables will be expanded when the OEMInput XML file is
processed by the imaging tool. The sample files included with the MobileOS use the %WPDKCONTENTROOT%
environment variable in some of the paths.

The following table lists the types of images OEMs can build and the OEMInput sample to use as the starting
configuration for each image type.

Retail Retail images are the images that
are flashed to final retail phones.
Retail images must use Microsoft-
signed packages that are returned
to OEMs after submitting
production images to Microsoft by
using the OEM submission tool.
For more info, see Submit binaries
to be retail signed.

Retail images include the following:

Production version of core
Windows components
included in Windows 10
Mobile

Production Windows 10
Mobile components.

RetailOEMInput.xml

Production Production images are similar to
final retail images, but they have
test signing enabled to run OEM-
signed components as well as
production-signed components,
and they may contain test-related
packages as well as production
packages. Production images can
be used for engineering work as
well as mobile operator trials and
other certification processes.
Production images are submitted
to Microsoft by using the OEM
submission tool to be production
signed by Microsoft before
generating the final retail image.
For more info, see Submit binaries
to be retail signed.

Production images include the
following:

Production version of core
Windows components
included in Windows 10
Mobile.

Production Windows 10
Mobile components.

Test signing enabled.

ProductionOEMInput.xml

https://msdn.microsoft.com/library/windows/hardware/dn789223
https://msdn.microsoft.com/library/windows/hardware/dn789223


Note

IMAGE TYPE DESCRIPTION OEMINPUT SAMPLE

OEMInput file exampleOEMInput file example

Test Test images can be run in offsite
test labs to test the functionality of
the OS and drivers on a device.
Test images include the following:

Test version of core
Windows components
included in Windows 10
Mobile.

Production Windows 10
Mobile components.

Test signing enabled.

Test applications, drivers,
and other components to
use for testing the OS in
different conditions.

To generate an image that
includes OS tools such as
ipconfig.exe, kill.exe, ping.exe,
minshutdown.exe, reg.exe,
tracelog.exe, sc.exe, and
tlist.exe, build a test image.

TestOEMInput.xml

Health Health images to be run in offsite
test labs to test the power and
performance capabilities of the
device. Health images are similar to
production images, with the
addition of components for
running tests related to power and
performance.

HealthOEMInput.xml

Manufacturing Manufacturing images to be used
in the manufacturing environment.
For more info, see MMOS image
definition.

MfgOEMInput.xml

Customer care Customer care images include
MMOS for retail customer care
scenarios. For more info, see
MMOS image definition.

CustomerCareOEMInput.xml

The following example shows the contents of a sample ProductionOEMInput.xml file.



      

<?xml version="1.0" encoding="utf-8" ?> 
<OEMInput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
<Description>Test FFU generation for {SOC TYPE} with build number XXXXX</Description> 
<SOC>{PROCESSOR_NAME}</SOC> 
<SV>{SV_NAME}</SV> 
<Device>{DEVICE_NAME}</Device> 
<ReleaseType>Test</ReleaseType> 
<BuildType>fre</BuildType> 
<SupportedLanguages>
  <UserInterface>
      <Language>en-US</Language> 
  </UserInterface>
  <Keyboard>
     <Language>en-US</Language> 
  </Keyboard>
  <Speech>
    <Language>en-US</Language> 
  </Speech>
</SupportedLanguages>
<BootUILanguage>en-US</BootUILanguage> 
<BootLocale>en-US</BootLocale> 
<Resolutions>
  <Resolution>480x800</Resolution> 
</Resolutions>
<AdditionalFMs>
  <AdditionalFM>%WPDKCONTENTROOT%\FMFiles\MSOptionalFeatures.xml</AdditionalFM> 
  <!-- Add OEM FM files here -->
</AdditionalFMs>
<Features>
  <Microsoft>
    <Feature>CODEINTEGRITY_TEST</Feature> 
    <Feature>PRODUCTION_CORE</Feature> 
    <Feature>BOOTKEYACTIONS_RETAIL</Feature> 
  </Microsoft>
<!-- Insert OEM\SOC features here
  <OEM>
    <Feature>xxx</Feature>
  </OEM>
-->
</Features>
</OEMInput>

Specifying packages to include in images by using feature manifest filesSpecifying packages to include in images by using feature manifest files
Feature manifest files specify a set of features, packages, and apps that are available when building images. The
OEMInput.xml file later selects the desired features from within these feature manifests to be included in the
image.

In addition to a core set of Microsoft packages that are added to every image, there are additional packages that
are added only for certain types of images. For example, a test image includes a different set of Microsoft
packages than a production image.

The set of packages that are included in certain types of images is controlled by using feature manifest files.
Feature manifests provide an extensible infrastructure for adding sets of optional packages to different types of
image builds. The WDK includes a feature manifest named MSOptionalFeaturesFM.xml, and OEMs can also
create their own. Feature manifests are referenced in the AdditionalFMs element of the OEMInput XML file.
For more info about the contents of a feature manifest, see Feature manifest file contents.

When the OEMInput XML file references a feature manifest, there are several ways that additional optional
packages are included in the image:

Any packages listed under the BasePackages element in the feature manifest file are automatically



  Configuring the OEMInput file to integrate feature changes from the Microsoft samplesConfiguring the OEMInput file to integrate feature changes from the Microsoft samples

included in the image.

Other packages listed in the feature manifest file under elements such as ReleasePackages and
DeviceSpecificPackages are included if the image definition matches the parameters specified by the
elements in the feature manifest file. For example, if the feature manifest file lists a package under the
ReleasePackages element where the release type is Test, the package is included only if the OEMInput
file is configured to generate a test image.

Any optional features defined in the feature manifest can be referenced in the OEM or Microsoft Features
elements in the OEMInput file to add additional optional packages. A feature is a string that identifies one
or more optional packages that can be included in an image. Usually, a feature identifies a set of packages
that are associated with a specific component or feature area. For more info about optional features
provided by Microsoft for use in OEMInput files, see Optional features for building images.

Depending on who will be working with the image, it may be appropriate to exclude prerelease features
using the ExcludePrereleaseFeatures element. For more info, see OEMInput file contents.

In any MobileOS release, the OEMInput samples provided by Microsoft may change from the previous release.
For example, Microsoft-defined features may be added to a sample to incorporate new OS components that are
available, or Microsoft-defined features may be removed from a sample if they are no longer supported for a
certain image type. To ensure that OEMs are building the correct images for every MobileOS release, Microsoft
recommends that OEMs adhere to the following process.

<!-- From Microsoft sample OEMInput.xml file -->
<AdditionalFMs>
  <AdditionalFM>%WDKCONTENTROOT%\FMFiles\MSOptionalFeatures.xml</AdditionalFM> 
    <!-- Add OEM FM files here -->
</AdditionalFMs>

<Features>
   <Microsoft>
    <!-- Features from Microsoft OEMInput sample -->
    <!-- Additional OEM-selected features defined by Microsoft
         Include detailed comments about why each feature was chosen for this image -->
   </Microsoft>
   <OEM>
    <!-- Additional OEM-selected features defined by the OEM
         Include detailed comments about why each feature was chosen for this image  -->
   </OEM>
</Features>

1. Structure the AdditionalFMs and feature-related elements in the OEMInput file as shown in the
following example. In each section, include the feature manifests and features specified by the Microsoft
sample first, and then include the OEM-specified feature manifests and features. Use comments to clearly
separate each set of feature manifests and features, and to clearly explain why each OEM-specific feature
is included in the file.

If the contents of the AdditionalFMs and Features elements in the OEMInput file deviate from the
Microsoft samples, include detailed comments that explain why the changes were made. If any changes
are introduced as a temporary workaround for an issue, the temporary workaround should be explained
so that engineers using the file in the future can determine whether to keep the change or revert to the
Microsoft sample when the OEM integrates a newer BSP or kit.

2. When the OEM integrates a new WDK and MobileOS release, compare the Features elements in the
OEMInput sample from the latest release against the same elements in the OEMInput file created by the
OEM.



 Using ImgGen.cmd to generate the image

Command-line syntax for ImgGen.cmdCommand-line syntax for ImgGen.cmd

ARGUMENT DESCRIPTION

3. Identify any changes to the Microsoft-specified features in the latest sample, and port the changes into the
Features element in the OEMInput file created by the OEM.

ImgGen.cmd is a command file that runs the imaging tool (ImageApp.exe) with the appropriate parameters to
create an FFU image. ImgGen.cmd also runs a utility application, DeviceNodeCleanup, after every run of
ImageApp.exe. Running DeviceNodeCleanup helps ensure that the registry on the development computer
remains clean and boot time does not increase. ImgGen.cmd and other related components are located in
%WPDKCONTENTROOT%\Tools\bin\i386.

To use ImgGen.cmd to generate an image:

ImgGen.cmd OutputFile OEMInputXML MSPackageRoot OEMCustomizationXML OEMCustomizationVer

1. Configure your development computer as follows:

Open a Developer Command Prompt for VS2013 window (if you have installed Visual Studio
2013) or a Command Prompt window (if you have not installed Visual Studio 2013) as an
administrator.

Confirm that the TEMP environment variable refers to a directory that is not compressed or
encrypted using the Encrypting File System (EFS) functionality. If the directory that the TEMP
environment variable refers to does not meet these requirements and you do not want to modify
the variable or the directory properties, you can alternatively create a BINARY_ROOT environment
variable and set it to an existing directory that also meets these requirements. If neither of these
locations exist, or if they exist but are compressed or encrypted, the image cannot be generated and
the ImageApp.exe tool will return an error.

If you are running Windows 8.1, complete the additional steps to set the USN journal registry size
to 1 Mb on the build PC.

reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem  /v 
NtfsAllowUsnMinSize1Mb  /t REG_DWORD  /d 1

a. Change the USN minimum size registry key by running the following command from an
administrator command prompt:

b. Reboot the PC before you build an image.

2. In the command prompt window, run ImgGen.cmd by using the following syntax. See the following
section for more information about the parameters.

The following table describes the command line parameters for ImgGen.cmd.

OutputFile The name of the FFU file to be created. If you do not
include a path, the FFU file will be created in the current
directory. If you include a path, the specified path must
already exist. FFU files use the ffu file extension.



ARGUMENT DESCRIPTION

Usage samplesUsage samples

ImgGen Flash.ffu OEMInput.xml "%WPDKCONTENTROOT%\MSPackages" OEMCustomization.XML 8.1.0.1

Output filesOutput files

Generating customization packages without creating an image

OEMInputXML The name of the OEMInput xml file that defines the
image to be created. If this file is not in the current
directory, you must include the path to the file.

MSPackageRoot The path to the root directory that contains the
Microsoft packages. By default, this directory is
%ProgramFiles(x86)%\Windows Kits\10\MSPackages (or
the corresponding path under %ProgramFiles% on
computers running a 32-bit version of Windows).

OEMCustomizationXML The path to the OEM customization XML file. For more
info about customization answer files, see Customization
answer file

OEMCustomizationVer The version number that will be used for the generated
OEM customization package.

The following sample shows the basic use of ImgGen.cmd.

After an image is successfully generated in the folder specified by the FFU_file command-line argument, the
imaging tools copy the following files to the folder of the output FFU file:

<FFUName>.ImageApp.log: This file contains all the logging information about creating the image. Any
failures are reported in this file as well as the Console window.

<FFUName>.UpdateOutput.xml: This file describes each of the packages applied to the image.

<FFUName>.UpdateHistory.xml: This file contains a list of all the update and imaging events that have
occurred on the image.

<FFUName>.UpdateInput.xml: This file lists all of the packages that are included in the image.

<FFUName>.PackageList.xml: This is a list of the package files contained in the image.

<FFUName>.cat: This is a code signing catalog that can be used to sign the image. For more info see,
Sign a full flash update (FFU) image.

If a customization answer file is provided, this file is generated:

<Owner>.<DeviceName>.Customizations.<Partition>.spkg

If any of the customizations include static applications, the following file will be generated.

<Owner>.<DeviceName>.CustomizationsApps.spkg

To process a customization answer file without creating an image, use CustomizationGen.cmd.

https://msdn.microsoft.com/library/windows/hardware/dn75745


CustomizationGen.cmd C:\OEMCustomization OEMInput.xml "%WPDKCONTENTROOT%\MSPackages" OEMCustomization.XML 
8.0.0.1

Command-line syntax for CustomizationGen.cmdCommand-line syntax for CustomizationGen.cmd

ARGUMENT DESCRIPTION

Large scale image generation recommendations

CustomizationGen.cmd applies all of the customization rules and builds the customization packages. It skips the
final step of building the ffu image. The syntax is similar to ImgGen.cmd.

For example, to process an answer file and just build customization packages, use this command.

The following table describes the command line parameters for CustomizationGen.cmd. All of the arguments are
required.

OutputDirectory The path to the output directory for the OEM
customization packages that will be created.

OEMInputXML The name of the OEMInput xml file that defines the
image to be created. If this file is not in the current
directory, you must include the path to the file.

MSPackageRoot The path to the root directory that contains the
Microsoft packages. By default, this directory is
%ProgramFiles(x86)%\Windows Kits\10\MSPackages (or
the corresponding path under %ProgramFiles% on
computers running a 32-bit version of Windows).

OEMCustomizationXML The path to the OEM customization XML file.

OEMCustomizationVer This is the version number that will be used for the
generated OEM customization package.

When images are repeatedly generated on a workstation, it is possible that virtual hard disk (VHD) manipulation
errors can occur from time to time. If these errors occur, you can rerun the image generation process. All
intermediate files should be automatically cleaned up by ImageApp. This section provides guidance for the
configuration of PCs that will generate images in a large scale automated image generation environment to
minimize the number of errors that may occur.

To generate a large volume of images, consider the following recommendations:

Remove or disable the antivirus software on the image generation PC. The presence of antivirus software,
and in particular file system filters often used to monitor activity, can have a major impact on the image
generation process. At a minimum, virus scanning should be disabled on input and output directories and
on all processes involved in the build, though this will typically not disable the file system filter of interest.
Some vendors of antivirus software may offer settings to allow scanning activities to be delayed or
scheduled to possibly lessen the impact on the image generation process. If additional safeguards are in
place to isolate the system from viruses and other software risks, remove or disable the virus software on
the image generation PC. Temporarily removing the virus software can help isolate the impact on the
image generation process to determine if further investigation is warranted.



Related topics

Windows Server 2012 is used in the Microsoft labs and is recommended. The server should be
configured for maximum file I/O performance.

The image creation process should not be run on virtual machines (VMs), but on physical machines
instead.

All other services (such as print or HTTP services) that are unrelated to the file system should be disabled
on the server.

System activity traces may be able to help identify processes on build machines that are interacting with
mounted VHDs. Any interactions that are not initiated by imaging tools should be avoided if possible,
potentially by disabling services that take action on disk mount.

The output drives on the PC should have write cache buffer flushing disabled. There is some risk in using
this setting on a file server, but with image generation, this setting can be acceptable, as the imaging data
can be re-created if a power loss occurs. If other data cannot be re-created on the server, use this setting
with caution, because data can become corrupted.

Building and flashing mobile images

OEMInput file contents

Sign a full flash update (FFU) image



Build a mobile image using a hybrid method
7/12/2017 • 2 minutes to read • Edit Online

To build a customized mobile image using a hybrid method

Related topics

You can take advantage of the benefits offered by both the Windows provisioning framework and MCSF by using
a hybrid method to build your customized mobile image. This means that:

You can use a MCSF customization answer file to fully customize the device hardware and connectivity
settings, preload apps, add assets such as ringtones and localized strings, and configure any other MCSF
settings not supported in Windows provisioning.

You can use a Windows provisioning answer file to define the new runtime settings, enterprise policies,
enrollment settings, and configure any other mobile settings supported only in Windows Provisioning.

You can use the Windows Imaging and Configuration Designer (ICD) CLI to build your image.

Note Only the Windows ICD CLI allows you to use both a MCSF customization answer file and a
Windows provisioning answer file to create a customized mobile image.

Here's the high-level steps you need to take to build a customized mobile image using the Windows ICD CLI:

1. Choose how you define the packages and features contained in your image.

You can use BSP.config.xml file - If you select this method, you should already have this as part of
your BSP kit or you can generate your own using the configuration tools from the SoC vendor.

You can use an OEMInput.xml file and OEMDevicePlatform.xml to define your platform. To do this,
follow steps 1-4 in the high-level list of steps in Build a mobile image using ImgGen.cmd.

2. Create your answer files to define the settings that you want to configure for your image.

Create a MCSF customization answer file to customize any of the available customizations in the
MCSF framework. For more information, see the Customizations for <feature> sections in
Customize using the mobile MCSF framework.

Create a Windows provisioning answer file to define any of the available settings in the Windows
provisioning framework. For more information, see Windows Provisioning settings reference.

If you are adding multivariant settings in both answer files, verify whether the multivariant rules in both
answer files are consistent. See the section Target, TargetState, Condition and priorities in Create a
provisioning package with multivariant settings for a list of supported conditions but be sure to follow the
schema for the answer file you are creating when you specify your Targets within the answer file.

Also, make sure there are no duplicated settings in both answer files. You can use the MCSF to Windows
Provisioning settings map to help you identify the settings that correspond to each framework.

3. Run the Windows ICD CLI to build the image. For more information, see Build an image for Windows 10
Mobile.

4. Sign the image so that it can be flashed to a device. For more information, see Sign a full flash update (FFU)
image.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/build-a-mobile-image-using-windows-provisioning-and-mcsf-answer-files.md
https://msdn.microsoft.com/library/windows/hardware/dn757452
https://msdn.microsoft.com/library/windows/hardware/mt573153
https://msdn.microsoft.com/library/windows/hardware/dn916153
https://msdn.microsoft.com/library/windows/hardware/mt560342
https://msdn.microsoft.com/library/windows/hardware/dn757452
https://msdn.microsoft.com/library/windows/hardware/dn757433
https://msdn.microsoft.com/library/windows/hardware/dn916153
https://msdn.microsoft.com/library/windows/hardware/dn953942
https://msdn.microsoft.com/library/windows/hardware/dn916108
https://msdn.microsoft.com/library/windows/hardware/mt450421
https://msdn.microsoft.com/library/windows/hardware/dn916115#to_build_a_mobile_image


Building and flashing mobile images



Define the image using OEMInput and feature
manifest files
7/12/2017 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Related topics

Learn how to create an OEMInput and feature manifest files to fully define the contents of your mobile image.

OEMInput file contents An OEMInput.xml file contains the required and optional
elements used to define a mobile image. The OS uses this
file to determine the applications processor, build type, UI
languages, default region format, resolution, and other
properties to include in the image that will be generated.

This topic provides a full listing of the XML schema for the
file.

Optional features for building mobile images You can add optional features to images by including
them under the Features element in the OEMInput XML
file.

Feature manifest file contents Feature manifest (FM) files are used to define specific
types of image builds that contain different sets of
optional packages. This topic describes the required and
optional elements in a FM file.

Create a feature and include it in an image This topic shows you how to create a feature and add it to
an image.

Adding a driver to a test image This topic shows you how to create a feature and add it to
a test image.

Feature groupings and constraints Feature groups and feature constraints allow additional
logic to be added to the build system to support
intelligent processing of the OEMInput XML.

Set device platform information Learn about the prerequisites for building an image that
can be flashed to a mobile device, including additional
device platform information such as partner names,
version numbers, and device names, before the image is
finalized for retail devices.

Building and flashing mobile images

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/define-the-image-using-oeminput-and-feature-manifest-files.md


OEMInput file contents
7/13/2017 • 10 minutes to read • Edit Online

Required elements in the OEMInput file

ELEMENT DESCRIPTION

APPLICATIONS PROCESSOR SUPPORTED SOC VALUES

An OEMInput.xml file contains the required and optional elements used to define a mobile image. The OS uses
this file to determine the applications processor, build type, UI languages, default region format, resolution, and
other properties to include in the image that will be generated.

This topic provides a full listing of the XML schema for the file.

The following table describes the required elements in the OEMInput file.

OEMInput The root element for the OEMInput file.

Description A string that describes the image. OEMs should add a
description that is particular to the device the image is
built for.

SOC A string that identifies the SoC used on the device. The
following values are currently supported:

QC8974 QC8974:
Creates an
image without a
crash dump
partition. Use
this value for
Production
images.

QC8974_Test:
Creates an
image with a
crash dump
partition that is
more than 2 GB
in size. Use this
value when
generating Test
images for
devices with
more than 4 GB
of storage.

QC8x26 QC8x26:
Creates an
image without
any crash dump
partitions. Use
this value for
production
images.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/oeminput-file-contents.md


APPLICATIONS PROCESSOR SUPPORTED SOC VALUESELEMENT DESCRIPTION
QC8x26_Test:
Creates an
image with two
dedicated crash
dump partitions
on eMMC. The
combined size
of the two
partitions is 3.5
times the size of
the total RAM
memory on the
phone. To
create a test
image that
supports full
dumps and
offline dumps
on a device with
at least 8GB of
eMMC, use this
value and
include the
DEDICATEDUMP
ONEMMC
feature.

QC8x26_UseSD_
Test: Creates an
image without
dedicated
partitions for
storing crash
dumps on
devices with
less than 8 GB
of eMMC. To
create full,
kernel, or offline
crash dumps,
an SD card
must be present
and the feature
DEDICATEDUMP
ONSD feature
must be
specified to
redirect dumps
to the SD card.
The
recommended
SD card size for
offline dumps is
16 or 32 GB. For
more
information
about
specifying
debug features,
see Optional
features for
building
images.

To build a QC8x26 test
image that supports
full dumps and offline
dumps on a device with
less than 8GB of
eMMC, use
QC8x26_UseSD_Test.
Include the
DEDICATEDUMPONSD



APPLICATIONS PROCESSOR SUPPORTED SOC VALUESELEMENT DESCRIPTION
feature to redirect
dumps to the SD card.
The recommended SD
card size for offline
dumps is 16 or 32 GB.

To build a QC8x26 test
image that supports
full dumps and offline
dumps on a device with
at least 8GB of eMMC,
use QC8x26_Test and
include the
DEDICATEDUMPONEM
MC feature.

To build a QC8x26
retail or production
image where full
dumps and offline
dumps are not
enabled, use QC8x26.



Important

APPLICATIONS PROCESSOR SUPPORTED SOC VALUESELEMENT DESCRIPTION

QC8960 QC8960:
Creates an
image without a
crash dump
partition. Use
this value for
Production
images.

QC8960_Test:
Creates an
image with a
crash dump
partition that is
more than 2 GB
in size. Use this
value when
generating Test
images for
phones with
more than 4 GB
of storage.

QC8960_Test_4
gb: Creates an
image with a
crash dump
partition that is
approximately
600 MB in size,
large enough to
store a single
crash dump for
a device with
512 MB of RAM.
Use this value
when
generating Test
images for
phones with
only 4 GB of
storage.

The 8960 SOC
options must only be
used for images that
are used to create
updates for Windows
10 Mobile. For more
information see
Update.

Device A string that identifies the device model the image is
being built for. Use this setting to include packages
marked with the corresponding Device attribute of the
DeviceSpecificPackages and the
OEMDevicePlatformPackages elements in the feature
manifest file.

https://msdn.microsoft.com/windows/hardware/commercialize/service/mobile/index


ELEMENT DESCRIPTION

ReleaseType A string that indicates the release type of the image. Use
this setting to include packages marked with the
corresponding ReleaseType attribute value of a
ReleasePackages element in the feature manifest file.
The following values are supported:

Production: This value indicates that all packages
in the image are production signed, and the
image only includes production packages (that is,
packages where the ReleaseType attribute in
the package XML is set to Production). In
addition, all Microsoft-owned packages must be
signed with a certificate issued by Microsoft. This
value should only be used when generating the
final retail image.

Test: This value indicates that the image can
contain test-signed packages as well as
production-signed packages, and the image
contains a mixture of production and test
packages (that is, packages where the
ReleaseType attribute in the package XML is set
to Test or Production). This value is used in
production, test, health, and manufacturing
images. For more information about the different
image types, see Building a phone image using
ImgGen.cmd.

BuildType A string that specifies whether to use checked build or
free packages when creating the image. To generate a
checked build with debug code, specify chk. To generate
a free build without debug code, specify fre.

SupportedLanguages Contains the following child elements that specify the
language support in the generated image:

UserInterface: A string that contains the
language codes for the display languages to
include in the image. If multiple language codes
are listed, they must each be included in their
own <language>  block.

Keyboard: A string that contains the language
codes for the keyboard languages to include in
the image (that is, languages in which text
correction and suggestions are supported). If
multiple language codes are listed, they must
each be included in their own <language>

block.

Speech: A string that contains the language
codes for the speech languages to include in the
image. If multiple language codes are listed, they
must each be included in their own <language>

block.

BootUILanguage A string that specifies the language code for the default
display language to include in the image.



ELEMENT DESCRIPTION

Optional elements in the OEMInput file

ELEMENT DESCRIPTION

BootLocale A string that specifies the language code for the default
region format for the image.

Resolutions Contains one Resolution element. The Resolution
element contains a string that represents a display
resolution supported by the image. The following values
are supported: 480x800, 540x960, 720x1280,
768x1280, and 1080x1920. The build will include the
corresponding resolution packages in the image for the
specified resolution.

Note that some resolutions are supported only with
certain applications processors.

The following table describes the optional elements that OEMs can include in the OEMInput file.

SV A string that identifies the manufacturer of the SoC used
on the device. Use this setting to include packages
marked with the corresponding SVPackages element in
the feature manifest file.

Product A string that specifies what OS variant to build. Specify
the value Manufacturing OS to build an MMOS
(Microsoft Manufacturing OS) image, which includes the
minimal set of OS packages required by MMOS. To build
a full OS image, omit this element.

For more information about building an MMOS image,
see MMOS image definition.

FormatDPP A string that indicates whether to include an empty
formatted device provisioning partition (DPP) in the
image. Specify the value true to generate an image that
includes an empty formatted DPP. Specify the value false
or omit this element to prevent the DPP from being
overwritten.



ELEMENT DESCRIPTION

ExcludePrereleaseFeatures A string that indicates if features considered to be
prerelease are excluded from the build. Specify the value
true to generate an image that excludes the prerelease
features, specify false to include them. Builds that are
created with ExcludePrereleaseFeatures set to true, may
be referred to as "limited" builds. If this entry is not
included in the OEMInput file, the prerelease features will
be included in the image.

When this option is set to true some replacement
features may be present in the image. If there are no
replacement features configured, then they will not be
present in the build.

Features Contains one or more child elements that specify the
names of optional features to reference when building
the image. Each feature corresponds to one or more
packages that will be included in the image. In order to
use a feature, the feature must be defined in a feature
manifest that is listed under the AdditionalFMs
element. For more information about features and
feature manifests, see Building a phone image using
ImgGen.cmd and Feature manifest file contents.

The Features element contains one or more of the
following child elements:

Microsoft Contains one or more Feature
elements that specify the names of optional
Microsoft features to include in the image. For
more info about Microsoft features, see Optional
features for building images.

OEM Contains one or more Feature elements
that specify the names of optional OEM features
to include in the image. For more information
about adding OEM features, see Feature manifest
file contents.

AdditionalFMs Contains one or more AdditionalFM elements. Each
AdditionalFM element contains a string value that
specifies the full path of a feature manifest file to
reference when building the image.

Feature manifests define the set of packages that are
automatically included in certain types of images, and
they also define feature names that can be referenced
under the Features element to include additional
packages in the image. For more information about
feature manifest files, see Feature manifest file contents.



Important

ELEMENT DESCRIPTION

XML schema for the OEMInput file

<?xml version="1.0" encoding="utf-8"?>  
<xs:schema targetNamespace="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate" 
      elementFormDefault="qualified" 
      xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate" 
      xmlns:mstns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate" 
      xmlns:xs="http://www.w3.org/2001/XMLSchema">  
   <xs:element name="OEMInput">  
      <xs:complexType>  
         <xs:all>  
            <xs:element name="Product" type="xs:string" minOccurs="0" maxOccurs="1"/>  
            <xs:element name="Description" type="xs:string" minOccurs="0" maxOccurs="1" />  
            <xs:element name="SV" type="xs:string" minOccurs="0" maxOccurs="1"/>  
            <xs:element name="SOC" type="xs:string" minOccurs="1" maxOccurs="1"/>  
            <xs:element name="Device" type="xs:string" minOccurs="1" maxOccurs="1"/>  

            <xs:element name="ReleaseType" minOccurs="1" maxOccurs="1">  
               <xs:simpleType>  
                  <xs:restriction base="xs:string">  
                     <xs:enumeration value="Test"/>  
                     <xs:enumeration value="Production"/>  

PackageFiles Contains a set of PackageFile elements that specify
additional packages to include in the image.

The PackageFiles element can only be used in pre-
retail images such as Test and Health images. It is only
intended to be used in scenarios you need to quickly
add an ad-hoc package to a pre-retail image. In retail
images, all packages must be referenced using a
feature that is listed under the Features element or
listed in a feature manifest that is referenced under the
AdditionalFMs element. For more information about
features and feature manifests, see Building a phone
image using ImgGen.cmd and Feature manifest file
contents.

Each PackageFile element contains a text value that
specifies the path and name of a single package. If no
additional packages are being added to the image, the
PackageFiles element must be omitted from the file.
The packages can be in any location on the development
computer. An environment variable can be used in the
path to each package in the PackageFile element.

The OEMInput file is validated against the following XML schema. You can use this schema to validate the
OEMInput XML files that you create. To do this in Visual Studio, first save this in a file with an XSD extension. In
Visual Studio select XML > Schemas and select the file that you created. Any deviations in your XML from the
schema will be highlighted. Hover over the highlighted items to see additional information.



                     <xs:enumeration value="Production"/>  
                  </xs:restriction>  
               </xs:simpleType>  
            </xs:element>  

            <xs:element name="BuildType" minOccurs="1" maxOccurs="1">  
               <xs:simpleType>  
                  <xs:restriction base="xs:string">  
                     <xs:enumeration value="fre"/>  
                     <xs:enumeration value="chk"/>  
                     <xs:enumeration value="%BUILDTYPE%"/> 
                  </xs:restriction>  
               </xs:simpleType>  
            </xs:element>  

            <xs:element name="FormatDPP" minOccurs="0" maxOccurs="1">  
               <xs:simpleType>  
                  <xs:restriction base="xs:string">  
                     <xs:enumeration value="true"/>  
                     <xs:enumeration value="false"/>  
                  </xs:restriction>  
               </xs:simpleType>  
            </xs:element>  

            <xs:element name="ExcludePrereleaseFeatures" minOccurs="0" maxOccurs="1">  
               <xs:simpleType>  
                  <xs:restriction base="xs:string">  
                     <xs:enumeration value="true"/>  
                     <xs:enumeration value="false"/>  
                  </xs:restriction>  
               </xs:simpleType>  
            </xs:element>  

            <xs:element name="OEMDevicePlatform" type="xs:string" minOccurs="0" maxOccurs="1"/>  

            <xs:element name="SupportedLanguages" minOccurs="1" maxOccurs="1">  
               <xs:complexType>  
                  <xs:all>  
                     <xs:element name="UserInterface" minOccurs="1" maxOccurs="1">  
                        <xs:complexType>  
                        <xs:sequence>  
                           <xs:element name="Language" type="xs:string" 
                              minOccurs="1" maxOccurs="unbounded" />  
                        </xs:sequence>  
                     </xs:complexType>  
                     </xs:element>  
                     <xs:element name="Keyboard" minOccurs="0" maxOccurs="1">  
                        <xs:complexType>  
                           <xs:sequence>  
                              <xs:element name="Language" type="xs:string" 
                                 minOccurs="1" maxOccurs="unbounded"/>  
                           </xs:sequence>  
                        </xs:complexType>  
                     </xs:element>  
                     <xs:element name="Speech" minOccurs="0" maxOccurs="1">  
                        <xs:complexType>  
                           <xs:sequence>  
                              <xs:element name="Language" type="xs:string" 
                                 minOccurs="1" maxOccurs="unbounded"/>  
                           </xs:sequence>  
                        </xs:complexType>  
                     </xs:element>  
                  </xs:all>  
               </xs:complexType>  
            </xs:element>  

            <xs:element name="BootUILanguage" type="xs:string" minOccurs="1" maxOccurs="1"/>  

            <xs:element name="BootLocale" type="xs:string" minOccurs="1" maxOccurs="1"/>  



            <xs:element name="Resolutions" minOccurs="0" maxOccurs="1">  
               <xs:complexType>  
                  <xs:sequence>  
                     <xs:element name="Resolution" type="xs:string" minOccurs="1" 
                        maxOccurs="unbounded"/>  
                  </xs:sequence>  
               </xs:complexType>  
            </xs:element>  

            <xs:element name="Features" minOccurs="0" maxOccurs="1">  
               <xs:complexType>  
                  <xs:sequence>  
                     <xs:element name="Microsoft" minOccurs="0" maxOccurs="1">  
                        <xs:complexType>  
                           <xs:sequence>  
                              <xs:element name="Feature" type="xs:string" 
                                 minOccurs="1" maxOccurs="unbounded"/>  
                           </xs:sequence>  
                        </xs:complexType>  
                     </xs:element>  
                     <xs:element name="OEM" minOccurs="0" maxOccurs="1">  
                        <xs:complexType>  
                           <xs:sequence>  
                              <xs:element name="Feature" type="xs:string" 
                                 minOccurs="1" maxOccurs="unbounded"/>  
                           </xs:sequence>  
                        </xs:complexType>  
                     </xs:element>  
                  </xs:sequence>  
               </xs:complexType>  
            </xs:element>  

            <xs:element name="AdditionalFMs" minOccurs="0" maxOccurs="1">  
               <xs:complexType>  
                  <xs:sequence>  
                     <xs:element name="AdditionalFM" type="xs:string" 
                        minOccurs="1" maxOccurs="unbounded"/>  
                  </xs:sequence>  
               </xs:complexType>  
            </xs:element>  
            <!-This element is only for use with Windows 8 Phone device update images -->       
            <xs:element name="UserStoreMapData" minOccurs="0" maxOccurs="1">  
               <xs:complexType>  
                  <xs:attribute name="SourceDir" type="xs:string" />  
                  <xs:attribute name="UserStoreDir" type="xs:string" />  
               </xs:complexType>  
            </xs:element>  

            <xs:element name="PackageFiles" minOccurs="0" maxOccurs="1">  
               <xs:complexType>  
                  <xs:sequence>  
                     <xs:element name="PackageFile" type="xs:string" 
                        minOccurs="1" maxOccurs="unbounded"/>  
                  </xs:sequence>  
               </xs:complexType>  
            </xs:element>  
         </xs:all>  
      </xs:complexType>  
   </xs:element>  
</xs:schema>

Related topics
Building an image using ImgGen.cmd



Optional features for building mobile images
7/12/2017 • 17 minutes to read • Edit Online

Conditional features

FEATURE NAME AND ID UPDATE PATH CONDITION

Rich Communications Suite Platform support
(RCS_FEATURE_PACK)

Windows 8.1 to Windows 10

Nearby Numbers/Block and Filter
(MS_COMMSENHANCEMENT* apps)

Windows 8.1 to Windows 10

Retail features defined by Microsoft

FEATURE DESCRIPTION

You can add optional features to images by including them under the Features element in the OEMInput XML file. Adding a
feature will add the packages associated with the feature to the image. Some features can only be used with certain types of
images. For more information about using optional features, see Building an image using ImgGen.cmd.

Updates should be tested by submitting OS update requests using the Ingestion Client and verifying successful OS updates.

If a device meets the installation conditions listed for a feature in the following table, then the update path for the device will fail
unless the feature is installed. For example, if there’s an update for Rich Communications Suite Platform support for Windows 10
Mobile, and you removed that feature from a device that’s otherwise capable of using it, then that entire update package (and all
subsequent updates) will fail to install. To get updates again, you need to deliver an image that includes the feature to customers,
and have them re-flash the device.

Install if PhoneManufacturer=NOKIA

Update if installed

Install
MS_COMMSENHANCEMENTCHINA if
HKEY_LOCAL_MACHINE\system\Platform
\DeviceTargetingInfo\phoneromlanguage
= 0804. Update if it’s already installed.

Install
MS_COMMSENHANCEMENTGLOBAL if
HKEY_LOCAL_MACHINE\system\Platform
\DeviceTargetingInfo\phoneromlanguage
<> 0804. Update if it’s already installed.

The following table describes the Microsoft-defined features that can be used by OEMs in the Features element in the OEMInput
file for retail devices.

Refer to the Mobile Operator guides for any additional retail features that are used for specific mobile operators.

OPTIMIZED_BOOT Modifies the behavior of the OS boot process to start some
system processes and services before all device drivers are started.
Enabling this feature may decrease boot time, but it may also
cause regressions in boot behavior in some scenarios.

STANDARD_FEATURE_1 This feature includes standard features that must be included in all
images.

NETLOG_RETAIL This feature adds network capture logging to assist in
troubleshooting network connectivity issues. This feature is used to
gather network diagnostic information by Field Medic.

NAVIGATIONBAR This feature adds a phone setting that enables users to configure
the color of the software buttons.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/optional-features-for-building-images.md


Note We strongly recommend that you also use
8GBFEATURESONSYSTEM when you specify this feature.

Note We strongly recommend that you also use
16GBFEATURESONSYSTEM when you specify this feature.

FEATURE DESCRIPTION

FACEBOOK This feature includes Facebook in the image.

SKYPE This feature includes the Skype Windows Phone Silverlight app in
the image.

BINGAPPS This feature adds Bing News, Finance, Sports and Weather.

BINGFOOD This feature adds Bing Food & Drink.

BINGHEALTH This feature adds Bing Health & Fitness.

BINGTRAVEL This feature adds Bing Travel.

WIFI_FEATURE_PACK This feature removes all cellular-related functionality from the
operating system and is intended only for devices that will not be
connected to a cellular network. It removes all cellular related tiles,
icons, and settings from the user interface. Including this feature
reduces memory usage and improves the user experience by not
displaying nonfunctional cellular settings and icons.

RELEASE_PRODUCTION Deprecated, no longer in use.

COMMSENHANCEMENTGLOBAL The feature includes message and call filtering application in image.

COMMSENHANCEMENTCHINA The feature includes message&call filter, call location, and category
application in the image. It’s used for China only.

4GBFEATURESONDATA On devices with 4GB of storage, provisioned packages are stored
on the data partition.

8GBFEATURESONDATA On devices with 8GB of storage, provisioned packages are stored
on the data partition.

8GBFEATURESONSYSTEM On devices with 8GB of storage, provisioned packages are stored
on the OS partition.

16GBFEATURESONDATA On devices with 16GB of storage, provisioned packages are stored
on the data partition.



Important This feature must be included in your OS image. If this
feature is not included, the device might not boot.

FEATURE DESCRIPTION

16GBFEATURESONSYSTEM On devices with 16GB of storage, provisioned packages are stored
on the OS partition.

SPATIALSOUND_FILTERDATA Contains all the data files and registry keys necessary to enable
Spatial Audio functionality on a mobile device. Spatial audio is used
to make audio sound like it is coming from a specific direction, and
to make the audio sound like it exists naturally inside a specific
type of room.

TAIWAN_ENABLEMENT Remove Taiwan references from the image.

MYANMAR_ZAWGYI_ENABLEMENT Enable this image to use the Zawgyi encoding in Myanmar. You
should also add the Zawgyi keyboard when adding this feature.

SOCProdTest_HSTI This feature installs the correct driver for the security watermark
checks and is required for Windows 10 Mobile. If this package is
not installed, you will see the Not For Retail watermark.

ATTWIFI This feature installs a third-party plugin that allows devices with an
AT&T SIM to automatically connect to AT&T hotspots.

DISABLE_ABNORMAL_RESET This feature disables abnormal resets and does not report it to
Watson.

Docking This feature enables Continuum for Windows 10 Mobile.

RESET_PROTECTION This feature enables Reset Protection on a retail image. When the
device boots for the first time, the appropriate secure UEFI variable
are written.

PERF_TRACING_TOOLS Contains tools for doing performance analysis, such as tools for
stopping and merging ETL tracing.

ENABLE_BOOT_PERF_BASIC_TRACING Enables boot performance tracing events to be generated.

ENABLE_BOOT_PERF_CPU_PROFILING_TRACING Enables CPU profiling events. in addition to the boot performance
tracing events that are enabled with
ENABLE_BOOT_PERF_BASIC_TRACING.

MESSAGINGGLOBAL This feature installs the Messaging package that includes Skype
integration. It must be used for any devices except those being
submitted for NAL certification in China.

MESSAGINGLITE This feature installs the Messaging package without Skype
integration. It must be used for any phone or other device that is
submitted for NAL certification in China (excluding Hong Kong SAR
and Macau).

SPATIALSOUND_FILTERDATA This feature installs Spatial sound.

https://dev.windows.com/holographic/spatial_sound


Retail boot sequence settings

The next two settings control the phone start up. Only one can be selected.

BOOTSEQUENCE_RETAIL This feature enables the standard retail boot sequence.

Microsoft internal retail features

The following components are reserved for Microsoft internal use only, but are documented here for completeness.

SELFHOST This feature adds components used exclusively for self-hosting
scenarios in Microsoft.

FieldMedicCustomProfiles This feature adds additional tracing profiles used by Field Medic.

RESET_PROTECTION_INTERNAL This feature enables Reset Protection on a test image. When the
device boots for the first time, the appropriate secure UEFI variable
are written.

Retail Demo Experience features

The Retail Demo Experience FOD contains offline retail demo content that is critical to a great retail demo experience. This offline
content contains Windows and Office content that is shown along with any OEM or Retailer retail demo content. Adding of this
Retail Demo Experience FOD is required and necessary for any OEMs participating in enabling a Retail Demo Experience on their
Windows 10 devices.

MS_RETAILDEMOCONTENT_AR-SA
MS_RETAILDEMOCONTENT_BG-BG
MS_RETAILDEMOCONTENT_CS-CZ
MS_RETAILDEMOCONTENT_DA-DK
MS_RETAILDEMOCONTENT_DE-DE
MS_RETAILDEMOCONTENT_EL-GR
MS_RETAILDEMOCONTENT_EN-GB
MS_RETAILDEMOCONTENT_EN-US
MS_RETAILDEMOCONTENT_ES-ES
MS_RETAILDEMOCONTENT_ES-MX
MS_RETAILDEMOCONTENT_ET-EE
MS_RETAILDEMOCONTENT_FI-FI
MS_RETAILDEMOCONTENT_FR-CA
MS_RETAILDEMOCONTENT_FR-FR
MS_RETAILDEMOCONTENT_HE-IL
MS_RETAILDEMOCONTENT_HR-HR
MS_RETAILDEMOCONTENT_HU-HU
MS_RETAILDEMOCONTENT_ID-ID
MS_RETAILDEMOCONTENT_IT-IT
MS_RETAILDEMOCONTENT_JA-JP
MS_RETAILDEMOCONTENT_KO-KR
MS_RETAILDEMOCONTENT_LT-LT
MS_RETAILDEMOCONTENT_LV-LV
MS_RETAILDEMOCONTENT_NB-NO
MS_RETAILDEMOCONTENT_NEUTRAL
MS_RETAILDEMOCONTENT_NL-NL
MS_RETAILDEMOCONTENT_PL-PL
MS_RETAILDEMOCONTENT_PT-BR
MS_RETAILDEMOCONTENT_PT-PT
MS_RETAILDEMOCONTENT_RO-RO



Test features defined by Microsoft

Boot option featuresBoot option features

FEATURE DESCRIPTION

Note

Note

MS_RETAILDEMOCONTENT_RU-RU
MS_RETAILDEMOCONTENT_SK-SK
MS_RETAILDEMOCONTENT_SL-SI
MS_RETAILDEMOCONTENT_SR-L ATN-RS
MS_RETAILDEMOCONTENT_SV-SE
MS_RETAILDEMOCONTENT_TH-TH
MS_RETAILDEMOCONTENT_TR-TR
MS_RETAILDEMOCONTENT_UK-UA
MS_RETAILDEMOCONTENT_VI-VN
MS_RETAILDEMOCONTENT_ZH-CN
MS_RETAILDEMOCONTENT_ZH-HK
MS_RETAILDEMOCONTENT_ZH-TW

The following table describes the Microsoft-defined test features that can be used by OEMs in the Features element in the
OEMInput file. These features are defined in MSOptionalFeatures.xml, which is included with the MobileOS under
%WPDKCONTENTROOT%\FMFiles.

BOOTSEQUENCE_TEST This feature includes the BCD boot sequence configuration for
booting into the full OS in a test image. This feature also includes a
pre-boot crash dump application and a pre-boot crash dump
entry.

The following features are mutually exclusive; only one of them
can be referenced in an OEMInput file: BOOTSEQUENCE_TEST,
MMOSLOADER_TEST.

MMOSLOADER_TEST This feature includes the BCD boot sequence configuration to
support booting into MMOS in a test image. This feature also
includes a pre-boot crash dump application and a pre-boot crash
dump entry. For more information about MMOS, see MMOS
image definition.

The following features are mutually exclusive; only one of them
can be referenced in an OEMInput file: BOOTSEQUENCE_TEST,
MMOSLOADER_TEST.

MOBILECOREBOOTSH Enables the bootsh service (bootshscv) so that startup.bsc
features, such as telnet and ftp, can be used.

MOBILECORE_TEST Information on this feature will be provided in a later release of this
documentation.

PRODUCTION Includes core OS files that are used to support base OS
functionality for production builds in the main OS, UEFI and the
update OS. This feature is used for PRODUCTION Image types.



Important

FEATURE DESCRIPTION

Boot option feature constraintsBoot option feature constraints

RELEASE_PRODUC
TION TEST HEALTH PRODUCTION SELFHOST

PRODUCTION_CO
RE

PRODUCTION_CORE This feature adds production boot and main OS binaries to the
image. PRODUCTION_CORE automatically includes the following
features:

CODEINTEGRITY_PROD

Because these features are already included, they should not be
manually included in PRODUCTION_CORE builds.

DISABLE_FFU_PLAT_ID_CHECK Disables the device platform validation in the Microsoft flashing
application. For more information about the platform check in
flashing, see Use the flashing tools provided by Microsoft.

The device platform validation for flashing must not be disabled
in retail images.

RESET_PROTECTION_INTERNAL This feature enables Reset Protection on the device. When the
device boots for the first time, the appropriate secure UEFI variable
are written.

You can specify feature constraints to avoid illogical or inappropriate build configurations.

Some settings are mutually exclusive and only one setting should be specified at a time. For example, consider the features,
RELEASE_PRODUCTION and RELEASE_TEST. These features are mutually exclusive. This means that if RELEASE_TEST is set,
RELEASE_PRODUCTION must not be set. For more information about how constraints are specified in XML see, Feature
groupings and constraints.

When <ReleaseType>Production</ReleaseType> is set in the OEMInput file, this maps to RELEASE_PRODUCTION. When
<ReleaseType>Test</ReleaseType> is set in the OEMInput file, this maps to RELEASE_TEST. For more information about the
release type, see OEMInput file contents.

The release constraints for RELEASE_PRODUCTION can be summarized as follows.

Either RELEASE_PRODUCTION or CODEINTEGRITY_PROD can be selected. This is because production code integrity is
automatically enabled when RELEASE_PRODUCTION is selected and therefore can’t be manually enabled.

These feature constraints can be used to prevent incorrect build option configurations. These feature constraints specify that
PRODUCTION_CORE is mutually exclusive with RELEASE_PRODUCTION and TEST but is not mutually exclusive with HEALTH,
PRODUCTION, or SELFHOST.

This table provides a summary of build options and indicates if the option is exclusive to any other option.

RELEASE_PR
ODUCTION

NA Yes Yes Yes Yes Yes

TEST Yes NA Yes Yes Yes Yes

HEALTH Yes Yes NA Yes Yes No

PRODUCTIO
N

Yes Yes Yes NA Yes No



RELEASE_PRODUC
TION TEST HEALTH PRODUCTION SELFHOST

PRODUCTION_CO
RE

Other boot related featuresOther boot related features

FEATURE DESCRIPTION

Security related featuresSecurity related features

FEATURE DESCRIPTION

SELFHOST Yes Yes Yes Yes NA No

PRODUCTIO
N_CORE

Yes Yes No No No NA

STARTUPOVERRIDES This feature starts the FTP service (ftpd.exe) and Telnet service
(telnetd.exe) automatically on startup.

LABIMAGE This feature causes the device to enter the FFU download mode
automatically when the device is booted. For more information, see
Use the flashing tools provided by Microsoft.

BOOTKEYACTIONS_RETAIL This feature enables a set of button actions for use in retail devices.

SKIPOOBE This feature disables the initial setup process wizard. This feature is
supported in Test, Health and Production image types. This feature
must not be used in Retail images.

There are two code signing modes on a Windows 10 Mobile device, retail and test. With retail, all code must be production signed
to be able to run on the device. For test signing, all code must be signed with test certificates. For more information about code
signing, see Code signing.

The two code signing modes are automatically managed in the build system. The previous DISABLETESTSIGNING and
ENABLETESTSIGNING feature settings are no longer used. Instead test code signing is automatically enabled in the following
build types:

TEST

HEALTH

PRODUCTION

SELFHOST

Test code signing cannot be enabled in the RELEASE_PRODUCTION build type that is used for retail devices

The following table summarizes the security related features.

CODEINTEGRITY_PROD This feature includes code integrity binaries that are used for
signature verification on production images. Code integrity verifies
the integrity of binary files as they are loaded into memory by the
operating system. This feature is automatically included when
PRODUCTION_CORE is selected. Because of this,
CODEINTEGRITY_PROD should not be manually added when
PRODUCTION_CORE is selected.

CODEINTEGRITY_TEST This feature includes code integrity binaries that are used for
signature verification on test images. Code integrity verifies the
integrity of binary files as they are loaded into memory by the
operating system.

https://msdn.microsoft.com/library/windows/hardware/dn756634


FEATURE DESCRIPTION

Test related featuresTest related features

FEATURE DESCRIPTION

Debug related featuresDebug related features

FEATURE DESCRIPTION

GWPCERTTESTPROV This feature provisions a set of test Genuine Windows Phone
Certificates (GWPC) certificates in the image.

TEST This feature adds many test drivers, applications, and other
components to be used for testing the OS in different conditions.

TESTINFRASTRUCTURE This feature adds the following components to the image:

MinTE.exe and other components that support a minimal
test harness environment for Test Authoring and Execution
Framework (TAEF) tests.

The Verifier.cmd script, which is used to configure Driver
Verifier.

Tux.exe and other components related to the Tux test
harness for native code.

TuxNet.exe and other components related to the TuxNet
test harness for managed code.

HEALTH This feature adds components for running tests related to power
and performance.

DRIVERS_WDTFINFRA Information on this feature will be provided in a later release of this
documentation.

DRIVERS_WDTFPOWER Information on this feature will be provided in a later release of this
documentation.

DRIVERS_WDTFPLGINS Information on this feature will be provided in a later release of this
documentation.

DRIVERS_WDTFDRVCOV Information on this feature will be provided in a later release of this
documentation.

DRIVERS_WDTFIOSPY Information on this feature will be provided in a later release of this
documentation.

Use the following settings to specify the transport that is used for debugging. The previous DEBUGGERON feature has been
deprecated.

Debug transport settings



Note

FEATURE DESCRIPTION

FEATURE DESCRIPTION

KDNETUSB_ON Includes all kernel debugger transports and enables KDNET over
USB.

The default debug transport settings for this feature are an IP
address of "1.2.3.4", a port address of "50000", and a debugger
key of "4.3.2.1". To use the default IP address of 1.2.3.4, run
VirtEth.exe with the /autodebug flag. To establish a kernel
debugger connection to the phone, use the following command.

Windbg -k net:port=50000,key=4.3.2.1

KDUSB_ON Includes all kernel debugger transports and enables KDUSB.

The default debug transport target name for this feature is
WOATARGET. To establish a kernel debugger connection to the
phone, use the following command.

Windbg -k usb:targetname=WOATARGET

Do not include either KDUSB_ON or KDNETUSB_ON if you need
to enable MTP or IP over USB in the image. If the kernel
debugger is enabled in the image and the debug transports are
used to connect to the device, the kernel debugger has exclusive
use of the USB port and prevents MTP and IP over USB from
working.

KDSERIAL_ON Includes all kernel debugger transports and enables KDSERIAL with
the following settings: 115200 Baud, 8 bit, no parity.

KD Includes all kernel debugger transports in the image, but does not
enable the kernel debugger.

KD_TEST Includes all kernel debugger transports in the image, but does not
enable the kernel debugger.

KDNETUSB_TEST_ON Includes all kernel debugger transports and enables KDNET over
USB in test images. This option must only be used with test
images.

Other debug settings

Dumpsize setting features - The following three features must only
be used with the Test and Health image types. These features must
not be used with retail images. Only one dumpsize setting can be
selected at a time.

DUMPSIZE512MB Specifies a pre-allocated crash dump file size of 592 MB. This is
intended for a phone with 512 MB of memory.

DUMPSIZE1G Specifies a pre-allocated crash dump file size of 1104 MB. This is
intended for a phone with 1024 MB of memory.

DUMPSIZE2G Specifies a pre-allocated crash dump file size of 2128 MB. This is
intended for a phone with 2048 MB of memory.



!verifier 1    

FEATURE DESCRIPTION

DUMPSIZE4G Specifies a pre-allocated crash dump file size of 4 GB. This is
intended for a phone with 4096 MB of memory.

Dump data storage location - The next two settings control if crash
dump data is stored on eMMC or if crash dump data is stored on
an SD card. Only one of these settings can be selected at a time.
These two features must only be used with the Test, Health and
Selfhost image types. These features must not be used with retail
images.

DEDICATEDDUMPONEMMC Specifies that the DedicatedDumpFile location as
c:\crashdump\dedicateddump.sys.

DEDICATEDDUMPONSD DEDICATEDDUMPONSD – Specifies that the DedicatedDumpFile
location as d:\dedicateddump.sys

When DEDICATEDDUMPONSD is used, crash dump will be
disabled if the user removes the SD card or if the card is not
present when the device booted. To re-enable crash dump:

1. Set this registry key 
HKLM\System\CurrentControlSet\Control\CrashControl\CrashDumpEnabled

to the value of 
HKLM\System\CurrentControlSet\Control\CrashControl\ExpectedCrashDumpEnabled

2. Reboot the phone.

Test disk idle power behavior - The next two settings determine if
storage devices (internal and SD card) can enter into a low power
state after they become idle. They must not be used with retail
images.

TEST_ENABLE_DISK_IDLE This feature will allow the storage devices (internal and SD card) to
go into a low power state shortly after they become idle. This
setting may prevent the collection of crashdumps on the
MSM8960 processor devices. If crashdumps need to be gathered
from an MSM8960 device, use the TEST_DISABLE_DISK_IDLE
feature instead.

TEST_DISABLE_DISK_IDLE This feature will prevent the storage devices (internal and SD card)
from going into a low power state after they become idle. This
setting should be used if crashdumps need to be gathered from
MSM8960 devices.

DRVRF_SIPLAT Sets driver verifier parameters for OEM and SoC drivers. This
feature sets the VerifyDriverLevel to a value of 002209BB and
VerifierOptions to 00000009. Windows drivers provided by
Microsoft are excluded using the VerifyDrivers key. You can use the
following debug command to list the drivers that are being verified
in your environment.



FEATURE DESCRIPTION

Non-production featuresNon-production features

FEATURE DESCRIPTION

Other featuresOther features

DBGCHKDISABLE This feature disables debugger connection checking and the
debugger connection status is ignored.

The effect on the debugger behavior is different depending on the
SoC that is being used.

For QC8x26 and QC8974 devices, include DBGCHKDISABLE
to ensure that offline dumps will be generated even if the
device is connected to a debugger. Otherwise, an Offline
Dump (Bug Check Code 0x14C dump) will not be created
but a raw dump will still be created.

For 8960 devices, include DBGCHKDISABLE to ensure that
offline dumps will be generated even if the device is
connected to a debugger. Otherwise, an Offline Dump (i.e.
Bug Check Code 0x14C dump) will not be created.

MSVCRT_DEBUG This feature adds support for explicit linking of debug c-runtime
libs by including msvcp120d.dll and msvcr120d.dll in the image.
For more information, see this topic on MSDN: CRT Library
Features.

MWDBGSRV This feature adds support for the user mode debug server.

NOLIVEDUMPS Disables non-fatal kernel error reports. These reports contain
debugging information for OS and driver developers.

TELEMETRYONSDCARD This feature enables temporary storage of debugging logs and files
on the SD card. This feature is only appropriate for test/self-host
images and only on devices with less than 8 GB of free space of
primary storage.

The following are some features that can be used for development and testing support.

POWERTRACINGTOOL This feature adds PowerTracingTool.exe, which is used to collect
power-related ETW logs, to the image.

TASKSCHEDULERTOOL This feature adds TaskSchTestUtil.exe, which is used to do task
scheduling-related operations, to the image.

DISABLEPREBOOTCRASHDUMP This feature adds a registry setting that disables offline crash
dumps.

ALWAYSKEEPMEMORYDUMP This feature adds a registry setting that tells the device to keep
kernel dump files.

AUTOREBOOT This feature adds a registry setting that restarts the device
immediately after a crash dump is complete.

DISABLEDEBUGCHECKSCREEN This feature adds a registry setting that suppresses the bug check
screen.

http://msdn.microsoft.com/library/abx4dbyh.aspx


FEATURE DESCRIPTION

Microsoft internal features

FEATURE DESCRIPTION

Related topics

FAKEVIBRA This feature adds a test hardware notification driver for controlling
the vibration feedback mechanism.

IMGFAKELED This feature adds a test hardware notification driver for controlling
LEDs to the image.

LOCATIONFRAMEWORKAPP This feature adds LFApp, a test and debug application for the
location framework.

PSEUDOLOCALES This feature enables the use of pseudo-locales for localization
testing. For more information, see Using Psuedo-Locales for
Localization Testing on MSDN.

GRAPHICSSOFTWAREDRIVERS This feature adds BasicDisplay and WARP graphics drivers. This
feature is normally used by the SoC vendor in early device bring-
up.

The following components are reserved for Microsoft internal use only, but are documented here for completeness.

SELFHOST This feature adds components used exclusively for self-hosting
scenarios in Microsoft.

IMGUPD_POWERTOYS This feature includes several utility applications related to updating
packages on devices.

INSTRUMENT_FOR_COVERAGE Information on this feature will be provided in a later release of this
documentation.

IMGFAKEMODEM Information on this feature will be provided in a later release of this
documentation.

USE_WMC This feature is used for Microsoft testing.

CORTANADBG_TEST_PROTECTED This feature is for Microsoft use only.

LIMITED This feature is for Microsoft use only.

TEST_PROTECTED This feature is for Microsoft use only.

SELFHOST_PROTECTED This feature is for Microsoft use only.

Building and flashing images

http://msdn.microsoft.com/library/windows/desktop/dd374118.aspx


Feature manifest file contents
7/13/2017 • 24 minutes to read • Edit Online

Example FM file

<?xml version="1.0" encoding="utf-8"?>
<FeatureManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
  <BasePackages>
    <PackageFile Path="%oempackageroot%\common\" 
      Name="Contoso.Phone.Test.BaseOs.EnvPath.spkg" />
  </BasePackages>
  <Features>
    <OEM>
     <PackageFile Path="%oempackageroot%\test\" 
      Name="Contoso.Test.MinTE.spkg">
        <FeatureIDs>
          <FeatureID>TEST_FEATURE1</FeatureID>
        </FeatureIDs>
      </PackageFile>
   </OEM>
</Features>
  <ReleasePackages> 
    <PackageFile FeatureIdentifierPackage="true" Name="Contoso.BaseOS.BootApplications_Test.spkg" 
Path="%oempackageroot%\test" ReleaseType="Test"/> 
  </ReleasePackages> 
  <PrereleasePackages>
    <PackageFile ID="Contoso.MainOS.Protected_Replacement_Production" FeatureIdentifierPackage="true" 
Name="Contoso.MainOS.Protected_Replacement_Production.spkg" Path="%oempackageroot%\Merged\" Resolution="*" 
Type="replacement" Language="*"/>
  </PrereleasePackages>
<OEMDevicePlatformPackages>
    <PackageFile Name="SoCVendor.DCD6000.OEMDevicePlatform.spkg" Path="%oempackageroot%\DCD6000\" 
Device="DCD6000"/>  
</OEMDevicePlatformPackages>
</FeatureManifest>

Elements in a FM file

Feature manifest (FM) files are used to define specific types of image builds that contain different sets of optional
packages. This topic describes the required and optional elements in a FM file. For more information about how
FM files are used while generating images, see Building a phone image using ImgGen.cmd.

Note
Most of the elements in a FM file include a path to a package. If the package is under the root directory for
Microsoft packages (%WPDKCONTENTROOT%\MSPackages), this path can use the $(mspackageroot) macro
in the path name. If the package is in some other location, you can use an environment variable, such as
%oempackageroot%, and set this environment variable in the command-line window.

The following example shows a sample OEM FM file.

You may wish to examine MSOptionalFeaturesFM.xml that is included with the mobileOS packagesunder
%WPDKCONTENTROOT%\FMFiles to see additional FM XML files.

The following sections describe the supported elements in a FM file.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/feature-manifest-file-contents.md


FeatureManifestFeatureManifest

BasePackagesBasePackages

ELEMENT DESCRIPTION

The FeatureManifest element is the root XML element in the FM file. This element is the base container
element for all other elements in the file. It must occur only once.

The BasePackages element specifies packages that are always included in the image if the FM file is referenced
in the AdditionalFMs element of the OEMInput XML file. The BasePackages element has no supported
attributes.

The following table describes the child elements of the BasePackages element.

PackageFile Optional. This element describes a package that will be
included in the image. This element supports the
following attributes:

Path – Required. The path to the package.

Name – Required. The file name of the package.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except or those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.



ELEMENT DESCRIPTION

FeaturesFeatures

ELEMENT DESCRIPTION

These elements are for Microsoft internal use only.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

There are both Microsoft and OEM elements, each of which can contain Features. The OEM should only add
their features to the <OEM> element. This provides multiple benefits, including the easier integration of newer
versions of the OEMInput.xml files into the OEM’s build system.

The Features element defines one or more optional features that can be referenced in the Features element in
the OEMInput file to include optional packages in the image. The Features element has no supported attributes.

The following table describes the child elements of the Features element.

PackageFile Optional. This element describes a package that will be
included in the image if the OEMInput file references this
feature.

This element supports the following attributes:

Path – Required. The path to the package.

Name – Required. The file name of the package.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that that
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.



ELEMENT DESCRIPTION

Feature groupings and constraintsFeature groupings and constraints

ReleasePackagesReleasePackages

ELEMENT DESCRIPTION

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that that package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

This element supports the following child elements:

FeatureIDs – Required. Contains one or more
FeatureID elements. Each FeatureID element
contains a string value that specifies the name of
a feature that will be associated with the package
specified by the parent PackageFile element.

These elements are for Microsoft internal use only.

CPUType – Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

Feature groupings and constraints can be used to manage features. For more information, see Feature
groupings and constraints .

The ReleasePackages element specifies packages that are included in images of a specific release type, as
specified by the ReleaseType element in the OEMInput file. The ReleasePackages element have no supported
attributes.

The following table describes the child elements of the ReleasePackages element.

PackageFile Optional. This element describes a package.

This element supports the following attributes:

ReleaseType – Required. The type of release
supported by the package, either Production or
Test. The package will only be included in images



ELEMENT DESCRIPTION

PrereleasePackagesPrereleasePackages

of the specified release type.

Path – Required. The path to the package.

Name – Required. The file name of the package.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

These elements are for Microsoft internal use only.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.



ELEMENT DESCRIPTION

Describes packages that can be excluded using the ExcludePrereleaseFeatures element in the OEMInput file.
For more information, see OEMInput file contents.

PackageFile Optional. This element describes a prelease package.

This element supports the following attributes:

Important

Type – Required. Can be either protected or
replacement.

The protected packages are excluded when 
ExcludePrereleaseFeatures  is set to Yes and

the replacement packages will instead be
included. For example a replacement feature can
be created by the OEM to enable scenarios such
as mobile operator testing, while not distributing
builds with sensitive functionality. This approach
is one of many, and is not required, but is one
option to consider, to help manage feature
disclosure. For more information see OEMInput
file contents.

No replacement packages should be included
in a retail image.

Path – Required. The path to the package.

Name – Required. The file name of the package.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.



ELEMENT DESCRIPTION

SOCPackagesSOCPackages

ELEMENT DESCRIPTION

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

These elements are for Microsoft internal use only.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

The SOCPackages element specifies packages that are included in images that are generated for a specific SoC,
as specified by the SOC element in the OEMInput file. The SOCPackages element has no supported attributes.

The following table describes the child elements of the SOCPackages element.

PackageFile Optional. This element describes a package.

This element supports the following attributes:

SOC – Required. The type of SoC supported by
the package. For a list of the supported values,
see the description of the SOC element in
OEMInput file contents. The package will only be
included in images generated for the specified
SoC.

Path – Required. The path to the package.

Name – Required. The file name of the package.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except



ELEMENT DESCRIPTION

SVPackagesSVPackages

ELEMENT DESCRIPTION

for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

These elements are for Microsoft internal use only.

CPUType– Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs. This
attribute should not be used by OEMs.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

The SVPackages element specifies packages that are included in images that are generated for a specific SoC
manufacturer, as specified by the SV element in the OEMInput file. The SVPackages element has no supported
attributes.

The following table describes the child elements of the SVPackages element.

PackageFile Optional. This element describes a package.

This element supports the following attributes:

SV – Required. The vendor for the SoC that is
supported by the package. The package will only
be included in images generated for the specified
SoC vendor.



ELEMENT DESCRIPTIONPath – Required. The path to the package.

Name – Optional.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

These elements are for Microsoft internal use only.

CPUType– Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs. This
attribute should not be used by OEMs.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.



ELEMENT DESCRIPTION
OEMDevicePlatformPackagesOEMDevicePlatformPackages

ELEMENT DESCRIPTION

DeviceSpecificPackagesDeviceSpecificPackages

ELEMENT DESCRIPTION

The OEMDevicePlatformPackages element specifies the device platform package to include in an image for a
specific device type. OEMs must specify the device platform package by using this element in a FM file. For more
information about device platform packages, see Set device platform information. The
OEMDevicePlatformPackages element has no supported attributes.

The following table describes the child elements of the OEMDevicePlatformPackages element.

PackageFile Optional. This element describes a device platform
package to include in the image for a specific device type.

This element supports the following attributes:

Device – Required. The device type that is
supported by the device platform package. The
package will only be included in images
generated for the specified device type.

Path – Required. The path to the package.

Name – Required. The file name of the package.

These elements are for Microsoft internal use only.

CPUType– Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

The DeviceSpecificPackages element specifies packages to include in images that are generated for a specific
device type, as specified by the Device element in the OEMInput file. The DeviceSpecificPackages element
has no supported attributes.

The following table describes the child elements of the DeviceSpecificPackages element.

PackageFile Optional. This element describes a package to include in
the image for a specific device type.

This element supports the following attributes:

Device – Required. The device type that is
supported by the device platform package. The
package will only be included in images
generated for the specified device type.

Path – Required. The path to the package.



ELEMENT DESCRIPTION

Microsoft internal use only

Name – Required. The file name of the package.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

These elements are for Microsoft internal use only.

CPUType– Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs.

ID – Optional. String value. The ID is the package
name This attribute should not be used by OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.



CPUPackagesCPUPackages

ELEMENT DESCRIPTION

The following components are reserved for Microsoft internal use only, but are documented here for
completeness.

Reserved for internal Microsoft use. This element should not be used by OEMs.



ELEMENT DESCRIPTION

PackageFile Optional. This element describes a package.

This element supports the following attributes:

CPUType – Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs.

Path – Required. The path to the package.

Name – Required. The file name of the package.

ID– Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

Resolution – Optional. A string that contains the
display resolutions supported by the package.
This attribute can be specified with the following
values:

"": The "" character means that the
package supports every resolution.

"(720x1280;768x1280)": This syntax
indicates the set of resolutions that the
package supports. The package is
included only in images that are built for
one of the resolutions in this list.

"!(720x1280;768x1280)": A '!' in front of
the resolution list specifies that the
package supports all resolutions except
for those in the list. The package is
included only in images that are not built
for one of the resolutions in this list.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that that package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the



ELEMENT DESCRIPTION

BootUILanguagePackageFileBootUILanguagePackageFile

ELEMENT DESCRIPTION

BootLocalePackageFileBootLocalePackageFile

ELEMENT DESCRIPTION

DeviceLayoutPackagesDeviceLayoutPackages

target partition for the package.

Reserved for internal Microsoft use. This element should not be used by OEMs.

BootUILanguagePackageFile Optional. This element supports the following attributes:

Path – Required. The path to the package.

Name – Required. The file name of the package.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

Partition – Optional. A string that specifies the
target partition for the package.

Reserved for internal Microsoft use. This element should not be used by OEMs.

BootLocalePackageFile Optional. This element supports the following attributes:

Path – Required. The path to the package.

Name – Required. The file name of the package.

ID – Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

Partition – Optional. A string that specifies the
target partition for the package.

Reserved for internal Microsoft use. This element should not be used by OEMs.



ELEMENT DESCRIPTION

KeyboardPackagesKeyboardPackages

ELEMENT DESCRIPTION

PackageFile Optional. This element describes a package.

This element supports the following attributes:

SOC – Required.

Path – Required. The path to the package.

Name – Required. The file name of the package.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

ID– Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

CPUType– Required. String value. Sets the CPU
type. Can be set to either x86 or arm. This
attribute should not be used by OEMs. This
attribute should not be used by OEMs.

Partition – Optional. A string that specifies the
target partition for the package.

Reserved for internal Microsoft use. This element should not be used by OEMs.



ELEMENT DESCRIPTION

SpeechPackagesSpeechPackages

ELEMENT DESCRIPTION

PackageFile Optional. This element describes a package.

This element supports the following attributes:

Path – Required. The path to the package.

Name – Required. The file name of the package.

ID– Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

Reserved for internal Microsoft use. This element should not be used by OEMs.



ELEMENT DESCRIPTION

Related topics

PackageFile Optional. This element describes a package.

This element supports the following attributes:

Path – Required. The path to the package.

Name – Required. The file name of the package.

ID– Optional. String value. The ID is the package
name. This attribute should not be used by
OEMs.

NoBasePackage – Optional. Boolean value. Set
to true for Language and\or Resolution packages
that do not contain base packages. This attribute
should not be used by OEMs.

FeatureIdentifierPackage – Optional. Boolean
value. This attribute should not be used by
OEMs.

Language – Optional. A string that contains the
display language codes supported by the
package. This attribute can be specified with the
following values:

"": The "" character means that the
package supports every language.

"(en-US;zh-CN)": This syntax indicates the
set of languages that the package
supports. The package is included only in
images that contain one of the display
languages in this list.

"!(en-US;zh-CN)": A '!' in front of the
language list specifies that the package
supports all languages except for those in
the list. The package is included only in
images that do not contain one of the
display languages in this list.

Partition – Optional. A string that specifies the
target partition for the package. By default,
packages are installed to the MainOS partition
unless another is explicitly specified.

Building a phone image using ImgGen.cmd



 

 

Create a feature and include it in an image
7/13/2017 • 4 minutes to read • Edit Online

Process overview – adding a test app feature

Walkthrough – adding a test app to a test image

Generate the test app packageGenerate the test app package

This topic shows you how to create a feature and add it to an image.

To create a feature and add it to an image, you must complete the following steps.

1. Generate the package that contains the test app.

2. Create the feature manifest file that references the package.

3. Add the feature manifest file and the test app feature to the OEMInput.xml file.

4. Generate the image, sign the image, and flash it to the device.

5. Verify that the feature works as expected.

This section reviews the steps that you need to perform to add a test app to a test image. Before you can start this
walkthrough, you must first create a simple test app. After the app is created, you can continue with this
walkthrough.

This walkthrough assumes that you have already created a test app named TestApplication.exe. Generate a
package that contains this app by completing the following steps.

1. Create a directory called TestApplication and copy the TestApplication.exe file that you created in Visual
Studio, to that directory.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/create-a-feature-and-include-it-in-an-image.md


<?xml version="1.0" encoding="utf-8" ?> 
  <Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00" Owner="Contoso" 
OwnerType="OEM" 
ReleaseType="Test" 
Platform="DCD600" 
Component="TestApps" 
SubComponent="TestApplication"
Partition="Data">

 <Macros>
  <Macro Id="testDir" Value="\test" /> 
 </Macros>

 <Components>
   <OSComponent>
     <Files>
       <File Source="TestApplication.exe" DestinationDir="$(testDir)" /> 
     </Files>
   </OSComponent>
  </Components>
</Package>

...
WPDKCONTENTROOT=C:\Program Files (x86)\Windows Phone Kits\10

C:\TestApplication>PkgGen TestApplication.pkg.xml /version:1.0.0.0 /config:" %WPDKCONTENTROOT% 
\Tools\bin\i386\pkggen.cfg.xml"

Microsoft (C) pkggen 8.0.12134.0

info: Using external macro file: 'C:\Program Files (x86)\Windows Phone Kits\10\
Tools\bin\i386\pkggen.cfg.xml'
info: Building project file C:\TestApplication\TestApplication.
pkg.xml
info: Building package '.\Contoso.TestApps.TestApplication.spkg'
info: Adding file 'TestApplication.exe' to package '.\Contoso.TestApps.TestApplication.spkg' as 
'\test\TestApplication.exe'
info: Done package ".\Contoso.TestApps.TestApplication.spkg"
info: Packages are generated to . successfully

2. Create a text file named TestApplication.pkg.xml that contains the following package definition XML.

You can update the owner and platform attributes to match the name of your organization name and the
name of your device. These attribute changes will modify the name of the generated package.

The <Macro> element is used to specify the \data\test destination directory on the device.

3. Open an administrator command prompt window to build the package.

4. Display the environment variables by typing SET in the command prompt window. Look for
WPDKCONTENTROOT to confirm that the build environment is properly configured.On a Windows 64-bit
PC, the path should look similar to the following.

5. Generate the package using PkgGen. Provide the version number of 1.0.0.0. The /config parameter points to
the location of the pkggen.cfg.xml file.

6. If PkgGen creates the package successfully, it should return output that is similar to the following.

For more information about working with packages, see Creating packages.



Create the feature manifest fileCreate the feature manifest file

Add the feature to the OEMInput fileAdd the feature to the OEMInput file

Generate, sign, and flash the imageGenerate, sign, and flash the image

Create a feature manifest file that will define a TEST_APP OEM feature by completing the following steps.

%WPDKCONTENTROOT%\FMFiles

<?xml version="1.0" encoding="utf-8"?>  
<FeatureManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">  
<!--  TEST_APP FM File 4/30/2015   -->
  <Features>  
    <OEM>  
      <PackageFile Path="C:\TestApplication\" Name="Contoso.TestApps.TestApplication.spkg">  
        <FeatureIDs>  
          <FeatureID>TEST_APP</FeatureID>  
        </FeatureIDs>  
      </PackageFile>  
    </OEM>  
  </Features>  
</FeatureManifest>

1. Create a feature manifest file named OEMCustomAppFM.xml in the following directory:

2. Define the TEST_APP feature by adding the following XML to the OEMCustomAppFM.xml file.

For more info about feature manifests, see Feature manifest file contents.

Add the TEST_APP OEM feature to the OEMInput.xml file by completing the following steps.

...
<AdditionalFMs>
    ...
    <AdditionalFM>%WPDKCONTENTROOT%\FMFiles\OEMCustomAppFM.xml</AdditionalFM>
  </AdditionalFMs>

<Features>
  <Microsoft>
   ...
  </Microsoft>
  <OEM>
    ...
    <Feature>TEST_APP</Feature>
  </OEM>
</Features>

1. This walkthrough assumes that you have an existing, functional test OEMInput file that enables TShell. For
more information about creating test images, see Building and flashing images. For more information about
specifying optional features, see Optional features for building images.

2. Edit the OEMinput.xml file to include the OEMCustomAppFM.xml feature manifest file that you created in
the previous step. The XML will be similar to the following.

3. Later in the <Features> section of the OEMInput.xml file add the new TEST_APP feature to the list of
existing features.

Complete the following steps to generate, sign, and flash the image.



Verify that the TestApplication executes as expectedVerify that the TestApplication executes as expected

C:\>ImgGen Flash.ffu OEMInput.xml "%WPDKCONTENTROOT%\10\MSPackages"

C:\> Set SIGN_OEM=1
C:\> Sign.cmd /pk TestSigned.cat

C:\> ImageSigner Sign Flash.FFU Flash.Cat

C:\> FFUTool –Flash Flash.ffu

1. Generate the image using ImgGen and the OEMInput.xml file that you customized in the previous step.

2. Before you can sign images, you must first install the test OEM certificates on the PC by following the steps
in Set up the signing environment.

3. Sign the generated catalog using the /pk option.

4. Sign the FFU with the signed catalog file using ImageSigner.

5. Flash the image to the phone using FFUTool.

For more information about generating and flashing images, see Building and flashing images.

Verify that the TestApplication executes as expected by completing the following steps.

PS C:\> Open-device 001122334455

PS C:\> DirD \TestApplication.exe /s

PS C:\> ExecD -displayoutput -filename \Data\Test\TestApplication.exe

Output    : Testing console output
Error     :
Exit Code : 0

1. Configure a TShell connection to test the image.

2. Establish a connection to the device using the Open-device TShell command. Provide the MAC address of
the device.

3. Confirm that the TestApplication is on the device by using the TShell Dir-Device command. The short form
of the command, DirD, is shown.

4. Execute the application by entering the Exec-Device cmdlet in the TShell window. The Exec-Device
cmdlet starts a process on the connected device. By default, the Exec-Device cmdlet waits for the process
to exit before returning. Use the -Async switch to return immediately. Use the –displayoutput parameter to
echo the output.

5. Output similar to the following should be displayed.

https://msdn.microsoft.com/library/windows/hardware/dn789236


Related topics
Creating packages

Building and flashing images



 

 

Adding a driver to a test image
7/13/2017 • 11 minutes to read • Edit Online

Process overview – adding a driver feature to a test image

Walkthrough – adding a driver to a test image

This topic shows you how to create a feature and add it to a test image.

To create a feature that contains a driver and add it to a test image, complete the following steps.

1. Create a test KMDF driver

2. Generate the driver package

3. Create a feature manifest file that references the package

4. Add the feature to the OEMInput.xml file

5. Generate, sign, and flash the image to the device

6. Verify that the KMDFDriver1 is on the device

7. Verify that the driver loads using Windows debug

The following diagram summarizes the packaging and image generation elements that are used to add the driver
to the device.

This topic describes the steps that you need to perform to add a driver to a test image. Before you can start this
walkthrough, you must first create a simple KMDF driver.

This walkthrough assumes that you named the project KmdfDriver1.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/adding-a-driver-to-a-test-image.md


  Create a test KMDF driverCreate a test KMDF driver
To create a test KMDF driver, complete the following steps.

...
{
    WDF_DRIVER_CONFIG config;
    NTSTATUS status;
    WDF_OBJECT_ATTRIBUTES attributes;

   //
   // IoReportRootDevice routine reports a device that cannot be detected by 
   // a PnP bus driver to the PnP Manager. This allows our software-only
   // driver to remain loaded.  
  IoReportRootDevice(DriverObject);

    //
    // Initialize WPP tracing.
    //
    WPP_INIT_TRACING( DriverObject, RegistryPath );
    TraceEvents(TRACE_LEVEL_INFORMATION, TRACE_DRIVER, "%!FUNC! Entry");

... 

1. In the Solution Explorer window, expand KmdfDriver1 and then expand the Source Files Folder.

2. Edit the "Driver.c" file by clicking it.

3. Right after the variable declaration section, add the IoReportRootDevice routine as show below. The
IoReportRootDevice routine reports a device that cannot be detected by a PnP bus driver to the PnP
Manager. This allows the software-only driver to remain loaded.

4. Save Driver.c.

5. To build your driver and create a driver package, choose Build Solution from the Build menu. Visual
Studio displays the build progress in the Output window. (If the Output window is not visible, choose
Output from the View menu.)

6. To view the built driver package, navigate in Windows Explorer to your KmdfDriver1 folder, and then to
ARM\Win8.1Debug\. This directory contains the following files:

KmdfDriver1.sys - A kernel-mode driver file.

KmdfDriver1.inf - An information file that Windows uses to install the driver.

KmdfDriver1.pdb – A file that contains the debug symbols that will be used for debugging.

KmdfDriver1.cat - A catalog file that is not used in this walkthrough.

There are also co-installer files for the Windows Driver Frameworks (WDF) that will not be used with
Windows Phone.

7. Because of the differences in Windows 10 Mobile INF files, we will not use the desktop INF file that is
generated by Visual Studio.



[Strings]
SPSVCINST_ASSOCSERVICE= 0x00000002
MSFT = "Microsoft"
KMDFDriver1_DevDesc = "KMDF Driver 1"
SERVICE_KERNEL_DRIVER = 1
SERVICE_AUTO_START = 2
SERVICE_SYSTEM_START = 1
SERVICE_BOOT_START = 0
SERVICE_ERROR_NORMAL = 1
```

;
; KmdfDriver1.inf
;
[Version]
Signature="$WINDOWS NT$"
Class=System
ClassGuid={4d36e97d-e325-11ce-bfc1-08002be10318}
Provider=%MSFT%
DriverVer=11/01/2012,1.00.00.00
BootCritical=1

[DestinationDirs]
DefaultDestDir = 12

[Manufacturer]
%StdMfg%=KMDFDriver1_DevDesc, NTARM, NTx86

;*******************************
;** models section (required) **
;*******************************
; For ARM platforms
[KMDFDriver1_DevDesc.NTARM]
; DisplayName      Section          DeviceId
; -----------      -------          --------
%KMDFDriver1_DevDesc%=KMDFDriver1, Root\KMDFDriver1

; For Win2K+
[KMDFDriver1_DevDesc.NTx86]
; DisplayName       Section          DeviceId
; -----------       -------          --------
%KMDFDriver1_DevDesc%=KMDFDriver1, Root\KMDFDriver1

;********************************
;* ddinstall section (required) *
;********************************
[KMDFDriver1.NT]
CopyFiles=KMDFDriver1.NT.Copy

[KMDFDriver1.NT.Copy]
KMDFDriver1.sys

;-------------- Service installation

[KMDFDriver1.NT.Services]
AddService = KMDFDriver1, %SPSVCINST_ASSOCSERVICE%, KMDFDriver1_Service_Inst

[KMDFDriver1_Service_Inst]
DisplayName    = %KMDFDriver1_DevDesc%
ServiceType    = %SERVICE_KERNEL_DRIVER%
StartType      = %SERVICE_SYSTEM_START%
ErrorControl   = %SERVICE_ERROR_NORMAL%
ServiceBinary  = %12%\KMDFDriver1.sys



  Generate a package that contains the driverGenerate a package that contains the driver

C:>set SIGN_OEM=1 
sign KMDFDriver1.sys 

1. Sign the driver using the following commands:

Generate a package that contains this driver by completing the following steps.

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
  Owner="Contoso"
  OwnerType="OEM"     
  ReleaseType="Test"          
  Platform="DCD6000"          
  Component="Phone.Test.BaseOS"
  SubComponent="KmdfDriver1"
  Partition="MainOS"
  BinaryPartition="false">
  <Components>
    <OSComponent>
        <Files>
            <File Source="KmdfDriver1.sys" DestinationDir="$(runtime.system32)\drivers"/>
        </Files>
    </OSComponent>
    <Driver InfSource="KmdfDriver1.inf">
        <Reference Source="KmdfDriver1.sys"/>
    </Driver>
  </Components>
</Package>

...
WPDKCONTENTROOT=C:\Program Files (x86)\Windows Kits\10

C:\KmdfDriver1>PkgGen KmdfDriver1.pkg.xml /version:1.0.0.0 
/variables:"HIVE_ROOT=%WPDKCONTENTROOT%\CoreSystem" 
/config:"%WPDKCONTENTROOT%\Tools\bin\i386\pkggen.cfg.xml"

1. Create a directory called KMDFDriver1 and copy the KMDFDriver1.sys and KMDFDriver1.inf files that you
created in Visual Studio, to that directory.

2. Create a text file named KmdfDriver1 .pkg.xml that contains the following package definition XML.

You can update the owner and platform attributes to match the name of your organization name and the
name of your device. These attribute changes will modify the name of the generated package.

Specify the Windows\System32\Drivers directory on the device using the $(runtime.system32) macro.

3. The next step is to generate the package by opening an administrator command prompt window.

4. Display the environment variables by typing SET in the administrator command prompt window. Look for
WPDKCONTENTROOT to confirm that the build environment is properly configured. You should see that
WPDKCONTENTROOT is set. On a Windows 64-bit PC, the path should look similar to the following.

5. Generate the package using PkgGen. Provide the version number of 1.0.0.0. The /config parameter points to
the location of the pkggen.cfg.xml file provided with the Windows DriverKit. The /hive parameter points to
the location of the hive root.

6. If PkgGen creates the package successfully, it will display many lines of information as the registry entries



  Create a feature manifest file that references the packageCreate a feature manifest file that references the package

... 
info: Import Log: :      sto: Unloaded hive key '{bf1a281b-ad7b-4476-ac95-f47682
990ce7}C:/Users/User1/AppData/Local/Temp/gs5gvfgc.pou/windows/system32/config/S
OFTWARE'. Time = 0 ms
info: Import Log: : <<<  Section end 2015/08/06 13:10:22.413
info: Import Log: : <<<  [Exit status: SUCCESS]
info: Import Log: :
info: Import Log: :
info: Import Log: : >>>  [Unload Offline Registry Hive - DRIVERS]
info: Import Log: : >>>  Section start 2014/08/06 13:10:22.413
info: Import Log: :        os: Version = 6.3.9600, Service Pack = 0.0, Suite = 0
x0100, ProductType = 1, Architecture = x86
info: Import Log: :       cmd: PkgGen  KmdfDriver1.pkg.xml /version:1.0.0.0 /var
iables:"HIVE_ROOT=C:\Program Files (x86)\Windows Kits\10\CoreSystem" /con
fig:"C:\Program Files (x86)\Windows Kits\10\Tools\bin\i386\pkggen.cfg.xml
"
info: Import Log: :      sto: Closed hive key '{bf1a281b-ad7b-4476-ac95-f4768299
0ce7}C:/Users/User1/AppData/Local/Temp/gs5gvfgc.pou/windows/system32/config/DRI
VERS'.
info: Import Log: :      sto: Unloaded hive key '{bf1a281b-ad7b-4476-ac95-f47682
990ce7}C:/Users/User1/AppData/Local/Temp/gs5gvfgc.pou/windows/system32/config/D
RIVERS'. Time = 0 ms
info: Import Log: : <<<  Section end 2014/08/06 13:10:22.513
info: Import Log: : <<<  [Exit status: SUCCESS]
info: Import Log: :
info: Building package '.\Contoso.Phone.Test.BaseOS.KmdfDriver1.spkg'
info: Adding file 'KmdfDriver1.sys' to package '.\Contoso.Phone.Test.BaseOS.Kmdf
Driver1.spkg' as '\windows\System32\drivers\KmdfDriver1.sys'
info: Adding file 'C:\Users\User1\AppData\Local\Temp\5bgjkx3p.j01\reg.reg' to p
ackage '.\Contoso.Phone.Test.BaseOS.KmdfDriver1.spkg' as '\Windows\Packages\Regi
stryFiles\Contoso.Phone.Test.BaseOS.KmdfDriver1.reg'
info: Adding file 'C:\Users\User1\AppData\Local\Temp\5bgjkx3p.j01\regMultiSz.rg
a' to package '.\Contoso.Phone.Test.BaseOS.KmdfDriver1.spkg' as '\Windows\Packag
es\RegistryFiles\Contoso.Phone.Test.BaseOS.KmdfDriver1.rga'
info: Done package ".\Contoso.Phone.Test.BaseOS.KmdfDriver1.spkg"
info: Packages are generated to . successfully

are created based on the provided INF file. The last part of the output will be similar to the following.

For more information about working with packages, see Creating packages.

Create a feature manifest file that will define a DRIVER1 OEM feature by completing the following steps.

%WPDKCONTENTROOT%\FMFiles

1. Create a feature manifest file named OEMCustomAppFM.xml in the following directory.

2. Define the DRIVER1 feature by adding the following XML to the OEMCustomDriverFM.xml file. Update the
package name to match the name of the package file generated in the previous step.



  

  

Add the feature to the OEMInput.xml fileAdd the feature to the OEMInput.xml file

Generate, sign, and flash the image to the deviceGenerate, sign, and flash the image to the device

<?xml version="1.0" encoding="utf-8"?>  
<FeatureManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">  
<!--  DRIVER1 FM File 7/31/2014   -->
  <Features>  
    <OEM>  
      <PackageFile Path="C:\KmdfDriver1\" Name="Contoso.Phone.Test.BaseOS.KmdfDriver1">  
        <FeatureIDs>  
          <FeatureID>DRIVER1</FeatureID>  
        </FeatureIDs>  
      </PackageFile>  
    </OEM>  
  </Features>  
</FeatureManifest>

For more information about feature manifests, see Feature manifest file contents.

Add the DRIVER1 feature to the OEMInput.xml file by completing the following steps.

...
<AdditionalFMs>
    ...
    <AdditionalFM>%WPDKCONTENTROOT%\FMFiles\OEMCustomDriverFM.xml</AdditionalFM>
  </AdditionalFMs>

<Features>
  <Microsoft>
   ...
  </Microsoft>
  <OEM>
    ...
    <Feature>DRIVER1</Feature>
  </OEM>
</Features>

1. This walkthrough assumes that you have an existing, functional test OEMInput file that enables TShell. For
more information about creating test images, see Building and flashing images. For more information about
specifying optional features, see Optional features for building images.

Confirm that that you are using a test image that has debugging enabled. For more information, see
Optional features for building images.

2. Edit the OEMinput.xml file to include the OEMCustomAppFM.xml feature manifest file that you created in
the previous step. The XML will be similar to the following.

3. In the <Features> section of the OEMInput.xml file, add the new DRIVER1 feature to the list of existing
features.

Complete the following steps to generate, sign, and flash the image.

C:\>ImgGen Flash.ffu OEMInput.xml "%WPDKCONTENTROOT%\10\MSPackages"

1. Generate the image using ImgGen and the OEMInput.xml file that you customized in the previous step.

2. Before you can sign images, you must first install the test OEM certificates on the PC by following the steps



  Verify that the KMDFDriver1 is on the deviceVerify that the KMDFDriver1 is on the device

C:\> Set SIGN_OEM=1
C:\> Sign.cmd /pk TestSigned.cat

C:\> ImageSigner Sign Flash.FFU Flash.Cat

C:\> FFUTool –Flash Flash.ffu

in Set up the signing environment.

3. Sign the generated catalog using the Sign.cmd with the /pk option.

4. Sign the FFU with the signed catalog file using ImageSigner.

5. Flash the image to the phone using FFUTool.

For more information about generating and flashing images, see Building and flashing images.

Verify that the KMDFDriver1 is present on the device by using TShell.

PS C:\> Open-device 001122334455

PS C:\> DirD \KMDFDriver1.sys /s

Volume in drive C is MainOS
Volume Serial Number is 965E-2180
Directory of C:\windows\system32\DRIVERS
04/21/2014  05:23 PM              8864 KMDFDriver1.sys
               1 File(s)           8864 bytes
     Total Files Listed:
               1 File(s)           8864 bytes
               0 Dir(s)       409976832 bytes free

DEVICE C:\
PS C:\Windows\system32> RegD Add "HKLM\SYSTEM\ControlSet001\Control\Session Manager\Debug Print Filter" 
/v DEFAULT /t REG_DWORD /d 0xFFFFFFFF

The operation completed successfully.

1. Configure a TShell connection to test the image.

2. Establish a connection to the device using the Open-device TShell command. Provide the MAC address of
the device.

3. Confirm that the KMDFDriver1 is on the device by using the Dir-Device TShell command. The short form
of the command, DirD, is shown.

4. You should see output similar to the following.

5. Enable debug output for KdPrint(), KdPrintEx(), and DbgPrint() messages by setting a registry key. Set the
registry key so that it is persistent across reboots (for non-retail images) by using the RegD Add TShell
command.

https://msdn.microsoft.com/library/windows/hardware/dn789236


  Verify that the driver loads using Windows debugVerify that the driver loads using Windows debug

DEVICE C:\
PS C:\Windows\system32> RegD Query "HKLM\SYSTEM\ControlSet001\Control\Session Manager\Debug Print 
Filter"

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Session Manager\Debug Print Filter
    DEFAULT    REG_DWORD    0xffffffff

6. Confirm that registry key was set by using the RegD Query TShell command.

To view the driver load process, complete the following steps to set a debug statement in the driver and connect
the device to the kernel debugger.

   …
    WDF_DRIVER_CONFIG config;
    NTSTATUS status;
    WDF_OBJECT_ATTRIBUTES attributes;

    // Debug break statement to stop loading of OS 
    // Debugger must be attached to allow the device to boot
     __debugbreak();
…

windbg -k net:port=5000,key=1.2.3.4

1. Open the driver project in Visual Studio.

2. Add a debug break statement in Driver.c right after the variable declaration section of the DriverEntry
routine.

Warning
The debug break statement will stop the phone from booting unless a debugger is attached to the device.

3. Rebuild the project in Visual Studio.

4. If necessary, copy the updated .sys file to the directory that you will use to create to generate the package.

5. Then, repeat the steps described above to:

a. Generate an updated driver package.

b. Generate, sign, and flash the image.

Note
It is also possible to update the version of the driver by including the driver version in the INF file and then
using the IUTool to deploy the updated driver to the phone. For more information about using IUTool, see
IUTool.exe: Update packages on a phone. This process is similar to the process that is used to create a driver
update. For more information about that, see Update a KMDF device driver.

6. Set up a KDNET over USB connection to the phone for debugging.

7. Start the Windows debugger.

8. After the device has booted, it will hit the break point and code execution will stop. The debugger will
indicate that break point has been hit.

9. Set the symbol path to the location of the Windows Driver Kit symbols and reload the symbols.

https://msdn.microsoft.com/windows/hardware/commercialize/service/mobile/update-a-kmdf-device-driver


.SYMPATH+ C:\SYMBOLS

.reload /f

.srcpath+ C:\KMDFDriver1\Source\

0: kd> k
# Child-SP RetAddr  Call Site
00 85679c68 90fd2abe KMDFDriver1!DriverEntry+0xa
01 85679ce0 90fd2b38 KMDFDriver1!FxDriverEntryWorker+0x6a
02 85679d00 81770990 KMDFDriver1!FxDriverEntry+0x18
*** ERROR: Symbol file could not be found.  Defaulted to export symbols for ntkrnlmp.exe - 
03 85679d10 818f8004 nt!SeTokenIsAdmin+0x1790
04 85679e10 8190d630 nt!KeFindConfigurationNextEntry+0x7c48
05 85679e68 8185719e nt!KeHwPolicyLocateResource+0x4698
06 85679e70 814c5e0c nt!IoReplacePartitionUnit+0x192
07 85679e80 81460172 nt!IoAllocateIrp+0x57c
08 85679ec8 00000000 nt!KiDispatchInterrupt+0x234a

0: kd> x KMDFDriver1!*
90fd4750          KMDFDriver1!WdfDriverGlobals = 0x88ff4de8
90fd4754          KMDFDriver1!WdfDriverStubDriverObject = 0x88fed768
90fd4004          KMDFDriver1!__security_cookie_complement = 0x568f867
90fd336c          KMDFDriver1!__gsfailure_xdata_end = <unknown base type 80000013>
90fd33b4          KMDFDriver1!__memcpy_reverse_large_neon_xdata = <unknown base type 80000013>
90fd30c0          KMDFDriver1!WPP_c0dfc8e231dc218098dc0c2ed20d6e73_Traceguids = struct _GUID [1]
90fd30a0          KMDFDriver1!GUID_DEVINTERFACE_KmdfDriver1 = struct _GUID {e7a4cfb0-56d4-4234-bf60-
fe627cb5e981}
90fd474c          KMDFDriver1!WdfDriverStubDisplacedDriverUnload = 0x00000000
90fd3370          KMDFDriver1!memcpy_xdata_prolog = <unknown base type 80000013>
90fd3388          KMDFDriver1!__memcpy_forward_large_neon_xdata = <unknown base type 80000013>
90fd4758          KMDFDriver1!WdfDriverStubOriginalWdfDriverMiniportUnload = 0x00000000

0: kd> lm m KMDFDriver1 v
Browse full module list
start    end        module name
90fd1000 90fd9000   KMDFDriver1   (private pdb symbols)  c:\kmdfdriver1\KmdfDriver1.pdb
    Loaded symbol image file: KMDFDriver1.sys
    Image path: KMDFDriver1.sys
    Image name: KMDFDriver1.sys
    Browse all global symbols  functions  data
    Timestamp:        Thu Jul 31 14:39:34 2014 (53DAB796)
    CheckSum:         000037D2
    ImageSize:        00008000
    Translations:     0000.04b0 0000.04e4 0409.04b0 0409.04e

10. Set the source path to the location of your .c source code that you created earlier in Visual Studio.

11. List the call stack by using the k command.

The call stack is the chain of function calls that have led to the current location of the program counter. The
top function on the call stack is the current function, and the next function is the function that called the
current function, and so on.

12. Display symbol information associated with KMDFDriver1 using the x command.

13. List information about the modules on KMDFDriver1 by using the lm m command.

14. Load the WDF driver extensions using the .load command.



.load C:\Program Files (x86)\Windows Kits\10\Debuggers\x86\winext\Wdfkd.dll

!wdfkd.help

0: kd> !wdfkd.wdfdriverinfo KMDFDriver1
----------------------------------
Default driver image name: KMDFDriver1
WDF library image name: Wdf01000
FxDriverGlobals  0x90584008
WdfBindInfo      0x913d8008
   Version        v1.11
Library module   0x8283b528
   ServiceName    \Registry\Machine\System\CurrentControlSet\Services\Wdf01000
   ImageName      Wdf01000
----------------------------------
Driver Handles is NULL

0: kd> qd

15. Confirm that the WDF debug extension is loaded by using the !wdfkd.help WDK driver extension help
command.

16. Display information about the driver using the !wdfkd.wdfdriverinfo command.

17. End the debugging session using the qd quit and detach command.



Feature groupings and constraints
7/13/2017 • 3 minutes to read • Edit Online

Feature groupings

Feature constraints

ELEMENT DESCRIPTION
AT LEAST ONE FEATURE IS
REQUIRED

FEATURES ARE MUTUALLY
EXCLUSIVE

Feature groups and feature constraints allow additional logic to be added to the build system to support
intelligent processing of the OEMInput XML.

Feature groupings allow for better management of optional features and allow the organization of packages for
easier management. Feature grouping is used to implement feature constraints by Microsoft and optionally, by the
OEM.

Feature constraints can be specified to avoid illogical or inappropriate build configurations.

Some settings are mutually exclusive and only one setting should be specified at a time. For example, consider the
features, RELEASE_PRODUCTION and RELEASE_TEST. These features are mutually exclusive. This means that if
RELEASE_TEST is set, RELEASE_PRODUCTION must not be set.

Constraints are grouped at the Microsoft and OEM level of features. OEMs cannot override Microsoft constraints.
The following constraints are supported:

OneOrMore One or more features
must be specified.

true false

ZeroOrOne Either one feature or no
features can be
specified.

false true

OneAndOnlyOne One feature is required
and only one feature
can be specified.

true true

ZeroOrMore This is the default and
indicates that there are
no constraints. This
option is only used to
group features for
publishing purposes and
will be ignored during
imaging.

false false

The following XML sample illustrates the use of constraints to appropriately restrain the fake modem feature.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/feature-groupings-and-constraints.md


<Features>
  <Microsoft>
    <FeatureGroup Constraint="OneAndOnlyOne">
           <FeatureIDs>
           <FeatureID>MS_IMGFAKEMODEM</FeatureID>
           <FeatureID>MS_IMGNOFAKEMODEM</FeatureID> 
          </FeatureIDs>
    </FeatureGroups >
  </Microsoft>
</Features>

<Features>
  <Microsoft>
    <FeatureGroups>
        <FeatureGroup Constraint="ZeroOrOne">
         <FeatureIDs>
          <FeatureID>RELEASE_PRODUCTION</FeatureID> 
          <FeatureID>MS_CODEINTEGRITY_PROD</FeatureID> 
        </FeatureIDs>
    </FeatureGroup>
         <FeatureGroup Constraint="ZeroOrOne">
           <FeatureIDs>
            <FeatureID>RELEASE_PRODUCTION</FeatureID>
            <FeatureID>MS_DISABLETESTSIGNING</FeatureID> 
         </FeatureIDs>
    </FeatureGroup>
  </Microsoft>
</Features>

The constraints in the sample specify that either IMGFAKEMODEM or IMGNOFAKEMODEM must be selected.
Both values cannot be set at the same time. One and only one value must be set at a time. This constraint is
required because the fake modem test feature must either be enabled or disabled.

The following XML sample illustrates the use of constraints to appropriately restrain the production build settings.
This sample shows how multiple constraints can be associated with a single feature.

When <ReleaseType>Production</ReleaseType> is set in the OEMInput file, this maps to
RELEASE_PRODUCTION. For more information about release type, see OEMInput file contents.

The constraints in the sample specify that:

Either RELEASE_PRODUCTION or MS_CODEINTEGRITY_PROD can be selected, but they both may not
be selected at the same time. This is because production code integrity is automatically enabled when
RELEASE_PRODUCTION is selected and therefore can’t be manually enabled.

Either RELEASE_PRODUCTION or MS_DISABLETESTSIGNING can be selected, but they both may not
be selected at the same time. This is because test signing is automatically disabled when
RELEASE_PRODUCTION is selected and therefore can’t be manually disabled.

The build options are more complex and are expressed in the following XML.



FeatureGroup Constraint="OneAndOnlyOne">
  <FeatureIDs>
    <FeatureID>RELEASE_PRODUCTION</FeatureID> 
      <FeatureID>MS_TEST</FeatureID> 
      <FeatureID>MS_HEALTH</FeatureID> 
      <FeatureID>MS_PRODUCTION</FeatureID> 
      <FeatureID>MS_SELFHOST</FeatureID> 
    </FeatureIDs>
  </FeatureGroup>
<FeatureGroup Constraint="OneAndOnlyOne">
  <FeatureIDs>
    <FeatureID>RELEASE_PRODUCTION</FeatureID> 
    <FeatureID>MS_PRODUCTION_CORE</FeatureID> 
    <FeatureID>MS_TEST</FeatureID> 
  </FeatureIDs>
</FeatureGroup>

Implicit feature IDs

<Features>
    <OEM>
     <PackageFile Path="%oempackageroot%\test\" 
      Name="Contoso.Test.MinTE.spkg">
        <FeatureIDs>
          <FeatureID>TEST_FEATURE1</FeatureID>
        </FeatureIDs>
      </PackageFile>
   </OEM>
</Features>

These settings in the sample specify that PRODUCTION_CORE is mutually exclusive with
RELEASE_PRODUCTION and TEST, but is not mutually exclusive with HEALTH, PRODUCTION, or SELFHOST.

For additional information about the build features, see Optional features for building images.

Implicit feature IDs are generated based on the XML input that is used to define features in feature manifest files.
Feature constraints must use the implicit feature IDs. This section provides the mapping between the XML input
values and the generated implicit feature IDs.

Pre-defined release type implicit feature IDs

There are two pre-defined implicit feature IDs that can be used for feature constraints.

RELEASE_TEST

RELEASE_PRODUCTION

For more information on release types, see Optional features for building images.

OEM and Microsoft implicit feature IDs

For each OEM and Microsoft feature, implicit feature IDs are automatically created. This is done my pre-
appending either MS_ for Microsoft or OEM_ for OEM defined features.

For example if an OEM creates a feature called TEST_FEATURE1 using the XML shown below, the implicit Feature
ID will be OEM_TEST_FEATURE1.

To create a feature constraint to make sure this test feature is only shipped with test release types, use the
following XML.



<FeatureGroup Constraint="ZeroOrOne">
   <FeatureIDs>
      <FeatureID>RELEASE_PRODUCTION</FeatureID>
      <FeatureID>OEM_TEST_FEATURE1</FeatureID> 
   </FeatureIDs>
</FeatureGroup>

Related topics

SOC implicit feature IDs

SOC features are pre-appended with SOC_. For example if DCD6000 is specified in the feature manifest XML, the
implicit feature ID would be SOC_DCD6000.

SV implicit feature IDs

SV features are pre-appended with SV_. For example if CONTOSO is specified in the feature manifest XML, the
implicit feature ID would be SV_CONTOSO.

DEVICE implicit feature IDs

Device features are pre-appended with Device_. For example if BETA is specified in the feature manifest XML, the
implicit feature ID would be DEVICE_BETA.

For more information about working with the SOC, SV and DEVICE attributes, see Feature manifest file contents.

Optional features for building images



 

Set device platform information
10/26/2017 • 6 minutes to read • Edit Online

Setting SMBIOS system information values

Creating the device platform package

To prepare for building an image, OEMs must perform the following tasks to specify required information for the
targeted device platform:

Set several device platform values in the SMBIOS system information structure on the devices.

Build a device platform package.

The engineering flashing tool set provided by Microsoft compares the values in the SMBIOS system information
structure with corresponding values in the device platform package before flashing an image. This check helps to
ensure that an image can be flashed to a particular device only if it was built for the corresponding device
platform. It is recommended that the flashing tools that OEMs create for their manufacturing environments do the
same verification. For more information, see Validating the device platform information before flashing an image
to a device in this topic.

Note
This topic describes prerequisites for building an image that can be flashed to a device. OEMs must set additional
device platform information including partner names, version numbers, and device names before an image is
finalized for retail devices.

On each device platform, OEMs must ensure that the following values in the SMBIOS system information
structure are set:

PhoneManufacturer

Family

Product Name

Version

These values may be set to defaults by the SoC vendor; OEMs must replace these with values for their device
platform. OEMs may also need to set other SMBIOS values as specified by the SoC vendor. For more information
about how to set or read these values, refer to documentation provided by the SoC vendor.

For more information about the expected sizes and data types for these values, refer to section 7.2 in the System
Management BIOS (SMBIOS) Reference Specification (PDF).

Important
The PhoneManufacturer setting must contain a code specified by Microsoft that corresponds to the OEM. This
setting is used for targeting device updates, for connecting to the store-within-a-store in the Microsoft Store, and
for Watson reports. The value must be a valid OEM ID. To get the valid OEM ID that applies to you, contact your
Microsoft representative.

The device platform package contains just one file: an XML file named OEMDevicePlatform.xml that includes
information specific to the device platform for which the image is being built. Every image must include a device
platform package. OEMs must specify the device platform package by using the OEMDevicePlatformPackages

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/set-device-platform-information.md
http://go.microsoft.com/fwlink/?LinkId=267529


Creating the XML fileCreating the XML file

ELEMENT DESCRIPTION

<DevicePlatformIDs>
   <ID>Contoso.ContosoPhoneFamily.Z101._012</ID>
   <ID>Contoso.ContosoPhoneFamily.Z101._013</ID>
   <ID>Contoso.ContosoPhoneFamily.Z102</ID>
</DevicePlatformIDs>

element in a FM file that is included in the image.

To create the device platform package, first create an OEMDevicePlatform.xml file that contains the device
platform information in the required schema format. Then, create a package that includes this XML file.

The OEMDevicePlatform.xml file contains a single OEMDevicePlatform element with the following child
elements.

MinSectorCount This value specifies the minimum sectors that are
expected on a device store. The imaging tool uses this
value to ensure that the content will fit on the device. The
actual sector count may be more than this minimum. The
sector size is 512 bytes, as defined in the device layout
package provided by Microsoft.

DevicePlatformID This is one of the following strings that consists of values
from the SMBIOS system information structure
concatenated together, with each value separated by a
period (.):

PhoneManufacturer.Family.Product Name

PhoneManufacturer.Family.Product Name.Version

OEMs can choose whether or not to include the Version
value in this string.

When device platform validation is enabled in the
Microsoft flashing application, the values specified in this
string will be compared with the corresponding values in
the SMBIOS system information structure. For more
information, see Use the flashing tools provided by
Microsoft.

The device platform XML file can have only a
DevicePlatformID or DevicePlatformIDs element, but
not both.

DevicePlatformIDs OEMs can set multiple device platform IDs using the
following XML syntax, where each string has the same
format as described for the DevicePlatformID element.

Device platform validation will succeed if any of the IDs
match either the
PhoneManufacturer.Family.Product.Version or the
PhoneManufacturer.Family.Product specified.

The device platform XML file can have only a
DevicePlatformID or DevicePlatformIDs element, but
not both.



<MainOSRTCDataReservedSectors>102400</MainOSRTCD
ataReservedSectors>

<CompressedPartitions>
  <Name>MainOS</Name>
</CompressedPartitions>

Important The host computer where the image is created
must be running Windows 10. You can also create the image
on a host computer running Windows 8.1 or Windows
Server 2012 R2 with KB3066427 installed.

ELEMENT DESCRIPTION

<?xml version="1.0" encoding="utf-8"?>
<OEMDevicePlatform xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
   xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
   <MinSectorCount>20971520</MinSectorCount>
   <DevicePlatformID>Contoso.ContosoFamily.ContosoDevice.v1</DevicePlatformID>
   <AdditionalMainOSFreeSectorsRequest>204800</AdditionalMainOSFreeSectorsRequest>
</OEMDevicePlatform>

Creating the packageCreating the package

AdditionalMainOSFreeSectorsRequest Optional. This value specifies the number of sectors to
add to the pool of storage reserved by the OS for future
updates. There is no guarantee that the sectors specified
by using the AdditionalMainOSFreeSectorsRequest
element will always be available for OEM-specific updates;
the sectors are instead added to a single pool of storage
that is reserved for all updates from Microsoft and OEMs.

MainOSRTCDataReservedSectors Optional. This value specifies the number of sectors to
add to the pool of storage reserved by the OS for use by
runtime configuration data during backup and restore
operations. Up to 100 MB can be reserved.

This following example demonstrates how to reserve 50
MB.

CompressedPartitions Optional. Use this element to enable CompactOS in your
mobile image.

This element contains one or more child Name elements
that specify which partitions to compress. Currently, the
only supported partition is the Main OS partition, and
the only supported value under this element is MainOS,
as shown in the example below.

The following example demonstrates an OEMDevicePlatform.xml file.

To create a package that includes the OEMDevicePlatform.xml file, follow the guidance in Creating packages. The
following example demonstrates a device platform XML file that specifies a single device platform ID.

https://support.microsoft.com/kb/3066427


 

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="urn:Microsoft.WindowsPhone/PackageSchema.v8.00"
   Owner="OEMName" OwnerType="OEM" Component="OEMDevicePlatform" 
   ReleaseType="Production" Platform="DeviceName">
   <Components>
      <OSComponent>
         <Files>
            <File Source="OEMDevicePlatform.xml" DestinationDir="$(runtime.windows)\ImageUpdate" 
                  Name="OEMDevicePlatform.xml"/>
         </Files>
      </OSComponent>
   </Components>
</Package>

Validating the device platform information before flashing an image to
a device

Related topics

Note the following details concerning this example:

Be sure to replace the "OEMName" and "DeviceName" entries with appropriate values.

The $(runtime.windows)  string in the path for the DestinationDir attribute is a globally defined macro.
The DestinationDir path must start with a globally defined macro for a directory. For more information
about the DestinationDir attribute, see Specifying files and registry entries in a package project file. For
more information about macros, see Primary elements and attributes of a package project file.

Including the device platform package in the image

After the device platform package is created, it must be specified using the OEMDevicePlatformPackages element
in a feature manifest file. For more information, see Feature manifest file contents.

To help ensure that an image about to be flashed to a device was actually designed for that device, the flashing
tool set created by OEMs should check the Manufacturer, Family, and Product Name SMBIOS system
information structure values on the device and compare these values against the Manufacturer.Family.Product
Name portion of the DevicePlatformID string in the device platform package. The flashing tool should proceed
with the flashing process only if these values match. The flashing tool can optionally verify that the Version value
also matches, but this is not required. For more information, see Developing custom OEM flashing tools.

By default, the device-side UEFI flashing application provided by Microsoft validates that the device platform
information in SMBIOS matches the device platform information in the image. For more information, see Use the
flashing tools provided by Microsoft.

When it is necessary to migrate a phone to a new set of device platform values, Microsoft recommends the
following process:

Build a transition image that contains the new SMBIOS values but still references the old
DevicePlatformID string in the device platform package.

Flash this image to the phone. This process overwrites the SMBIOS values on the phone with the new
SMBIOS values.

In the image definition, update the DevicePlatformID string in the device platform package to match the
new SMBIOS values. This enables the image to be flashed to the phone.

Developing custom OEM flashing tools

https://msdn.microsoft.com/windows/hardware/dn789219
https://msdn.microsoft.com/library/windows/hardware/dn756796


Use the flashing tools provided by Microsoft



Sign a full flash update (FFU) image
7/13/2017 • 5 minutes to read • Edit Online

Test signing images using Windows Imaging and Configuration
Designer (ICD)

Retail signing FFU images

You must cryptographically sign an FFU image before you can deploy it to a device. This step is required to help
prevent tampering and malicious attacks. You can only flash images to a Windows 10 Mobile device after they are
properly signed.

The OEM must sign the FFU image using a certificate that chains to the UEFI PK boot key that an OEM
provisions.

During development and testing, a test certificate is used to sign the FFU image instead of a retail certificate. Use
the secure boot test tool to provision the appropriate test certificates to the device

For retail phones, retail certificates are provisioned on the device using retail secure boot tools.

After you use the secure boot test tool to provision the appropriate test certificates to a phone, you can use the
Windows Imaging and Configuration Designer (ICD) to generate test signed images. Windows ICD will
automatically sign images using the correct test certificates. This is the recommended process, as it is the easiest
method to prepare properly signed images. For more information, see Windows ICD.

Before images can be shipped on a retail device, they must be signed by Microsoft. Use the process described in
this section to create a retail signed image FFU file that can be flashed to retail devices.

C:\> PATH = %PATH%;%WPDKCONTENTROOT%\Tools\bin\I386

C:\> ImageSigner /?
Usage:
        imagsigner sign <FFU> <catalog file>
        imagesigner getcatalog <FFU> <catalog file>
        imagesigner truncate <FFU> <truncated FFU>

1. Before you can sign binaries, you must first install the test OEM certificates on the PC by following the
steps in Set up the signing environment.

2. Add the directory for the sign.cmd script that is located in %WPDKCONTENTROOT%\tools\bin\i386 to
your path using the path command.

3. Open a developer prompt with administrator rights in the directory that contains the output from the
image generation process.

4. Confirm that you have the latest version of the kit that includes updated versions of imagesigner.exe and
imagecommon.dll by typing the following command. Confirm that the truncate option is displayed.

If you do not have a recent version of the kit that includes the updated ImageSigner, download and install
the latest kit.

5. Extract the first one MB of the FFU image which contains the FFU catalog and associated metadata using

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/sign-a-full-flash-update--ffu--image.md
https://msdn.microsoft.com/library/windows/hardware/dn916113
https://msdn.microsoft.com/library/windows/hardware/dn789236


Test signing images manually

C:\> ImageSigner TRUNCATE OEM.ffu OEM.trunc

C:\> ImageSigner GETCATALOG OEM.trunc OEM.cat
Platform ID: <OEMID>.QC8960.P728
Successfully extracted catalog.
C:\>

C:\> ImageSigner SIGN OEM.ffu OEM.cat

C:\> FFUTool -flash OEM.ffu

the truncate option.

6. Extract the catalog from the truncated FFU image in Step 5.

7. Validate that the <OEMID> returned in Step 6 is identical to the OEMID assigned to you by Microsoft.

8. Create and submit a TFS ticket to the Microsoft Service Desk to sign the FFU catalog. Ensure that you
attach the truncated FFU image that you created in Step 4.

a. Open an Update type ticket.

b. For the ticket title, enter FFU Catalog Signing Request from <OEMID>. Specify your OEM ID in the
ticket tile where <OEMID> is shown.

c. Set the Category to Ingestion and Publishing.

d. Set the Issue Type to New.

9. Microsoft will process the request and resolve the ticket back to the OEM. Within the resolved ticket,
Microsoft will include a retail signed version of the FFU catalog extracted from the FFU truncated image
attached to the original ticket. For this example, assume that Microsoft returns the signed FFU catalog
named OEM.cat.

10. Sign the FFU with the retail Microsoft signed catalog file using ImageSigner.

11. Flash the retail signed retail image on to a device and verify that it behaves as expected.

12. After the retail signed image has been tested it can be used to flash to retail devices. For more information
see Flashing tools and Use the flashing tools provided by Microsoft.

Important
Secure all of the retail signed binaries using industry best practices.

If your development environment includes work outside of Windows ICD, you can manually sign images using
sign.cmd. After the test certificate has been provisioned on the device using the secure boot test tool, you can you
can use the /pk option of the sign.cmd tool to sign images, by completing the following steps.

1. Before you can sign binaries, you must first install the test OEM certificates on the PC by following the
steps in Set up the signing environment.

2. Add the directory for the sign.cmd script that is located in %WPDKCONTENTROOT%\tools\bin\i386 to
your path using the path command.

https://msdn.microsoft.com/library/windows/hardware/dn789236


Creating custom signed images

ImageSigner syntax reference

C:\> PATH = %PATH%;%WPDKCONTENTROOT%\Tools\bin\I386

C:\> ImageSigner GETCATALOG TestSigned.FFU TestSigned.Cat

C:\> Set SIGN_OEM=1
C:\> Sign.cmd /pk TestSigned.cat

C:\> ImageSigner SIGN TestSigned.FFU TestSigned.Cat

3. Open a developer prompt with administrator rights in the directory that contains the output from the
image generation process.

4. Extract the catalog of the unsigned FFU file.

5. Sign the catalog using the /pk option.

6. Sign the FFU with the signed catalog file using ImageSigner.

Note
Some OEMs may want to use custom keys to manage images. This option is more complex and is not
recommended.

When an image is created, an associated catalog file is also created. This catalog file is signed and then used by
the ImageSigner tool to sign the FFU image. Sign the .cat file with a certificate that chains to the UEFI boot keys
that are provisioned by the OEM. Different certificates are used for test and retail signing.

Sign the catalog file using an appropriate certificate by performing the following steps.

C:\> SignTool sign /f TestCertName.pfx  TestRetailSigned.cat

C:\> ImageSigner SIGN TestRetailSigned.FFU TestRetailSigned.Cat

1. Open a developer prompt with administrator rights in the directory that contains the output from the
image generation process. For more information, see Building an image using ImgGen.cmd.

2. Test sign a catalog file named TestRetailSigned.cat  using a certificate named TestCertName.pfx  by typing
the following command.

Important
You should only use the signtool.exe with the local file /f option internally in a development test
environment. When a hardware security modules (HSM) is used, the /csp option is used to specify the
cryptographic service provider (CSP) that contains the private key container. You should follow industry
best practices when signing image update packages for final distribution.

3. Create a signed .ffu file from the unsigned .ffu file and the matching signed .cat file using ImageSigner.exe
tool.



ImageSigner {SIGN|GETCATALOG|TRUNCATE} FFUFile CatalogFile|TruncatedFFU

Related topics

SIGN  – The SIGN  action is used for signing an FFU file.

GETCATALOG – The GETCATALOG action extracts a catalog from an FFU file and writes it to a catalog
file. This option can be used to determine if an FFU was prepared properly, by examining the extracted
catalog file by using file properties or tools such as SignTool.

TRUNCATE  – The truncate action is used to create a truncated FFU.

FFUFile – The path to the FFU image file.

CatalogFile – The path to the catalog file.

TruncatedFFU – The path to the truncated FFU file.

Building a phone image using ImgGen.cmd



 

 

Use the flashing tools provided by Microsoft
7/13/2017 • 7 minutes to read • Edit Online

Initial device-side setup

Host-side setup

Microsoft provides a tool set for flashing images to devices. This tool set includes ffutool.exe, a command-line
tool that runs on the development computer, and ffuloader.efi, a device-side UEFI flashing application. This topic
describes how to set up your device and development computer to use this tool set, and provides usage
instructions.

Important

In Windows 10, version 1607, ffutool.exe is installed by the Assessment and Deployment Kit (ADK). In
earlier versions of Windows 10, ffutool.exe is installed by the Windows Driver Kit (WDK), Enterprise WDK
(EWDK), or Windows Hardware Lab Kit (HLK).

The device-side UEFI flashing application from Microsoft is automatically included in all images. This
application must be included in all retail devices.

For flashing images to devices during manufacturing, OEMs can build their own flashing tools by using
the information provided in Developing custom OEM flashing tools or by using ffutool.exe. If you use
ffutool to flash your image, it might be slower than other flashing tools.

To prepare a device for flashing with a Windows 10 Mobile image, perform the following steps:

1. Use tools provided by the SoC vendor to get a UEFI onto any device that needs to be flashed. Devices
must be bootable at least to the UEFI for flashing to work.

Typically, this is performed with the eMMC software downloader. This UEFI should be the same UEFI that
is included in device images.

2. After a bootable UEFI is in place, the flashing application (ffuloader.efi) and supporting simple I/O driver
(efisimpleio.dll) must be added to the device and run on boot. To do this, run the apply-ffubinaries.bat
script while the device is connected to the development computer. All of these files are provided the kit in
%ProgramFiles(x86)%\Windows Kits\10\Tools\bin\i386.

The apply-ffubinaries.bat script copies ffuloader.efi and efisimpleio.dll to the root of the ESP directory on
the device and sets up the boot configuration database to immediately enter flashing mode on boot. This
script requires bcdedit.exe in the path.

Note
These steps only need to be performed once on each device. After these steps are completed, you will be able to
flash different images to the device

Flashing on the host side is performed by using a connection established with WinUSB, the Microsoft generic
USB device driver. The necessary drivers are included by default in Windows 8 and later.

In Windows 7, the necessary drivers can be installed from Windows Update. To configure a Windows 7 computer
to install the necessary drivers:

1. Click Start.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/use-the-flashing-tools-provided-by-microsoft.md


 

 

Flashing procedure

Validations performed by the Microsoft flashing tool

2. Type Device Installation Settings.

3. Select Yes, do this automatically (recommended).

4. Click Save Changes.

After the device-side and host-side setup is complete, perform the following steps to flash a device:

ffutool -flash <FFU file>

PARAMETER DESCRIPTION

1. Boot the device into the FFU download mode while it is connected to the host computer. There are several
ways to force the device into the FFU download mode during boot:

Include the Microsoft.BCD.Lab.spkg package in your image by specifying the LABIMAGE  optional
feature when generating the test image. When this package is included in the test image, the device
automatically enters the FFU download mode when it is booted. For more information about
generating an image, see Building a phone image using ImgGen.cmd.

To force the device into the FFU download mode manually, press and release the power button to
boot the device, and then immediately press and hold the volume up button. This option is available
only after an initial FFU has been flashed to the device.

2. Run ffutool.exe from the command line to flash an image. This program is in
%ProgramFiles(x86)%\Windows Kits\10\Tools\bin\i386. The following is a usage example.

The following table describes the command-line parameters for ffutool.exe.

-flash FFU file Specifies the path to the FFU file to be flashed to the
device.

-skip For devices that include the LABIMAGE optional
feature to automatically boot into the FFU download
mode, this parameter boots into the main OS
(skipping the FFU download mode).

You can flash more than one device at a time by using ffutool.exe. To do this, make sure that all devices are
connecting before running ffutool.exe. Also, we recommend that you use a USB card that contains a dedicated
root hub per port so an issue flashing one device does not affect all devices.

Note
Flashing speed will decrease as you add devices.

Before flashing an image, the device-side UEFI flashing application provided by Microsoft performs the following
validations on the image:

The application validates the image signatures against the Platform Key (PK) certificate and the Microsoft
Windows Phone Production PCA 2012 certificate (for retail images) or Microsoft Test Root Authority
certificate (for non-retail images).

The application validates the hashes of each chunk of data in the image against the table of hashes signed



Device platform validation checksDevice platform validation checks

FFU tool error codes

Error: Failed to flash with device error { 0x18, 0x0, 0x0, 0x2, 0xa, 0x5 }

ERROR CODE DESCRIPTION

by the catalog file.

The application validates that the image supports the current device platform. To perform this validation,
the application compares several values in the SMBIOS system information structure with corresponding
values in the device platform package. These checks help to ensure that an image can be flashed to a
particular device only if it was built for the corresponding device platform. More details about these checks
are provided below.

To validate that the image supports the current device platform before flashing, the application performs the
following tasks:

1. It retrieves the DevicePlatformID string from the device platform package in the image that is being
flashed. For more information about this string, see Set device platform information.

2. If the string has the format Manufacturer.Family.Product Name.Version and all four values in the string
match the corresponding Manufacturer, Family, Product Name, and Version SMBIOS values on the
device, the platform validation succeeds and the flashing operation continues.

3. If the string has the format Manufacturer.Family.Product Name and all three values in the string match
the corresponding Manufacturer, Family, and Product Name SMBIOS values on the device, the platform
validation succeeds and the flashing operation continues.

4. Otherwise, the platform validation fails and the image is not flashed to the device.

In a non-retail image, OEMs can disable the device platform validation for flashing by adding the
DISABLE_FFU_PL AT_ID_CHECK feature to the OEMInput file that is used to generate the image.

Important
The device platform validation for flashing must not be disabled in retail images.

When using the FFU tool to flash an image to your device, you may encounter an error as shown below.

The first hexadecimal number is an event code that indicates the type of flashing failure. The following table
provides a description of the FFU tool flashing errors.

Common errors

0xC While applying the image to disk, a read failed to return
all of the blocks specified in the current data descriptor.

This error is typically cause by a corrupted image. The
image will normally need to be rebuilt. For more
information, see Building a phone image using
ImgGen.cmd.



ERROR CODE DESCRIPTION

ERROR CODE DESCRIPTION

0x18 While initializing hash checks, a catalog signature check
failed.

When this error occurs, it is typically related to the
signing of the image. For more information, see Sign a
full flash update (FFU) image.

0x1C One or more write descriptors refer to invalid disk
locations.

This error typically indicates that the image was built for
a phone with more storage than the current phone
actually has. Either locate the proper image or update the
image that you have by reducing the MinSectorCount
specified in OEMDevicePlatform.xml. For more
information, see Set device platform information.

Additional errors

0x8 An invalid binary manifest header was read while
preparing to flash the device.

0x9 The application failed to allocate enough memory to
copy the disk write descriptor table.

0xB Before writing data, the flashing application failed to read
all the disk write descriptors.

0xD While applying the image to disk, a block write operation
failed.

0xE A packet read by the flashing application contained an
invalid checksum.

0xF While preparing to flash the image, the flashing
application was unable to read the full security header.

0x10 While preparing to flash the image, the flashing
application read an invalid security header.

0x11 While preparing to flash the image, the flashing
application failed to read the expected amount of
padding after the security header.

0x12 While preparing to flash the image, the flashing
application read an invalid image header.



ERROR CODE DESCRIPTION

Related topics

0x13 While preparing to flash the image, the flashing
application failed to read the expected amount of
padding after the image header.

0x14 While preparing to apply the image to disk, the block
flasher failed to buffer enough bytes in the stream to
flash safely.

0x15 While applying the image to disk, the block flasher
reached the end of the data stream unexpectedly. This
indicates an image was built incorrectly.

0x16 The platform ID specified in the image does not match
the ID of the device to be flashed.

0x17 While reading image data, a hash check failed.

0x1A Failed to acquire a handle to the UEFI firmware de-
synchronization event.

0x1B Failed to query the BCD for the platform ID check
settings.

0x1D The image does not have Reset Protection enabled or an
unsupported Reset Protection image was used.

0x20 The image cannot be flashed on removable media.

0x21 Cannot use an optimized flashing method.

Building and flashing images



IUTool.exe: Update packages on a device
7/13/2017 • 2 minutes to read • Edit Online

Using IUTool.exe to update packages on a device

IUTool -p <path to packages>

PARAMETER DESCRIPTION

Package versioningPackage versioning

Using GetDULogs.exe to get package update logs from a deviceUsing GetDULogs.exe to get package update logs from a device

GetDULogs -o <output file path>

The Windows Driver Kit (WDK) includes a tool for updating packages on a device or to add a new package to a
device. (IUTool.exe). This tool is available under %WPDKCONTENTROOT%\Tools\bin\i386.

IUTool.exe must be used in a command-line window that is opened as an administrator. The command-line syntax
for IUTool.exe is the following.

The following table describes the command-line parameters for IUTool.exe.

-p path to packages Specifies one or more packages to update on the device
or to add to the device. The path to packages parameter
can have the following formats:

To update or add a single package, specify the full path
to the package on the development computer.

IUTool -p 
C:\ContosoPackages\Contoso.Device.SampleDr
iver.spkg;C:\ContosoPackages\Contoso.Devic
e.SampleApplication.spkg

IUTool -p C:\ContosoPackages

To update or add multiple packages, specify a
semicolon-delimited list of packages on the
development computer. For example:

To update or add an entire directory of packages,
specify the path to the directory. For example:

If the specified package already exists on the device, the new version of the package must have a higher version
than the package currently on the device or the update will fail. To specify the version for a package, use the
/version command-line parameter for PkgGen.exe when generating the package. For more information, see
Command-line arguments for package generator.

Use GetDULogs.exe to get package update logs from a device.

For more info, see GetDULogs: Get package update logs.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/iutool-exe--update-packages-on-a-phone.md
https://msdn.microsoft.com/library/windows/hardware/dn756636


IUTool error codes
7/12/2017 • 8 minutes to read • Edit Online

ERROR CODE ERROR NAME ADDITIONAL NOTES

The following are error codes from IUTool.exe. For more info, see IUTool.exe: Update packages on a device.

0x00000000 SUCCESS Success (no error)

0x80004001 E_NOTIMPL

0x80004002 E_NOINTERFACE

0x80004003 E_POINTER

0x80004004 E_ABORT

0x80004005 E_FAIL

0x8000FFFF E_UNEXPECTED

0x80040154 E_CLASSNOTREG Class not registered

0x80070002 ERROR_FILE_NOT_FOUND

0x80070003 E_PATH_NOT_FOUND

0x80070005 E_ACCESSDENIED

0x80070006 E_HANDLE

0x80070008 ERROR_NOT_ENOUGH_MEMORY

0x80070009 ERROR_INVALID_BLOCK

0x8007000B ERROR_BAD_FORMAT

0x8007000D ERROR_INVALID_DATA

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/iutool-error-codes.md


ERROR CODE ERROR NAME ADDITIONAL NOTES

0x8007000E ERROR_OUTOFMEMORY

0x80070013 ERROR_WRITE_PROTECT

0x80070015 ERROR_NOT_READY

0x80070017 ERROR_CRC

0x80070019 ERROR_SEEK

0x8007001F ERROR_GEN_FAILURE

0x80070020 ERROR_SHARING_VIOLATION

0x80070021 ERROR_LOCK_VIOLATION

0x80070026 ERROR_HANDLE_EOF

0x80070032 ERROR_NOT_SUPPORTED

0x80070057 E_INVALIDARG An argument does not meet the
contract of the method

0x80070070 ERROR_DISK_FULL Free more space

0x80070076 ERROR_INVALID_VERIFY_SWITCH

0x8007007A ERROR_INSUFFICIENT_BUFFER

0x8007007B ERROR_INVALID_NAME

0x8007007E ERROR_MOD_NOT_FOUND

0x8007007F ERROR_PROC_NOT_FOUND

0x80070098 ERROR_TOO_MANY_MUXWAITERS

0x800700B7 ERROR_ALREADY_EXISTS



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x800700C1 ERROR_BAD_EXE_FORMAT Normally an incorrect USS
detection.dll

0x800700CE ERROR_FILENAME_EXCED_RANGE

0x80070160 ERROR_FAIL_RESTART

0x800701e3 ERROR_DEVICE_HARDWARE_ERROR Free up eMMC space for update.
There is something wrong with SD
Card, or Timed out waiting for SD
Card.

0x80070216 ERROR_ARITHMETIC_OVERFLOW

0x80070241 ERROR_INVALID_IMAGE_HASH

0x800703E5 ERROR_IO_PENDING

0x800703FA ERROR_KEY_DELETED

0x80070422 ERROR_SERVICE_DISABLED

0x80070423 ERROR_CIRCULAR_DEPENDENCY

0x80070424 ERROR_SERVICE_DOES_NOT_EXIST

0x80070426 ERROR_SERVICE_NOT_ACTIVE

0x80070428 ERROR_EXCEPTION_IN_SERVICE

0x8007042B ERROR_PROCESS_ABORTED

0x8007042E ERROR_SERVICE_START_HANG

0x80070435 ERROR_SERVICE_NEVER_STARTED No attempts to start the service
have been made since the last boot

0x80070459 ERROR_NO_UNICODE_TRANSLATIO
N



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80070486 ERROR_NO_MORE_USER_HANDLES

0x80070490 ERROR_NOT_FOUND This can happen if there is leftover
registration information on the PC.
To resolve this issue, remove all
registered mobile devices from the
Devices and Printers control panel.

0x800704C7 ERROR_CANCELLED

0x800704EC ERROR_ACCESS_DISABLED_BY_POLI
CY

0x80070522 ERROR_PRIVILEGE_NOT_HELD

0x80070525 ERROR_NO_SUCH_USER

0x8007053C ERROR_BAD_INHERITANCE_ACL

0x8007054E ERROR_INTERNAL_DB_CORRUPTIO
N

0x80070570 ERROR_FILE_CORRUPT

0x80070571 ERROR_DISK_CORRUPT

0x800705AA ERROR_NO_SYSTEM_RESOURCES

0x800705B4 E_TIMEOUT This operation returned because the
timeout period expired.

0x8007065D ERROR_DATATYPE_MISMATCH

0x800706B5 RPC_S_UNKNOWN_IF

0x800706BA RPC_S_SERVER_UNAVAILABLE

0x800706BE RPC_S_CALL_FAILED

0x800706BF RPC_S_CALL_FAILED_DNE



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x800706D9 EPT_S_NOT_REGISTERED

0x80072EE2 ERROR_WINHTTP_TIMEOUT

0x80072EE4 ERROR_WINHTTP_INTERNAL_ERRO
R

0x80072EE5 ERROR_WINHTTP_INVALID_URL

0x80072EE6 ERROR_WINHTTP_UNRECOGNIZED
_SCHEME

0x80072EE7 ERROR_WINHTTP_NAME_NOT_RES
OLVED

0x80072EE9 ERROR_WINHTTP_INVALID_OPTIO
N

0x80072EEC ERROR_WINHTTP_SHUTDOWN

0x80072EEF ERROR_WINHTTP_LOGIN_FAILURE

0x80072EF1 ERROR_WINHTTP_OPERATION_CAN
CELLED

0x80072EF3 ERROR_WINHTTP_INCORRECT_HAN
DLE_STATE

0x80072EFD ERROR_WINHTTP_CANNOT_CONNE
CT

0x80072EFE ERROR_WINHTTP_CONNECTION_A
BORTED

0x80072EFF ERROR_WINHTTP_CONNECTION_R
ESET

0x80072F05 ERROR_WINHTTP_SEC_CERT_DATE_I
NVALID

0x80072F06 ERROR_WINHTTP_SEC_CERT_CN_IN
VALID



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80072F0C ERROR_WINHTTP_CLIENT_AUTH_CE
RT_NEEDED

0x80072F0D ERROR_WINHTTP_INVALID_CA

0x80072F30 ERROR_WINHTTP_NO_CM_CONNE
CTION

0x80072F76 ERROR_WINHTTP_HEADER_NOT_FO
UND

0x80072F78 ERROR_WINHTTP_INVALID_SERVER
_RESPONSE

0x80072F7A ERROR_WINHTTP_INVALID_QUERY_
REQUEST

0x80072F7C ERROR_WINHTTP_REDIRECT_FAILE
D

0x80072F7D ERROR_WINHTTP_SECURE_CHANN
EL_ERROR

0x80072F89 ERROR_WINHTTP_SECURE_INVALID
_CERT

0x80072F8F ERROR_WINHTTP_SECURE_FAILURE

0x80072F98 ERROR_WINHTTP_RESPONSE_DRAI
N_OVERFLOW

0x80073B01 ERROR_MUI_FILE_NOT_LOADED

0x80090305 ERROR_BAD_ACCESSOR_FLAGS

0x80092002 CRYPT_E_BAD_ENCODE

0x80092003 CRYPT_E_FILE_ERROR

0x80096004 TRUST_E_CERT_SIGNATURE



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80096005 TRUST_E_TIME_STAMP

0x80096010 TRUST_E_BAD_DIGEST

0x800B0003 TRUST_E_SUBJECT_FORM_UNKNO
WN

Most certificate issues can be fixed
in server publishing, unless the user
has changed anything on the device
side.

0x800B0100 TRUST_E_NOSIGNATURE

0x800B0101 CERT_E_EXPIRED

0x800B010A CERT_E_CHAINING

0x800B010B TRUST_E_FAIL

0x801881C0 DUA_ERR_BASE This is a DUA error base and not a
real error code.

0x801881C3 DUA_E_NEWER_UPDATE_EXISTS An update with a higher revision
number exists.

0x801881C4 DUA_E_UPDATE_ALREADY_IN_EVAL
UATION

An update is being updated while
asking for evaluation.

0x801881C5 DUA_E_DEPENDENT_UPDATE_MISSI
NG

A dependent update is missing.

0x801881C6 DUA_E_DUPLICATE_ATTRIBUTE An attribute is specified more than
once.

0x801881C7 DUA_E_MISSING_ATTRIBUTE A required attribute is not found.

0x801881C9 DUA_E_INVALIDATTRIBUTEVALUE Attribute value is invalid.

0x801881CA DUA_E_XMLSTRINGTOOLONG String/text is too long

0x801881CB DUA_E_ATTRIBUTE_MISMATCH Attribute mismatch



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x801881CD DUA_E_OUT_OF_DISK_SPACE Not enough disk space for the
operation.

0x801881CF DUA_E_CONNECTION_MANAGER Call to Connection Manager API
failed.

0x801881D0 DUA_E_INVALID_HASH Given hash is not match to the
hash generated from file.

0x801881D1 DUA_E_INVALID_EULA An invalid or missing EULA was
detected.

0x801881D2 DUA_E_INVALID_EXTENDED_UPDAT
E_INFO

Invalid extended update info was
detected.

0x801881D3 DUA_E_MAX_SYNCUPDATES_CALLS SyncUpdate call reaches the
maximum scan limit.

0x801881D4 DUA_E_AUTO_SCAN_OFF Scan cannot run because auto scan
is turned off.

0x801881D5 DUA_E_XML_CONTENT_TOO_LARG
E

XML content in string is larger than
maximum allowed.

0x801881D6 DUA_E_SDCARD_REMOVED An SD card was removed during
update after the download was
started to the SD card.

0x801881D7 DUA_E_SDCARD_DISABLED The SD card is disabled by policy.

0x801881D8 DUA_E_SDCARD_HWFAILURE The SD card hardware failed.

0x801881E1 DUA_E_SOAPFAULT_UNKNOWN Unknown SOAP fault

0x801881E2 DUA_E_SOAPFAULT_COOKIEEXPIRE
D

CookieExpired SOAP fault

0x801881E3 DUA_E_SOAPFAULT_INVALIDCOOK
IE

InvalidCookie SOAP fault

0x801881E4 DUA_E_SOAPFAULT_CONFIGCHAN
GED

ConfigChanged SOAP fault



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x801881E5 DUA_E_SOAPFAULT_SERVERCHANG
ED

ServerChanged SOAP fault

0x801881E6 DUA_E_SOAPFAULT_INVALIDAUTH
ORIZATIONCOOKIE

InvalidAuthorizationCookie SOAP
fault

0x801881E7 DUA_E_SOAPFAULT_REGISTRATION
REQUIRED

RegistrationRequired SOAP fault

0x801881E8 DUA_E_SOAPFAULT_INTERNALSERV
ERERROR

InternalServerError SOAP fault

0x801881E9 DUA_E_SOAPFAULT_INVALIDpMETE
RS

Invalidpmeters SOAP fault

0x801881EA DUA_E_SOAPFAULT_REGISTRATION
NOTREQUIRED

RegistrationNotRequired SOAP fault

0x801881EB DUA_E_SOAPFAULT_SERVERBUSY ServerBusy SOAP fault

0x801881EC DUA_E_SOAPFAULT_FILELOCATION
CHANGED

FileLocationChanged SOAP fault

0x801881EE DUA_E_SOAPFAULT_MALFORMED_
MESSAGE

Malformed SOAP message

0x801881EF DUA_E_CABDOWNLOAD_HTTPSTAT
USFAILED

Failed to download content from
the server.

0x80188200 DUA_ERR_REPORTINGERROR_BASE Definition. The error code itself
actually not used.

0x80188201 DUA_E_REPORTINGFAILED ReportEventBatch web service call
returned FALSE

0x80188203 DUA_E_INVALIDSAMPLINGRATE Sampling rate in redirect cab is zero.

0x80188210 DUA_ERR_CLIENTERROR_BASE Definition; the error code itself
actually not used.

0x80188215 DUA_E_CLIENT_INVALIDBUTTONID The invalid button ID is used.



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80188216 DUA_E_CLIENT_REGKEY_INVALID Registry key value is not valid.

0x80188217 DUA_E_CLIENT_PLUGINID_NOT_FO
UND

The plugin ID was not found.

0x80188220 DUA_ERR_INSTALLATION_BASE Definition; the error code itself
actually not used.

0x80188226 DUA_E_BATTERY_LOW Cannot stage update because
battery is low.

0x80188227 DUA_E_UPDATE_NOT_STAGED Update not staged.

0x80188228 DUA_E_USS_UPDATE_FOUND A USS update was detected

0x8018822A DUA_E_INSTALL_INVALIDUPDATEST
ATE

Update was not committed

0x8018822B DUA_E_INSTALL_UNEXPECTED_CO
MMIT_RETURN

Image Update Commit API
unexpectedly returned S_OK.

0x8018822C DUA_E_UPDATE_NOT_COMMITTED Device rebooted before IU Commit
was called.

0x8018822D DUA_E_USS_UPDATE_FOUND_REB
OOT_REQUIRED

A USS update was installed and a
reboot is required for it to take
effect.

0x80188230 DUA_ERR_DATA_MIGRATION_BASE Definition; the error code itself
actually not used.

0x80188231 DUA_E_COLD_BOOT_REQUIRED A data migrator failed and
requested a cold boot.

0x80188240 DUA_ERR_UPDATE_STORE_BASE Definition; the error code itself
actually not used.

0x80188241 DUA_E_UPDATE_NOT_FOUND Update not found.

0x80188242 DUA_E_UPDATE_PROPERTY_NOT_F
OUND

Update property not found.



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80188243 DUA_E_UPDATE_ALREADY_EXISTS Update already exists.

0x80188244 DUA_E_EULA_ALREADY_EXISTS EULA already exists

0x80188245 DUA_E_EULA_NOT_FOUND EULA not found.

0x80188246 DUA_E_BUNDLE_NOT_FOUND Bundle not found.

0x80188247 DUA_E_EXTENDED_PROPERTY_NOT
_FOUND

Extended property not found.

0x80188248 DUA_E_GETEULA GetEULAs call failed.

0x80188250 DUA_ERR_SESSION_BASE Definition; the error code itself
actually not used.

0x80188251 DUA_E_INVALID_SESSIONID The specified DuaSessionID is not
valid.

0x80188252 DUA_E_DIFF_SESSION_IN_PROGRES
S

There is a DUA session already in
progress with a different
DuaSessionID.

0x80188253 DUA_E_NO_SESSION_IN_PROGRESS There is no DUA session in
progress.

0x80188254 DUA_E_CANNOT_CLOSE_SESSION We cannot close this session
because a client has successfully
joined the current session.

0x80188255 DUA_E_ALL_RETRY_CONSUMED All retries are consumed.

0x80188256 DUA_E_SERVICE_IS_SHUTTING_DO
WN

Service is shutting down and
requested operation can't be
performed.

0x80188257 DUA_E_SESSION_TIMEDOUT The active session has timed out.

0x80188260 DUA_E_DOWNLOAD_BASE Definition; the error code itself
actually not used.



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80188261 DUA_E_DOWNLOAD_NOT_CREATE
D

The download request has not been
created.

0x80188262 DUA_E_DOWNLOAD_NOT_IDLE Update Download Manager is not
ready yet.

0x80188263 DUA_E_DOWNLOAD_USER_CANCE
LLED

Update Download is cancelled by
user.

0x80188264 DUA_E_DOWNLOAD_NEEDUSERAG
REE

Need user to agree to proceed with
download.

0x80188265 DUA_E_DOWNLOAD_NEEDOVERCE
LLULAR

Need user agreement to download
updates via cellular.

0x80188266 DUA_E_DOWNLOAD_USERPOSTPO
NE

User postponed download

0x80188267 DUA_E_DOWNLOAD_ENGINEEXIT Download handler is stopped to
wait for BTS status due to engine
exit.

0x80188269 DUA_E_DOWNLOAD_OUT_OF_DISK
_SPACE_NEED_SDCARD

Not enough internal space for
download and the SD slot is empty.

0x8018826A DUA_E_DOWNLOAD_OUT_OF_DISK
_SPACE_BOTH_STORAGE

Not enough space for download on
both internal storage and SD slot.

0x80188270 DUA_E_CONNECTION_BASE Definition; the error code itself
actually not used.

0x80188271 DUA_E_NO_CONNECTIONS Connection Manager could not find
a candidate connection.

0x80188272 DUA_E_CONNECTION_NOT_RELEAS
ED

Connection Manager failed because
an acquired connection was not
released.

0x80188273 DUA_E_CONNECTION_ACQUIRE_FA
ILED

Connection Manager failed to
acquire a connection.

0x80188288 DUA_E_DUAAPI_BASE Definition; the error code itself
actually not used.



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80188289 DUA_E_DUAAPI_SHELLNOTREADY WNF_SHL_START_READY is not
ready yet.

0x801882C0 CABAPI_ERR_BASE; BTS_ERR_BASE Base for CAPAPI; BTS errors.

0x801882C1 E_CABAPI_NOT_CABINET BTS_E_PER_APP_REQUEST_LIMIT_RE
ACHED

0x801882C2 E_CABAPI_UNKNOWN_FILE BTS_E_UNABLE_TO_ENQUEUE_REQ
UEST

0x801882CB BTS_E_HTTP_PROVIDER_ERROR BTS_E_HTTP_PROVIDER_ERROR

0x801882CC BTS_E_HTTP_PROVIDER_ERROR_RA
NGE_RELATED .

BTS_E_HTTP_PROVIDER_ERROR_RA
NGE_RELATED .

0x801882D1 E_CABAPI_FCI_OPEN_SRC BTS_E_HTTP_PROVIDER_ERROR_NET
WORK

0x801882D2 E_CABAPI_FCI_READ_SRC BTS_E_HTTP_PROVIDER_ERROR_SLO
W_TRANSFER

0x801882D3 E_CABAPI_FCI_ALLOC_FAIL BTS_E_HTTP_PROVIDER_ERROR_INV
ALID_pMETER.

0x801882D4 E_CABAPI_FCI_TEMP_FILE BTS_W_TRANSFER_WAITING_BATTE
RY_SAVER_MODE

0x801882D5 E_CABAPI_FCI_BAD_COMPR_TYPE BTS_W_SHUTTING_DOWN

0x801882D6 E_CABAPI_FCI_CAB_FILE BTS_E_API_FAILED_DUE_TO_SHUTD
OWN

0x801882D7 E_CABAPI_FCI_USER_ABORT FCI: aborted

0x801882D8 E_CABAPI_FCI_MCI_FAIL FCI: Failure compressing data

0x801882D9 E_CABAPI_FCI_CAB_FORMAT_LIMIT FCI: Data-size or file-count
exceeded CAB format limits.

0x801882DA E_CABAPI_FCI_INVALID_FILE_PATH FCI: File path is empty or invalid



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x801882DB E_CABAPI_FCI_DUPLICATE_FILE FCI: Either a file is being added
twice to the CAB; or two source files
have the same target path

0x801882DF E_CABAPI_FCI_UNKNOWN FCI: An unknown error.

0x801882E0 CABAPI_ERR_FDI_BASE Definition; the error code itself
actually not used.

0x801882E1 E_CABAPI_FDI_CABINET_NOT_FOU
ND

FDI: the cabinet file was not found.

0x801882E2 E_CABAPI_FDI_NOT_A_CABINET FDI: The cabinet file does not have
the correct format.

0x801882E3 E_CABAPI_FDI_UNKNOWN_CABINE
T_VERSION

FDI: The cabinet file has an
unknown version number.

0x801882E4 E_CABAPI_FDI_CORRUPT_CABINET FDI: The cabinet file is corrupt.

0x801882E5 E_CABAPI_FDI_ALLOC_FAIL FDI: Insufficient memory.

0x801882E6 E_CABAPI_FDI_BAD_COMPR_TYPE FDI: Unknown compression type
used in the cabinet folder.

0x801882E7 E_CABAPI_FDI_MDI_FAIL FDI: Failure decompressing data
from the cabinet file.

0x801882E8 E_CABAPI_FDI_TARGET_FILE Failure writing to the target file. This
could be that the device is out of
space.

0x801882E9 E_CABAPI_FDI_RESERVE_MISMATC
H

FDI: The cabinets within a set do
not have the same RESERVE sizes.

0x801882EA E_CABAPI_FDI_WRONG_CABINET FDI: The cabinet returned by
fdintNEXT_CABINET is incorrect.

0x801882EB E_CABAPI_FDI_USER_ABORT FDI: FDI aborted.

0x801882EF E_CABAPI_FDI_UNKNOWN FDI: An unknown error.



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x80188300 IMGUPD_ERROR_BASE Definition; the error code itself
actually not used.

0x80188301 E_BASE_PACKAGE_NOT_INSTALLED The base package DSM file was not
found in the DSM files store.

0x80188302 E_PACKAGE_ALREADY_INSTALLED Package cannot be installed because
it is already present on the image

0x80188303 E_NO_UPDATE_PATH_TO_TARGET An update path to highest target
version could not be found.

0x80188304 E_MULTIPLE_UPDATE_PATHS_FOUN
D

Multiple update paths to highest
target version exist.

0x80188305 E_DUPLICATE_UPDATE_PACKAGE Duplicate packages found in update
set.

0x80188306 E_FILE_COLLISION More than one package targeted
for the same partition contained
the same file

0x80188307 E_INVALID_PACKAGE Package DSM; or contents are
invalid

0x80188308 E_INSUFFICIENT_SPACE_FOR_UPDA
TE

Not enough space available in one
or more partitions to complete
update

0x80188309 E_REGISTRY_COLLISION Two or more packages have registry
settings that conflict

0x8018830A E_INVALID_REGISTRY_FILE A registry file included in the
package is invalid

0x8018830B E_DEPCRECATED1 Deprecated

0x8018830C E_TARGET_NOT_APPLICABLE This package has the target field set
but this device is not part of any
groups specified in the target.

0x8018830D E_PACKAGE_HIGHER_VERSION_INS
TALLED

This package cannot be installed
because a newer version is already
installed on the device.



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x8018830E E_REMOVAL_PACKAGE_CANNOT_T
ARGET_BINARY_PARTITION

This package is a removal package
targeted to a binary parition Binary
partition packages cannot be
deleted.

0x8018830F E_DIFF_SOURCEVERSION_DOES_N
OT_MATCH

This package is a diff that targets a
source version that is not the one
on the device.

0x80188310 E_STAGED_FILE_NOT_FOUND A file that was expected to be
staged is missing from the staging
area.

0x80188311 E_PACKAGE_TARGETS_WRONG_CP
U

The device's CPU type does not
match the package's targeted CPU.

0x80190190 HTTP_E_STATUS_BAD_REQUEST BG_E_HTTP_ERROR_400

0x80190191 HTTP_E_STATUS_DENIED BG_E_HTTP_ERROR_401

0x80190192 HTTP_E_STATUS_PAYMENT_REQ BG_E_HTTP_ERROR_402

0x80190193 HTTP_E_STATUS_FORBIDDEN BG_E_HTTP_ERROR_403

0x80190194 HTTP_E_STATUS_NOT_FOUND BG_E_HTTP_ERROR_404

0x80190195 HTTP_E_STATUS_BAD_METHOD BG_E_HTTP_ERROR_405

0x80190196 HTTP_E_STATUS_NONE_ACCEPTABL
E

BG_E_HTTP_ERROR_406

0x80190197 HTTP_E_STATUS_PROXY_AUTH_REQ BG_E_HTTP_ERROR_407

0x80190198 HTTP_E_STATUS_REQUEST_TIMEOU
T

BG_E_HTTP_ERROR_408

0x80190199 HTTP_E_STATUS_CONFLICT BG_E_HTTP_ERROR_409

0x801901F4 HTTP_E_STATUS_SERVER_ERROR BG_E_HTTP_ERROR_500

0x801901F5 HTTP_E_STATUS_NOT_SUPPORTED BG_E_HTTP_ERROR_501



ERROR CODE ERROR NAME ADDITIONAL NOTES

0x801901F6 HTTP_E_STATUS_BAD_GATEWAY BG_E_HTTP_ERROR_502

0x801901F7 HTTP_E_STATUS_SERVICE_UNAVAIL BG_E_HTTP_ERROR_503

0x801901F8 HTTP_E_STATUS_GATEWAY_TIMEOU
T

BG_E_HTTP_ERROR_504

0x801901F9 HTTP_E_STATUS_VERSION_NOT_SU
P

BG_E_HTTP_ERROR_505

0xC00CE01D XML_E_INVALID_DECIMAL

0xC00CE01E XML_E_INVALID_HEXIDECIMAL

0xC00CE01F XML_E_INVALID_UNICODE

0xC00CE06E XML_E_INVALIDENCODING

0xC00CEE00 MX_E_MX DUA_E_MALFORMEDXML

0xC00CEE01 MX_E_INPUTEND

0xC00CEE02 MX_E_ENCODING

0xC00CEE03 MX_E_ENCODINGSWITCH

0xC00CEE04 MX_E_ENCODINGSIGNATURE

0xC00CEE20 WC_E_WC

0xC00CEE21 WC_E_WHITESPACE

0xC00CEE22 WC_E_SEMICOLON

0xC00CEE23 WC_E_GREATERTHAN

0xC00CEE24 WC_E_QUOTE



ERROR CODE ERROR NAME ADDITIONAL NOTES

0xC00CEE25 WC_E_EQUAL

0xC00CEE26 WC_E_LESSTHAN

0xC00CEE27 WC_E_HEXDIGIT

0xC00CEE28 WC_E_DIGIT

0xC00CEE29 WC_E_LEFTBRACKET

0xC00CEE2A WC_E_LEFTPAREN

0xC00CEE2B WC_E_XMLCHARACTER

0xC00CEE2C WC_E_NAMECHARACTER

0xC00CEE2D WC_E_SYNTAX

0xC00CEE2E WC_E_CDSECT

0xC00CEE2F WC_E_COMMENT

0xC00CEE30 WC_E_CONDSECT

0xC00CEE31 WC_E_DECLATTLIST

0xC00CEE32 WC_E_DECLDOCTYPE

0xC00CEE33 WC_E_DECLELEMENT

0xC00CEE34 WC_E_DECLELEMENT

0xC00CEE35 WC_E_DECLNOTATION

0xC00CEE36 WC_E_NDATA

0xC00CEE37 WC_E_PUBLIC



ERROR CODE ERROR NAME ADDITIONAL NOTES

0xC00CEE38 WC_E_SYSTEM

0xC00CEE39 WC_E_NAME

0xC00CEE3A WC_E_ROOTELEMENT

0xC00CEE3B WC_E_ELEMENTMATCH

0xC00CEE3C WC_E_UNIQUEATTRIBUTE

0xC00CEE3D WC_E_TEXTXMLDECL

0xC00CEE3E WC_E_LEADINGXML

0xC00CEE3F WC_E_TEXTDECL

0xC00CEE40 WC_E_XMLDECL

0xC00CEE41 WC_E_ENCNAME

0xC00CEE42 WC_E_PUBLICID

0xC00CEE43 WC_E_PESINTERNALSUBSET

0xC00CEE44 WC_E_PESBETWEENDECLS

0xC00CEE45 WC_E_NORECURSION

0xC00CEE46 WC_E_ENTITYCONTENT

0xC00CEE47 WC_E_UNDECLAREDENTITY

0xC00CEE48 WC_E_PARSEDENTITY

0xC00CEE49 WC_E_NOEXTERNALENTITYREF

0xC00CEE4A WC_E_PI



ERROR CODE ERROR NAME ADDITIONAL NOTES

0xC00CEE4B WC_E_SYSTEMID

0xC00CEE4C WC_E_QUESTIONMARK

0xC00CEE4D WC_E_CDSECTEND

0xC00CEE4E WC_E_MOREDATA

0xC00CEE4F WC_E_DTDPROHIBITED

0xC00CEE50 WC_E_INVALIDXMLSPACE

0xC00CEE60 NC_E_NC

0xC00CEE61 NC_E_QNAMECHARACTER

0xC00CEE62 NC_E_QNAMECOLON

0xC00CEE63 NC_E_NAMECOLON

0xC00CEE64 NC_E_DECLAREDPREFIX

0xC00CEE65 NC_E_UNDECLAREDPREFIX

0xC00CEE66 NC_E_EMPTYURI

0xC00CEE67 NC_E_XMLPREFIXRESERVED

0xC00CEE68 NC_E_XMLNSPREFIXRESERVED

0xC00CEE69 NC_E_XMLURIRESERVED

0xC00CEE6A NC_E_XMLNSURIRESERVED

0xC00CEE80 SC_E_SC

0xC00CEE81 SC_E_MAXELEMENTDEPTH



ERROR CODE ERROR NAME ADDITIONAL NOTES

0xC00CEE82 SC_E_MAXENTITYEXPANSION

0xC00CEF00 WR_E_WR

0xC00CEF01 WR_E_NONWHITESPACE

0xC00CEF02 WR_E_NSPREFIXDECLARED

0xC00CEF03 WR_E_NSPREFIXWITHEMPTYNSURI

0xC00CEF04 WR_E_DUPLICATEATTRIBUTE

0xC00CEF05 WR_E_XMLNSPREFIXDECLARATION

0xC00CEF06 WR_E_XMLPREFIXDECLARATION

0xC00CEF07 WR_E_XMLURIDECLARATION

0xC00CEF08 WR_E_XMLNSURIDECLARATION

0xC00CEF09 WR_E_NAMESPACEUNDECLARED

0xC00CEF0A WR_E_INVALIDXMLSPACE

0xC00CEF0B WR_E_INVALIDACTION

0xC00CEF0C WR_E_INVALIDSURROGATEPAIR



Update packages on a device and get package
update logs
7/13/2017 • 2 minutes to read • Edit Online

Using IUTool.exe to update packages on a device

IUTool -p <path to packages>

PARAMETER DESCRIPTION

Package versioningPackage versioning

Using GetDULogs.exe to get package update logs from a device

The Windows Driver Kit (WDK) includes a tool for updating packages on a device (IUTool.exe) and a tool for
getting package update logs from a device (GetDULogs.exe). These tools are available under
%WPDKCONTENTROOT%\Tools\bin\i386.

IUTool.exe is a command-line tool that can be used to update an existing package on a device or to add a new
package to a device. IUTool.exe must be used in a command-line window that is opened as an administrator. The
command-line syntax for IUTool.exe is the following.

The following table describes the command-line parameters for IUTool.exe.

-ppath to packages Specifies one or more packages to update on the device
or to add to the device. The path to packages parameter
can have the following formats:

IUTool -p 
C:\ContosoPackages\Contoso.Device.SampleDr
iver.spkg;C:\ContosoPackages\Contoso.Devic
e.SampleApplication.spkg

IUTool -p C:\ContosoPackages

To update or add a single package, specify the full
path to the package on the development
computer.

To update or add multiple packages, specify a
semicolon-delimited list of packages on the
development computer. For example:

To update or add an entire directory of packages,
specify the path to the directory. For example:

If the specified package already exists on the device, the new version of the package must have a higher version
than the package currently on the device or the update will fail. To specify the version for a package, use the
/version command-line parameter for PkgGen.exe when generating the package. For more information, see
Command-line arguments for package generator.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/update-packages-on-a-phone-and-get-package-update-logs.md
https://msdn.microsoft.com/library/windows/hardware/dn756636


GetDULogs -o <output file path>

PARAMETER DESCRIPTION

GetDULogs.exe is a command-line tool that can be used to get package update logs from a device.
GetDULogs.exe must be used in a command-line window that is opened as an administrator. The command-line
syntax for GetDULogs.exe is the following.

The following table describes the command-line parameters for GetDULogs.exe.

-ooutput file path The full path of the file on the development computer to
write the log information to.



Update packages in an .FFU image file
7/13/2017 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<UpdateOSInput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
      xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
      xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
   <Description>Add Debugger On package</Description>
   <PackageFiles>
      <PackageFile>C:\Program Files\Windows Kits\10\Packages\Microsoft.BCD.DebuggerOn.spkg</PackageFile>
   </PackageFiles>
</UpdateOSInput>

ImageApp flash.ffu /UpdateInputXML:C:\temp\updateInput.xml

Command-line syntax for ImageApp.exe
ImageApp.exe <imageFile.ffu> </UpdateInputXML:updateInputfile.xml> 

PARAMETER DESCRIPTION

You can use ImageApp.exe to add a new or updated package to an existing .FFU image file for production, health
and test images.

ImageApp has the following important limitations:

ImageApp should only be used for adding packages to production, test and health images. Do not use
ImageApp to modify retail images, as it may negatively impact update reliability and the security of the device.
ImageApp cannot be used to change the partition layout of an existing image. If a different partition layout is
needed, the image will need to be rebuilt. For more information, see Building a device image using
ImgGen.cmd.
ImageApp cannot be used to remove packages from an image.
To prepare a device platform to use compressed partitions with CompactOS, you'll need a PC with the
Windows 10 version of DISM. If your technician PC is running a previous version of Windows, you can get this
by installing the Windows Assessment and Deployment Kit (ADK) for Windows 10, or by copying and installing
the DISM driver. This process is the same as the one used to install DISM on Windows PE. To learn more, see
Install Windows 10 using a previous version of Windows PE: To add DISM into your Windows PE image.

When updating an existing package, be sure to increment the version number. For more information, see Update
requirements. When adding a package that does not already exist in the image, any version number can be used.

Specify the packages to be added in an input XML file similar to the one shown here.

For example, if the updateInput.xml  file is in the C:\temp folder, use this command to add the specified packages to
the existing flash.ffu  image file.

The following table describes the command-line parameters for ImageApp.exe.

imageFile.ffu The name of the FFU file to be updated.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/mobile/update-packages-in-an-ffu-image-file.md
https://msdn.microsoft.com/windows/hardware/commercialize/service/mobile/update-requirements


PARAMETER DESCRIPTION

Troubleshooting

Related topics

/UpdateInputXML:updateInputfile.xml The name of the XML file that identifies the package to be
added to the image. If this file is not in the current
directory, you must include the path to the file.

"STATUS_FILE_IS_A_DIRECTORY": This error message appears when building an image with CompactOS from
a PC that doesn't have the Windows 10 version of DISM. You can get this by installing the Windows ADK for
Windows 10, or by just installing the DISM driver from another PC with the Windows ADK for Windows 10
installed. To learn more, see Install Windows 10 using a previous version of Windows PE.

Building an image using ImgGen.cmd



IoT Core manufacturing
9/29/2017 • 2 minutes to read • Edit Online

In this section
TOPIC DESCRIPTION

Related topics

Windows 10 IoT Core (IoT Core) is a version of Windows 10 that is optimized for smaller devices with or without a
display. IoT Core uses the rich, extensible Universal Windows Platform (UWP) API for building great solutions.

OEMs can manufacture and deploy IoT Core using existing or custom-built hardware. To see existing
recommended hardware, see device options and the Hardware Compatibility List.

When developing your own board, see the Minimum hardware requirements for IoT Core.

What's new in IoT Manufacturing Find out what we've been working on.

IoT Core manufacturing guides This guide walks you through creating IoT Core images
that can be flashed to retail devices and maintained after
they have been delivered to your customers.

IoT Core feature list Here's the features you can add to IoT Core images.

Windows ADK IoT Core Add-ons contents The IoT Core ADK Add-Ons include tools to help you
customize and create new images for your devices with
the apps, board support packages (BSPs), drivers, and
Windows features that you choose, and a sample
structure you can use to quickly create new images.

IoT Core Add-ons command-line options These tools are part of the IoT Core ADK Add-Ons, in the
\Tools folder. To learn more about these tools, see
Windows ADK IoT Core Add-ons.

Learn about Windows 10 IoT Core

IoT Core Developer Resources

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/index.md
https://developer.microsoft.com/windows/iot/explore/deviceoptions
http://go.microsoft.com/fwlink/?LinkID=532948
https://docs.microsoft.com/windows-hardware/design/minimum/minimum-hardware-requirements-overview#iotcore
https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/whats-new-in-manufacturing
http://go.microsoft.com/fwlink/?LinkId=735028
http://go.microsoft.com/fwlink/?LinkId=735028
https://developer.microsoft.com/windows/iot/explore/iotcore
https://developer.microsoft.com/windows/iot


IoT Core manufacturing guide
4/16/2018 • 5 minutes to read • Edit Online

Scenarios

Concepts

Thinking about mass-producing devices running Windows 10 IoT Core? Use the Windows ADK IoT Core Add-
ons to create images that you can quickly flash onto new devices.

You can create test images, which include tools for quickly accessing and modifying devices. Test images are
great for :

Developers, hardware vendors, and manufacturers (OEMs) who are trying out new device designs.
Hobbyists and organizations that are creating devices designed to run in non-networked or controlled network
environments.

You can create retail images, which can be made more secure for public or corporate networks while still
receiving updates.

You can add customizations, including apps, settings, hardware configurations, and board support packages
(BSPs).

For OEM-style images, you’ll wrap your customizations into package (.cab) files. Packages let OEMs, ODMs,
developers, and Microsoft work together to help deliver security and feature updates to your devices without
stomping on each other's work.

Get the tools needed to customize Windows IoT Core
Lab 1a: Create a basic image
Lab 1b: Add an app to your image
Lab 1c: Add a file and a registry setting to an image
Lab 1d: Add networking and other provisioning package settings to an image
Lab 1e: Add a driver to an image
Lab 1f: Build a retail image
Lab 2: Creating your own board support package
Lab 3: Update your apps

You can use the walkthrough as a guide to build both your test and retail images. In general terms:

1. Test your customizations, including apps, settings, drivers, and BSPs, to make sure they work.
2. Install test certificates on your PC, and package your customizations into .cab files.
3. Create a test image that includes your customizations, along with the IoT Core package, and any updates from

your hardware manufacturer.
4. Flash the image to a device and test it. Use the test tools built into the test images to troubleshoot any new

issues.
5. If it works, sign your customizations, and repackage them into new .cab files.
6. Create a retail image with your signed files, and use it to manufacture new devices.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/iot-core-manufacturing-guide.md
https://docs.microsoft.com/windows-hardware/service/iot/updating-iot-core-apps


PackagesPackages

Feature manifests (FMs)Feature manifests (FMs)

Packages are the logical building blocks of IoT Core. They contain all the files, libraries, registry settings,
executables, and data on the device. From device drivers to system files, every component must be contained in a
package. This modular architecture allows for precise control of updates: a package is the smallest serviceable unit
on the device.

Each package contains:

The contents of the package, such as a signed driver binary or a signed appx binary.
A package definition (.pkg.xml) file specifies the contents of the package and where they should be placed in
the final image. See %SRC_DIR%\Packages\ directory for various samples of package files.
A signature. This can be a test or retail certificate.

The pkggen  tool combines these items into signed packages. Our samples include scripts: createpkg , and 
createprovpkg , which call pkggen to create packages for our drivers, apps, and settings.

The process is similar to that used by Windows 10 Mobile. To learn more about creating packages, see Creating
mobile packages.

After you've put everything into packages, you'll use FM files to list which of your packages belong in the final
image.

You can use as many FMs into an image as you want. In this guide, we refer to the following FMs:



Creating the image: ImgGen and the image configuration file (OEMInput.xml)Creating the image: ImgGen and the image configuration file (OEMInput.xml)

RETAIL BUILDS TEST BUILDS

Image release type ReleaseType: Production ReleaseType: Test

Package release type Only Production Type packages are
supported

Both Production Type or Test Type are
supported

OEMFM.xml includes features an OEM might add to a device, such as the app and a provisioning package.
BSPFM.xml includes features that a hardware manufacturer might use to define a board. For example,
OEM_RPi2FM.xml includes all of the features used for the Raspberry Pi 2.

The process is similar to that used by Windows 10 Mobile. To learn more, see Feature manifest file contents.

You'll list which of the features to add by using these tags:

<BasePackages>: Packages that you always included in your images, for example, your base app.
<Features>\<OEM>: Other individual packages that might be specific to a particular product design.

The Feature Merger tool generates the required feature identifier packages that are required for servicing the
device. Run this tool whenever any changes are made to the FM files. After you change OEM FM or OEM
COMMON FM files, run Buildfm oem . After you change bspfm files, run buildfm bsp <bspname> .

To create the final image, you'll use the imggen  tool with an image configuration file, OEMInput.xml file.

These are the same tools used to create Windows 10 Mobile images. To learn more, see OEMInput file contents.

The image configuration file lists:

The feature manifests (FMs) and the packages that you want to install from each one.

An SoC chip identifier, which is used to help set up the device partitions. The supported values for soc are
defined in the corresponding bspfm.xml, under <devicelayoutpackages>.

A Device identifier, which is used to select the device layout. The supported values for device are defined
in the corresponding bspfm.xml, under <oemdeviceplatformpackages>.

The ReleaseType (either Production or Test).

Retail builds: We recommend creating retail images early on in your development process to verify that
everything will work when you are ready to ship.

These builds contain all of the security features enabled.

To use this build type, all of your code must be signed using retail (not test) code signing certificates.

For a sample, see %SRC_DIR%\Products\SampleA\RetailOEMInput.xml.

Test builds: Use these to try out new versions of your apps and drivers created by you and your hardware
manufacturer partners.

These builds have some security features disabled, which allows you to use either test-signed or
production-signed packages.

These builds also include developer tools such as debug transport, SSH, and PowerShell, that you can use
to help troubleshoot issues.

For a sample, see %SRC_DIR%\Products\SampleA\TestOEMInput.xml.



Test-signed packages Not supported Supported

Code integrity check Supported. By default, this is enabled. Supported. By default, no policy is
enforced

RETAIL BUILDS TEST BUILDS

Board Support Packages (BSPs)Board Support Packages (BSPs)

OK, let's try it!

Related topics

IOT_ENABLE_TESTSIGNING feature
must be included.

Board Support Packages contain a set of software, drivers, and boot configurations for a particular board, typically
supplied by a board manufacturer. The board manufacturer may periodically provide updates for the board, which
your devices can receive and apply.

Start here: Get the tools needed to customize Windows IoT Core.

Build a prototype

Learn about Windows 10 IoT Core

IoT Core Developer Resources

What's in the Windows ADK IoT Core Add-ons

IoT Core feature list

IoT Core Add-ons command-line options

https://developer.microsoft.com/windows/iot/getstarted/prototype/selectdevice
https://developer.microsoft.com/windows/iot/iotcore
https://developer.microsoft.com/windows/iot


Get the tools needed to customize Windows IoT
Core
7/11/2018 • 2 minutes to read • Edit Online

PCs and devices

Storage

Software

Here's the software you'll need to create OEM images using the Windows 10 IoT Core (IoT Core) ADK Add-Ons:

Here's how we'll refer to them:

Technician PC: Your work PC. This PC should have at least 15GB of free space for installing the software
and for modifying IoT Core images.

We recommend either Windows 10 or Windows 8.1 with the latest updates. The minimum requirement is
Windows 7 SP1, though this may require additional tools or workarounds for tasks such as mounting .ISO
images.

IoT device: A test device or board that represents all of the devices in a single model line.

For our examples, you'll need a Raspberry Pi 3. For more options, see SoCs and Custom Boards.

An HDMI cable, and a monitor or TV with a dedicated HDMI input. We'll use this to verify that the
image is loaded and that our sample apps are running.

A Micro SD card. (Note, we just use this for our guide. You can build devices with other drives. Learn
more about existing supported storage options.)

If your technician PC doesn't include a Micro SD slot, you may also need an adapter.

Install the following tools on your technician PC

1. Windows Assessment and Deployment Kit (Windows ADK) including at least the Deployment Tools and
Imaging and Configuration Designer (ICD) features. You'll use these tools to create images and
provisioning packages.

2. Windows Driver Kit (WDK) 10 (optional, required only if you are building drivers)

3. Windows 10 IoT Core Packages. The .iso package adds the IoT Core packages and feature manifests used
to create IoT Core images. By default, these packages are installed to C:\Program Files (x86)\Windows
Kits\10\MSPackages\Retail.

4. IoT Core ADK Add-Ons. Click Clone or Download > Download ZIP , and extract it to a folder, for
example, C:\IoT-ADK-AddonKit. This kit includes the sample scripts and base structures you'll use to
create your image. To learn about the contents, see What's in the Windows ADK IoT Core Add-ons).

5. Windows 10 IoT Core Dashboard.

6. The Raspberry Pi BSP. Since this lab uses a Raspberry Pi, you'll need to download the Raspberry Pi BSP. If
you're working with a device other than Raspberry Pi, visit the Windows 10 IoT Core BSP page to

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/set-up-your-pc-to-customize-iot-core.md
https://docs.microsoft.com/en-us/windows/iot-core/learn-about-hardware/socsandcustomboards
https://docs.microsoft.com/windows/iot-core/learn-about-hardware/HardwareCompatList#other-hardware-peripherals
http://go.microsoft.com/fwlink/?LinkId=526803
http://developer.microsoft.com/windows/hardware/windows-driver-kit
https://www.microsoft.com/en-us/software-download/windows10iotcore
https://github.com/ms-iot/iot-adk-addonkit/
http://go.microsoft.com/fwlink/p/?LinkId=708576
https://github.com/ms-iot/iot-adk-addonkit/releases/download/v4.4/rpibsp-wm.zip
https://docs.microsoft.com/windows/iot-core/build-your-image/createbsps


Other software

Next steps

download other BSPs.

7. Get a code-signing certificate. For the kernel driver signing, Standard Code signing certificate is sufficient.
You will require an EV cert to access the Device Update Center in Hardware Dev Center portal. This will be
required when you build a retail image.

Other helpful software:

A text editor such as Notepad++. You can also use the Notepad tool, though for some files, you won't
see the line breaks unless you open each file as a UTF-8 file.

A compression program such as 7-Zip, which can uncompress Windows app packages.

Visual Studio 2017, used to create an app in Lab 1b: Add an app to your image.

An app built for IoT Core. Our samples use the IoT Core Default app, though you can use your own.

A driver built for IoT Core. Our samples use the Hello, Blinky driver, though you can use your own.

Lab 1a: Create a basic image

https://docs.microsoft.com/windows-hardware/drivers/dashboard/get-a-code-signing-certificate
http://aka.ms/deviceupdatecenter
http://go.microsoft.com/fwlink/?LinkId=715695
https://github.com/ms-iot/samples/tree/develop/IoTCoreDefaultApp
https://developer.microsoft.com/windows/iot/samples/helloblinky


Lab 1a: Create a basic image
7/11/2018 • 4 minutes to read • Edit Online

Prerequisites

Create a basic image
Set your OEM name (one-time only)Set your OEM name (one-time only)

Start the IoT Core shell, choose your architecture, and install test certificatesStart the IoT Core shell, choose your architecture, and install test certificates

To get started, we'll create a basic Windows 10 IoT Core (IoT Core) image, flash it to a micro SD card, and put it
into a device to make sure that everything's working properly.

We'll create a product folder that represents our first design. For our first product design, we'll customize just
enough for the IoT core device to boot up and run the built-in OOBE app, which we should be able to see on an
HDMI-compatible monitor.

To make running these commands easier, we'll install and use the IoT Core shell, which presets several
frequently-used paths and variables.

See Get the tools needed to customize Windows IoT Core to get your technician PC ready.

set OEM_NAME=Fabrikam

Open the file C:\IoT-ADK-AddonKit\Tools\setOEM.cmd in Notepad, and modify it with your company
name. We've added this variable to help you create packages with names that are easy to differentiate
from those provided from other manufacturers you're working with. Only alphanumeric characters are
supported in the OEM_NAME as this is used as a prefix for various generated file names.

1. In Windows Explorer, go to the folder where you installed the IoT Core ADK Add-Ons, for example,
C:\IoT-ADK-AddonKit, and open IoTCoreShell.cmd. It should prompt you to run as an administrator.

The new value for OEM_NAME should appear when you start the tool.

Troubleshooting: Error : "The system cannot find the path specified". If you get this, right-click the icon and
modify the path in "Target" to the location you've chosen to install the tools.

2. At the Set Environment for Architecture prompt, select 1 for ARM, 2 for x86, or 3 for x64, based on the
architecture for the boards that you'll be developing. For example, press 1 to create an image that's
compatible with the Raspberry Pi 2 or Raspberry Pi 3, or press 2 to create an image that's compatible with
the Minnowboard Max.

The launch tool sets the default architecture, and sets a version number for the design, which you can use
for future updates. The first version number defaults to 10.0.0.0.

(Why a four-part version number? Learn about versioning schemes in Update requirements)

Install certificates

From the IoT Core Shell, install the test certificates, which you'll use to sign your test binaries. You'll only need to
do this the first time you install the IoT ADK Add-on Kit.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/create-a-basic-image.md
https://docs.microsoft.com/windows-hardware/service/mobile/update-requirements


installoemcerts

Build a Raspberry Pi BSP (New for Windows 10, Version 1703)Build a Raspberry Pi BSP (New for Windows 10, Version 1703)

cd c:\BSP
build.cmd

Build packagesBuild packages

buildpkg All

Create a test projectCreate a test project

newproduct ProductA rpi2

Build an imageBuild an image

Flash the image to a memory cardFlash the image to a memory card

The certificates are added to the root. To learn more, see Set up the signing environment

1. Extract rpibsp_wm.zip to a folder on your hard drive, for example. C:\BSP .

2. From the IoT Core Shell, navigate to C:\BSP , and run build.cmd . This will add the packages necessary to
create a project with the RPi2 BSP.

For more information on available BSPs, see Windows 10 IoT Core BSPs.

From the IoT Core Shell, get your environment ready to create products by building all of the packages in the
working folders.

From the IoT Core Shell, create a new product folder that uses the Rpi2 BSP. This folder represents a new device
we want to build, and contains sample customization files that we can use to start our project.

The BSP name is the same as the folder name for the BSP. You can see which BSPs are available by looking in the
C:\IoT-ADK-AddonKit\Source-\<arch>\BSP  folders.

This creates the folder : C:\IoT-ADK-AddonKit\Source-<arch>\Products\\ProductA .

buildimage ProductA test

1. Eject any removable storage drives, including the Micro SD card and any USB flash drives.

2. From the IoT Core Shell, build a flashable test image using the default files. Test images include additional
tools, and you can create test images using either signed or unsigned test packages.

This builds an FFU file with your basic image at C:\IoT-ADK-AddonKit\Build\<arch>\ProductA\Test .

Troubleshooting:

ERROR CODES: 0x80070005 or 0x800705b4: Unplug all external drives (including micro SD cards
and USB thumb drives), and try again.
If this doesn't work, go back to Set up your PC and download the samples and make sure everything's
installed.

1. Start the Windows IoT Core Dashboard.

2. Plug your micro SD card into your technician PC, and select it in the tool.

https://msdn.microsoft.com/library/windows/hardware/dn756804
https://github.com/ms-iot/iot-adk-addonkit/releases/download/v4.4/rpibsp-wm.zip
https://docs.microsoft.com/windows/iot-core/build-your-image/createbsps


Try it outTry it out

Next steps

3. From Setup a new device, select Device Type: Custom.

4. From Flash the pre-downloaded file (Flash.ffu) to the SD card, click Browse, browse to your FFU file
( C:\IoT-ADK-AddonKit\Build\<arch>\ProductA\Test\Flash.ffu ), then click Next.

5. Optional: Change the default device name (Default is minwinpc.)

6. Enter your device password.

7. Accept the license terms, and then click Install. The Windows IoT Core Dashboard formats the micro SD
card and installs the new image.

1. Connect your IoT device, such as a Raspberry Pi 3, into a monitor using an HDMI cable. Note When
possible, use a direct connection to an HDMI port. The display may not appear when using DVI/VGA
adapters or hubs.

2. Put in the micro SD card with your image.

3. Power it on.

After a short while, the device should start automatically, and you should see the IoT Core Default app
(code-named "Bertha"), which shows basic info about the image.

Note Some devices may be extremely slow to boot up on the first boot when using some 8GB class 10
SD cards. Slow boot times may be over 15 minutes. Subsequent boots will be much quicker on the
affected cards.

See also Set up your device for more instructions on flashing the device.

Leave the device on for now, and continue to Lab 1b: Add an app to your image.

https://developer.microsoft.com/windows/iot/samples/iotdefaultapp
https://developer.microsoft.com/windows/iot/getstarted/prototype/setupdevice


Lab 1b: Add an app to your image
7/11/2018 • 3 minutes to read • Edit Online

Prerequisites

Create an appx package

Package the app

We're now going to take an app (like the sample IoT Core Default app), package it up, and create a new image you
can load onto new devices.

For background apps, use the same method to install and run them. Note, only one app can be selected as the
startup app, all other apps installed using this method run as background apps.

Note As we go through this manufacturing guide, ProjectA will start to resemble the SampleA image that's in
C:\IoT-ADK-AddonKit\Source-arm\Products\SampleA.

We'll use the ProjectA image we created from Lab 1a: Create a basic image.

You can skip these steps if you've already created and tested your app.

1. Create a UWP app. This can be any app designed for IoT Core, saved as an Appx Package. For our
example, we use the IoT Core Default app.

2. In Visual Studio, to save the IoT Core Default app as an Appx package, click Project > Store > Create
App Packages > No > Next.

3. Select Output location: C:\DefaultApp (or any other path that doesn't include spaces.)

4. Select Generate app bundle: Never

5. Click Create.

Visual Studio creates the Appx file into C:\DefaultApp\IoTCoreDefaultApp_1.2.0.0_ARM_Debug_Test

6. Optional: Test the app. Note, you may have already tested the app as part of building the project.

Create a package for an app

newAppxPkg 
"C:\DefaultApp\IoTCoreDefaultApp_1.2.0.0_ARM_Debug_Test\IoTCoreDefaultApp_1.2.0.0_ARM_Debug_Test.appx" 
fga Appx.MyUWPApp

1. Open the IoT Core Shell: run C:\IoT-ADK-AddonKit\IoTCoreShell as an administrator.

2. Create a new package for the app, for example:

This creates a new folder at C:\IoT-ADK-AddonKit\Source-<arch>\Packages\Appx.MyUWPApp, and
generates a customizations.xml file as well as a package xml file that is used to build the package.

3. From the IoT Core Shell, build the package.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/deploy-your-app-with-a-standard-board.md
https://github.com/ms-iot/samples/tree/develop/IoTCoreDefaultApp
https://github.com/ms-iot/samples/tree/develop/IoTCoreDefaultApp
https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/test-the-app


Update the feature manifest

Update the project's configuration files

buildpkg Appx.MyUWPApp

The package is built, appearing as C:\IoT-ADK-AddonKit\Build\<arch>\pkgs\<your OEM
name>.Appx.MyUWPApp.cab.

Add your app package to the feature manifest

<?xml version="1.0" encoding="utf-8"?>
<FeatureManifest 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
  <BasePackages/>
  <Features>
    <OEM>
      <!-- Feature definitions below -->
      <PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Appx.IoTCoreDefaultApp.cab">
        <FeatureIDs>
          <FeatureID>APP_IOTCOREDEFAULTAPP</FeatureID>
          <FeatureID>OEM_IoTCoreDefaultApp</FeatureID> <!-- keeping old id for compatibility, dropping 
OEM prefix -->
        </FeatureIDs>
      </PackageFile>
      <PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Appx.IoTOnboardingTask.cab">
        <FeatureIDs>
          <FeatureID>APP_IOTONBOARDINGTASK</FeatureID>
          <FeatureID>OEM_IoTOnboardingTask</FeatureID> <!-- keeping old id for compatibility, dropping 
OEM prefix -->
        </FeatureIDs>
      </PackageFile>
      <PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Appx.MyUWPApp.cab">
        <FeatureIDs>
          <FeatureID>APP_MyUWPApp</FeatureID>
        </FeatureIDs>
      </PackageFile>      
    </OEM>
    <OEMFeatureGroups/>
  </Features>
</FeatureManifest>

1. Open your feature manifest file, C:\IoT-ADK-AddonKit\Source-<arch>\Packages\OEMFM.xml

2. Create a new PackageFile section in the XML, with your package file listed, and give it a new FeatureID,
such as "APP_MyUWPApp".

You'll now be able to add your app to any of your products by adding a reference to this feature manifest and
Feature ID.

Replace your product's default app with your own

1. Open your product's test configuration file: C:\IoT-ADK-AddonKit\Source-
<arch>\Products\ProductA\TestOEMInput.xml.

2. Make sure both your feature manifest, OEMFM.xml, and the feature manifest: OEMCommonFM.xml, are
both listed in the AdditionalFMs section.



Build and test the image

Next steps

<AdditionalFMs>
  <!-- Including BSP feature manifest -->
  <AdditionalFM>%BLD_DIR%\MergedFMs\RPi2FM.xml</AdditionalFM>
  <!-- Including OEM feature manifest -->
  <AdditionalFM>%BLD_DIR%\MergedFMs\OEMCommonFM.xml</AdditionalFM>
  <AdditionalFM>%BLD_DIR%\MergedFMs\OEMFM.xml</AdditionalFM>
   <!-- Including the test features -->
   <AdditionalFM>%AKROOT%\FMFiles\arm\IoTUAPNonProductionPartnerShareFM.xml</AdditionalFM>
</AdditionalFMs>

<Features>
  <Microsoft>

  ...

 <!-- Sample Apps, remove this when you introduce OEM Apps 
  <Feature>IOT_BERTHA</Feature> -->
  <Feature>IOT_ALLJOYN_APP</Feature>
  <Feature>IOT_NANORDPSERVER</Feature>
  <Feature>IOT_SHELL_HOTKEY_SUPPORT</Feature>
  <Feature>IOT_APPLICATIONS</Feature>

</Microsoft>
<OEM>
  <!-- Include BSP Features -->
  <Feature>RPI2_DRIVERS</Feature>
  <Feature>RPI3_DRIVERS</Feature>
  <!-- Include OEM features -->
  <Feature>CUSTOM_CMD</Feature>
  <Feature>PROV_AUTO</Feature>
  <Feature>APP_MyUWPApp</Feature>
</OEM>

3. Change the features included in the product:

a. Remove the sample test apps by adding comment tags: <!-- -->. (We'll use these apps again in later
labs.)

b. Confirm that the OEM features: CUSTOM_CMD, and PROV_AUTO are present.

c. Add the FeatureID for your app package, example: OEM_MyUWPApp.

Build and flash the image using the same procedures from Lab 1a: Create a basic image. Short version:

1. From the IoT Core Shell, build the image ( buildimage ProductA Test ).
2. Install the image: Start Windows IoT Core Dashboard > Click the Setup a new device tab > select Device

Type: Custom >
3. From Flash the pre-downloaded file (Flash.ffu) to the SD card: click Browse, browse to your FFU file

(C:\IoT-ADK-AddonKit\Build\<arch>\ProductA\Test\Flash.ffu), then click Next.
4. Enter the device name and password. Put the Micro SD card in the device, select it, accept the license terms,

and click Install.
5. Put the card into the IoT device and start it up.

After a short while, the device should start automatically, and you should see your app.



Related topics

Lab 1c: Add a file and a registry setting to an image

Update apps on your IoT Core devices

https://docs.microsoft.com/windows-hardware/service/iot/updating-iot-core-apps


Lab 1c: Add a file and a registry setting to an image
8/10/2018 • 4 minutes to read • Edit Online

Prerequisites

Create your test files

Build a package for your test files

Add sample files to the packageAdd sample files to the package

Files and registry keys that you add to your image often won't be specific to an architecture. For these, we
recommend creating a common package that you can use across all of your device architectures.

We'll create some test files and registry keys to the image, and again package them up so that they can be
serviced after they reach your customers.

We'll add these to the common feature manifest (OEMCommonFM.xml), which is used in x86, x64, and ARM
builds, and give it a new feature ID, OEM_FilesAndRegKeys.

For this lab, we'll start an new product, ProductB, so that later we can use the IoT sample app to get the IP
address of our device and verify that our files and reg keys have made it.

See Get the tools needed to customize Windows IoT Core to get your technician PC ready.

Create a few sample text files using Notepad, add some random text so that the files are not empty, title them
TestFile1.txt and TestFile2.txt.

newcommonpkg Registry.FilesAndRegKeys

1. Open the IoT Core Shell: run C:\IoT-ADK-AddonKit\IoTCoreShell as an administrator.

2. Create a working folder for the registry key and test files, for example:

The new folder at C:\IoT-ADK-AddonKit\Common\Packages\Registry.FilesAndRegKeys\.

1. Copy your sample files (TestFile1.txt and TestFile2.txt), into the new folder at C:\IoT-ADK-
AddonKit\Common\Packages\Registry.FilesAndRegKeys\.

2. Update the package definition file, C:\IoT-ADK-
AddonKit\Common\Packages\Registry.FilesAndRegKeys\Registry.FilesAndRegKeys.wm.xml:

a. Remove the comment marks and instructions.

b. Update the values of RegKey to include a new KeyName, Name, and Value.

c. Update the File Source names to TestFile1.txt and TestFile2.txt. By default, files land in
C:\Windows\System. To change the destination location, add a DestinationDir and Name.

Variables like $(runtime.root) are defined in C:\Program Files (x86)\Windows
Kits\10\Tools\bin\i386\pkggen.cfg.xml.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/add-a-registry-setting-to-an-image.md


Update your feature manifest

<onecorePackageInfo
    targetPartition="MainOS"
    releaseType="Production"
    ownerType="OEM" />
<regKeys>
    <regKey
        keyName="$(hklm.software)\$(OEMNAME)\Test">
        <regValue name="StringValue" type="REG_SZ" value="Test string" />
        <regValue name="DWordValue"  type="REG_DWORD" value="0x12AB34CD" />
        <regValue name="BinaryValue" type="REG_BINARY" value="12ABCDEF" />
    </regKey>
    <regKey
        keyName="$(hklm.software)\$(OEMNAME)\EmptyKey" />
</regKeys>
<files>
    <file destinationDir="$(runtime.system32)" source="filename.txt" />
    <file
        destinationDir="$(runtime.bootDrive)\OEMInstall" source="filename2.txt"
        name="filename2.txt" />
</files>

buildpkg Registry.FilesAndRegKeys

3. From the IoT Core Shell, build the package. (The BuildPkg All  command builds everything in the source
folders.)

The package is built, appearing as C:\IoT-ADK-AddonKit\Build\<arch>\pkgs\<your OEM
name>.Registry.FilesAndRegKeys.cab.

All packages that you build appear in your architecture-specific folder. Tip: to quickly rebuild for another
architecture, use setenv <arch>, then BuildPkg All  to rebuild everything for your other architecture.

Troubleshooting: If you get an error : "The elementRegKeys in namespace
'urn:Microsoft.WindowsPhone/PackageSchema.v8.00' has incomplete content", remove the comments and
instructions. If you don't want to include a reg key or a file, then remove these XML elements.

<Features>
  <OEM>
    <!-- Feature definitions below -->
    <PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Registry.FilesAndRegKeys.cab">
      <FeatureIDs>
        <FeatureID>CUSTOM_FilesAndRegKeys</FeatureID>
      </FeatureIDs>
    </PackageFile>

3. Run buildfm oem  to generate updated files in the MergedFMs folder. This has to be done every time any time
an FM file is modified.

1. Open the common feature manifest file, C:\IoT-ADK-
AddonKit\Common\Packages\OEMCommonFM.xml

2. Create a new PackageFile section in the XML, with your package file listed, and give it a new FeatureID,
such as "CUSTOM_FilesAndRegKeys".

You'll now be able to add your files and registry keys to any of your products by adding a reference to this feature
manifest and Feature ID.



Create a new product

Update your product configuration file

Build and test the image

newproduct ProductB rpi2

1. Create a new product folder.

<AdditionalFMs>
   <!-- Including BSP feature manifest -->
   <AdditionalFM>%BLD_DIR%\MergedFMs\RPi2FM.xml</AdditionalFM>
   <!-- Including OEM feature manifest -->
   <AdditionalFM>%BLD_DIR%\MergedFMs\OEMCommonFM.xml</AdditionalFM>
   <AdditionalFM>%BLD_DIR%\MergedFMs\OEMFM.xml</AdditionalFM>
   <!-- Including the test features -->
   <AdditionalFM>%AKROOT%\FMFiles\arm\IoTUAPNonProductionPartnerShareFM.xml</AdditionalFM>
</AdditionalFMs>

<Features>
  <Microsoft>

  ...

  <!-- Sample Apps, remove this when you introduce OEM Apps -->
  <Feature>IOT_BERTHA</Feature>
  <Feature>IOT_ALLJOYN_APP</Feature>
  <Feature>IOT_NANORDPSERVER</Feature>
  <Feature>IOT_SHELL_HOTKEY_SUPPORT</Feature>
  <Feature>IOT_APPLICATIONS</Feature>
  <Feature>IOT_ENABLE_ADMIN</Feature>
  </Microsoft>
  <OEM>
    <!-- Include BSP Features -->
    <Feature>RPI2_DRIVERS</Feature>
    <Feature>RPI3_DRIVERS</Feature>
    <!-- Include OEM features -->
    <Feature>CUSTOM_CMD</Feature>
    <Feature>PROV_AUTO</Feature>
    <Feature>CUSTOM_FilesAndRegKeys</Feature>
 </OEM>

1. Update the test configuration file C:\IoT-ADK-
AddonKit\Source-<arch>\Products\ProductB\TestOEMInput.xml:

Make sure the feature manifest: OEMCommonFM.xml is included, removing comment marks if
necessary.

2. Update the features included in the product:

a. Make sure the sample apps are included (especially the IOT_BERTHA app).

b. Verify that the OEM features: CUSTOM_CMD and PROV_AUTO are present.

c. Add the FeatureID for your registry package, example: CUSTOM_FilesAndRegKeys.

Build and flash the image using the same procedures from Lab 1a: Create a basic image. Short version:



See if your files made it

See if your registry keys exist

Next steps

1. From the IoT Core Shell, build the image ( buildimage ProductB Test ).
2. Install the image: Start Windows IoT Core Dashboard > Click the Setup a new device tab > select Device

Type: Custom >
3. From Flash the pre-downloaded file (Flash.ffu) to the SD card: click Browse, browse to your FFU file

(C:\IoT-ADK-AddonKit\Build\<arch>\ProductB\Test\Flash.ffu), then click Next.
4. Enter device name and password.Put the Micro SD card in the device, select it, accept the license terms, and

click Install.
5. Put the card into the IoT device and start it up.

After a short while, you should see the IoT test (Bertha) app which shows basic info about the image.

\\10.100.0.100\c$

1. Connect both your technician PC and the device to the same ethernet network.

For example, to connect over a wired network, plug in a ethernet cable. To connect directly to the device,
plug a network cable directly from your technician PC to the device.

2. On the test app, note the IP address, for example, 10.100.0.100.

3. On your technician PC, open File Explorer, and type in the IP address of the device with a \\ prefix and \c$
suffix:

Use the devicename, the default Administrator account, and password to log on. (Default is:
minwinpc\Administrator / p@ssw0rd)

4. Check to see if the files exist. Look for :

\\10.100.0.100\c$\Windows\system32\TestFile1.txt

\\10.100.0.100\c$\OEMInstall\TestFile2.txt

reg query HKLM\Software\Fabrikam\Test

1. On your technician PC, connect to your device using an SSH client, such as PuTTY. For example, use the IP
address and port 22 to connect to the device, then log in using the Administrator account and password.
(To learn more, see SSH.)

2. From the command line in the SSH client, query the system for the registry key.

Where Fabrikam is your OEM name. The registry tool should return your test values.

Lab 1d: Add a provisioning package to an image

https://developer.microsoft.com/windows/iot/samples/iotdefaultapp
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
https://docs.microsoft.com/windows/iot-core/connect-your-device/SSH


Lab 1d: Add networking and other provisioning
package settings to an image
7/11/2018 • 5 minutes to read • Edit Online

Prerequisites

Create your provisioning package in Windows Configuration Designer

We'll create a provisioning package that contains some sample Wi-Fi settings. You can use Windows
Configuration Designer to create provisioning packages that add apps, drivers, features, or modify many common
settings, such as IT device management and policy settings.

Note, to test Wi-Fi, your board will need Wi-Fi support. You can use a Wi-Fi adapter/dongle, or use a board like
the Raspberry Pi 3 that has Wi-Fi built-in.

For this lab, we'll use the ProductB, that includes the default app (Bertha), which shows network status.

See Get the tools needed to customize Windows IoT Core to get your technician PC ready.

Use ProductB that you created in Lab 1c: Add a file and a registry setting to an image.

1. Start Windows Imaging and Configuration Designer.

2. Click File > New project.

3. For this example, use the name "ProductBProv" for the product name, accept the defaults, and click Next.

4. Select Provisioning package > Windows 10 IoT Core.

5. At the Import a provisioning package (optional) page, click Finish.

6. Add a sample setting:

a. Expand Runtime settings > Connectivity Profiles > WLAN > WLANSetting > SSID .

b. Type in the name of a Wi-Fi network name, for example, ContosoWiFi, and click Add.

c. Expand the SSID > WLANXmlSettings > SecurityType and choose a setting such as Open.

d. Expand the SSID > WLANXmlSettings > AutoConnect and choose a setting such as TRUE .

e. Optional: to add more than one WL AN network, go back to WL ANSetting, and repeat the process.

7. Optional: add other apps, drivers, and settings through the UI. To learn more, see Configure customizations
using Windows ICD.

8. Export the provisioning package. For example, click Export > Provisioning Package > Next > (Uncheck
the Encrypt Package box) > Next > Build. (To learn more, see Export a provisioning package. )

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/add-a-provisioning-package-to-an-image.md
https://docs.microsoft.com/windows/configuration/provisioning-packages/provisioning-create-package#configure-settings
https://docs.microsoft.com/windows/configuration/provisioning-packages/provisioning-create-package#build-package


IMPORTANTIMPORTANT
When you make any changes to a provisioning package, Windows Configuration Designer increments the version
number in the provisioning file (customizations.xml). Starting with Windows 10 release 1709, the version number
for provisioning package is also a four part number, same as the regular packaging version. In previous releases
(prior to release 1709), the version number is not major.minor, it is a number with a decimal point. For example, 1.19
is a lower version than 1.2.

9. At the All done! page, click the link to the Output location.

Copy customizations.xml into your product's prov folder

1. Copy customizations.xml to C:\IoT-ADK-AddonKit\Source-<arch>\Products\ProductB\prov.

2. Optional: update customizations.xml with any desired changes. Make sure you increment the version
number if you make changes. See Windows provisioning answer file for more info.

Add the auto-provisioning scripts to the feature manifest and product configuration file

<?xml version="1.0" encoding="utf-8"?>
<identity xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
    name="Auto" namespace="Provisioning" owner="$(OEMNAME)"
    legacyName="$(OEMNAME).Provisioning.Auto" xmlns="urn:Microsoft.CompPlat/ManifestSchema.v1.00">
    <onecorePackageInfo
        targetPartition="MainOS"
        releaseType="Production"
        ownerType="OEM" />
    <files>
        <file
            destinationDir="$(runtime.windows)\Provisioning\Packages"
            source="$(BLDDIR)\ppkgs\$(PROD)Prov.ppkg"
            name="ProvAuto.ppkg" />
    </files>
</identity>

<PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Provisioning.Auto.cab">
  <FeatureIDs>
    <FeatureID>PROV_AUTO</FeatureID>
    <FeatureID>OEM_ProvAuto</FeatureID>
  </FeatureIDs>
</PackageFile>

1. Review the package definition file: Provisioning.Auto.wm.xml: C:\IoT-ADK-
AddonKit\Common\ProdPackages\Provisioning.Auto\Provisioning.Auto.wm.xml.

Make sure the file source resolves correctly. ($PROD)Prov.ppkg resolves to C:\IoT-ADK-
AddonKit\Source-<arch>\Products\ProductB\prov\ProductBProv.ppkg, this should match your
provisioning package's file name.

2. Make sure that the package definition file %OEM_NAME%.Provisioning.Auto.cab" and the feature ID:
PROV_AUTO are referenced in the common feature manifest, C:\IoT-ADK-
AddonKit\Common\Packages\OEMCommonFM.xml:

3. Update the test configuration file C:\IoT-ADK-
AddonKit\Source-<arch>\Products\ProductB\TestOEMInput.xml:

a. Make sure the common feature manifest: OEMCommonFM.xml is included. (Remove comment
marks if necessary.)

https://msdn.microsoft.com/library/windows/hardware/dn898375


Build and test the image

Test network connections and upload apps

<AdditionalFMs>
 <!-- Including BSP feature manifest -->
 <AdditionalFM>%BLD_DIR%\MergedFMs\RPi2FM.xml</AdditionalFM>
 <!-- Including OEM feature manifest -->
 <AdditionalFM>%BLD_DIR%\MergedFMs\OEMCommonFM.xml</AdditionalFM>
 <AdditionalFM>%BLD_DIR%\MergedFMs\OEMFM.xml</AdditionalFM>
 <!-- Including the test features -->
 <AdditionalFM>%AKROOT%\FMFiles\arm\IoTUAPNonProductionPartnerShareFM.xml</AdditionalFM>
</AdditionalFMs>

<OEM>
  <!-- Include BSP Features -->
  <Feature>RPI2_DRIVERS</Feature>
  <Feature>RPI3_DRIVERS</Feature>
  <!-- Include OEM features-->
  <Feature>CUSTOM_CMD</Feature>
  <Feature>PROV_AUTO</Feature>
  <Feature>CUSTOM_FilesAndRegKeys</Feature>
</OEM>

b. Make sure the Feature: PROV_AUTO is included.

Build and flash the image using the same procedures from Lab 1a: Create a basic image. Short version:

1. From the IoT Core Shell, build the image ( buildimage ProductB Test ).

2. Install the image: Start Windows IoT Core Dashboard > Click the Setup a new device tab > select
Device Type: Custom >

3. From Flash the pre-downloaded file (Flash.ffu) to the SD card: click Browse, browse to your FFU file
(C:\IoT-ADK-AddonKit\Build\<arch>\ProductB\Test\Flash.ffu), then click Next.

4. Enter device name and password.

Note: We recommend using a different device name for each device to help prevent network
conflicts.

5. Put the Micro SD card in the device, select it, accept the license terms, and click Install*.

6. Put the card into the IoT device and start it up.

Note: Ignore the settings for "Wi-Fi Network Connection" in these menus, these settings are not used.

After a short while, you should see the IoT test (Bertha) app which shows basic info about the image.

Test to see if your provisioning settings were applied

1. Unplug any network cables from your IoT device.

2. Select the defaults. At the Let's get connected screen, select Skip this step.

3. If your wireless network is in range, this screen should show the network successfully connected, and show
an IP address for the network.

You can connect to your device's portal page to troubleshoot network connections, upload apps, or see more

https://developer.microsoft.com/windows/iot/samples/iotdefaultapp


Troubleshooting

Next steps

details about your device.

http://10.123.45.67:8080

1. Connect both your technician PC and the device to the same network.

For example, to connect over a wired network, plug in a ethernet cable. To connect over wireless, make sure
both your technician computer and IoT Core device are connected to the same wireless network.

2. On your technician PC, open Internet Explorer, and type in the device's IP address with an http:// prefix and
:8080 suffix.

3. When prompted, enter your device's default username and password. (Default is: Administrator \
p@ssw0rd)

This opens the Windows Device Portal. From here, you can upload app packages, see what apps are
installed, and switch between them.

4. Click Networking > Profiles. You should see the Wi-Fi profile you created.

If the device is able to automatically connect to the WiFi network, then under Available Networks, you
should see a checkmark next to the network you configured.

If your network requires steps such as accepting license terms, the device may not auto-connect.

Check your Wi-Fi broadcast frequency (2.4GHz vs 5GHz). Some Wi-Fi adapters, such as the built-in Wi-Fi
adapter on the Raspberry Pi 3, only support 2.4GHz Wi-Fi networks. While this is the most common Wi-Fi
broadcast frequency, many Wi-Fi networks broadcast at frequencies of 5GHz. Either change the broadcast
frequency or use a different adapter.

Confirm that the provisioning package settings work on your network. Use a laptop PC to test:

1. Disconnect the laptop from the network: Click on the network icon in the system tray, select the wireless
network, and click Disconnect.

2. Confirm that the network is no longer connected.

3. Install the provisioning package by double-clicking ProductAProv.ppkg. The wireless network should
connect automatically.

Check to see if the profile has been added to the device

netsh wlan show profiles

1. Connect using an ethernet connection to the device.

2. Connect using an SSH client, such as PuTTY.

3. When connected, check to see what profiles have been installed:

The network should appear in the list of User profiles.

Use a different device name for each device. This can help prevent network conflicts. Set this name while
creating media for the device.

https://docs.microsoft.com/windows/iot-core/manage-your-device/DevicePortal
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe


Lab 1e: Add a driver to an image



Lab 1e: Add a driver to an image
7/11/2018 • 3 minutes to read • Edit Online

Prerequisites

Check for similar drivers

Create your test files

Build a package for your driver

In this lab, we'll add the sample driver : Hello, Blinky!, package it up, and deploy it to the to a Windows 10 IoT Core
device.

Create a product folder (ProductB) that's set up to boot to the default (Bertha) app, as shown in Lab 1a: Create
a basic image or Lab 1c: Add a file and a registry setting to an image.

Before adding drivers, you may want to review your pre-built Board Support Package (BSP) to make sure there's
not already a similar driver.

For example, review the list of drivers in the file: \IoT-ADK-AddonKit\Source-
arm\BSP\Rpi2\Packages\RPi2FM.xml.

If there's not an existing driver, you can usually just add one.

If there is a driver, but it doesn't meet your needs, you'll need to replace the driver by creating a new BSP.
We'll cover that in Lab 2.

Complete the exercises in Installing The Sample Driver to build the Hello, Blinky app. You'll create three
files: ACPITABL.dat, gpiokmdfdemo.inf, and gpiokmdfdemo.sys, which you'll use to install the driver.

You can also use your own IoT Core driver, so long as it doesn't conflict with the existing Board Support
Package (BSP).

Copy each of the files: gpiokmdfdemo.sys, gpiokmdfdemo.inf, and ACPITABL.dat into a test folder, for
example, C:\gpiokmdfdemo.

newdrvpkg C:\gpiokmdfdemo\gpiokmdfdemo.inf Drivers.HelloBlinky

1. Run C:\IoT-ADK-AddonKit\IoTCoreShell as an administrator.

2. Create the driver package using the .inf file as the base:

The new folder appears at C:\IoT-ADK-AddonKit\Source-<arch>\Packages\Drivers.HelloBlinky\.

3. Copy the file: ACPITABL.dat to the new folder, C:\IoT-ADK-
AddonKit\Source-<arch>\Packages\Drivers.HelloBlinky\.

Verify that the sample files are in the package

1. Update the driver's package definition file, C:\IoT-ADK-AddonKit\Source-
<arch>\Packages\Drivers.HelloBlinky\Drivers.HelloBlinky.wm.xml.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/add-a-driver-to-an-image.md
https://developer.microsoft.com/windows/iot/samples/driverlab
https://developer.microsoft.com/windows/iot/samples/driverlab1


Update your feature manifest

Update the project's configuration files

<?xml version="1.0" encoding="utf-8"?>
<identity xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
    name="HelloBlinky"
    namespace="Drivers"
    owner="$(OEMNAME)"
    legacyName="$(OEMNAME).Drivers.HelloBlinky" xmlns="urn:Microsoft.CompPlat/ManifestSchema.v1.00">
    <onecorePackageInfo
        targetPartition="MainOS"
        releaseType="Production"
        ownerType="OEM" />
    <drivers>
        <driver>
            <inf source="iaiogpio.inf" />
        </driver>
    </drivers>
    <files>
        <file source="ACPITABL.dat" destinationDir="$(runtime.system32)" name="ACPITABL.dat" />
    </files>
</identity>

buildpkg Drivers.HelloBlinky

The default package definition file includes sample XML that you can modify to add your own driver files.

If necessary, add the ACPITABL.dat file as shown below.

2. From the IoT Core Shell, build the package.

The package is built, appearing as C:\IoT-ADK-AddonKit\Build\<arch>\pkgs\<your OEM
name>.Drivers.HelloBlinky.cab.

Add your driver package to the feature manifest

      <PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Drivers.HelloBlinky.cab">
        <FeatureIDs>
          <FeatureID>DRIVER_HelloBlinky</FeatureID>
        </FeatureIDs>
      </PackageFile>

1. Open the architecture-specific feature manifest file, C:\IoT-ADK-
AddonKit\Source-<arch>\Packages\OEMFM.xml

2. Create a new PackageFile section in the XML with your package file listed and give it a new FeatureID, such
as "DRIVER_HelloBlinky".

You'll now be able to add your driver to your product by adding a reference to this feature manifest.

1. Open your product's test configuration file: C:\IoT-ADK-
AddonKit\Source-<arch>\Products\ProductB\TestOEMInput.xml.

2. Make sure your feature manifest, Rpi2FM.xml, is in the list of AdditionalFMs. Add it if it isn't there already
there:



Build and test the image

Next steps

<AdditionalFMs>
  <!-- Including BSP feature manifest -->
  <AdditionalFM>%BLD_DIR%\MergedFMs\RPi2FM.xml</AdditionalFM>
  <!-- Including OEM feature manifest -->
  <AdditionalFM>%BLD_DIR%\MergedFMs\OEMCommonFM.xml</AdditionalFM>
  <AdditionalFM>%BLD_DIR%\MergedFMs\OEMFM.xml</AdditionalFM>
   <!-- Including the test features -->
   <AdditionalFM>%AKROOT%\FMFiles\arm\IoTUAPNonProductionPartnerShareFM.xml</AdditionalFM>
</AdditionalFMs>

<OEM>
  <!-- Include BSP Features -->
  <Feature>RPI2_DRIVERS</Feature>
  <Feature>RPI3_DRIVERS</Feature>
  <!-- Include OEM features-->
  <Feature>CUSTOM_CMD</Feature>
  <Feature>PROV_AUTO</Feature>
  <Feature>CUSTOM_FilesAndRegKeys</Feature>
  <Feature>DRIVER_HelloBlinky</Feature> 
</OEM>

3. Add the FeatureID for your driver :

Build and flash the image using the same procedures from Lab 1a: Create a basic image. Short version:

1. From the IoT Core Shell, build the image ( buildimage ProductB Test ).
2. Install the image: Start Windows IoT Core Dashboard > Click the Setup a new device tab > select Device

Type: Custom >
3. From Flash the pre-downloaded file (Flash.ffu) to the SD card: click Browse, browse to your FFU file

(C:\IoT-ADK-AddonKit\Build\<arch>\ProductB\Test\Flash.ffu), then click Next.
4. Enter device name and password. Put the Micro SD card in the device, select it, accept the license terms, and

click Install*.
5. Put the card into the IoT device and start it up.

Check to see if your driver works

1. Use the procedures in the Hello, Blinky! lab to test your driver.

Lab 1f: Build a retail image

https://developer.microsoft.com/windows/iot/samples/driverlab3


Lab 1f: Build a retail image
8/10/2018 • 2 minutes to read • Edit Online

Prerequisites

Add your app to the retail configuration file

Copy in the provisioning package from ProductB into ProductA.

We'll take our customizations, put them together, and test them in a retail build.

Lab 1a: Create a basic image
Lab 1b: Add an app to your image
Lab 1c: Add a file and a registry setting to an image
Lab 1d: Add networking and other provisioning package settings to an image
Lab 1e: Add a driver to an image

<AdditionalFMs>
  <!-- Including BSP feature manifest -->
  <AdditionalFM>%BLD_DIR%\MergedFMs\RPi2FM.xml</AdditionalFM>
  <!-- Including OEM feature manifest -->
  <AdditionalFM>%BLD_DIR%\MergedFMs\OEMCommonFM.xml</AdditionalFM>
  <AdditionalFM>%BLD_DIR%\MergedFMs\OEMFM.xml</AdditionalFM>
</AdditionalFMs>

<OEM> 
   <!-- Include BSP Features -->
   <Feature>RPI2_DRIVERS</Feature> 
   <Feature>RPI3_DRIVERS</Feature>
   <!-- Include OEM features -->
   <Feature>CUSTOM_CMD</Feature> 
   <Feature>PROV_AUTO</Feature>
   <Feature>APP_MyUWPApp</Feature>
   <Feature>CUSTOM_FilesAndRegKeys</Feature>
   <Feature>DRIVER_HelloBlinky</Feature> 
</OEM>

1. Open your product's retail configuration file: C:\IoT-ADK-AddonKit\Source-
<arch>\Products\ProductA\RetailOEMInput.xml.

2. Add your feature manifest, OEMFM.xml, into the list of AdditionalFMs. At the same time, add the feature
manifest: OEMCommonFM.xml, which contains the OEM_CustomCmd package that configures your app
on the first boot:

3. Add the FeatureIDs for the your app package, and the OEM_CustomCmd package.

PROV_AUTO is required to pull in the provisioning package.

CUSTOM_FilesAndRegKeys, APP_MyUWPApp, and DRIVER_HelloBlinky were sample packages added in
previous labs.

1. Copy the customizations.xml file from C:\IoT-ADK-AddonKit\Source-<arch>\Products\ProductB\prov to

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/build-retail-image.md


Build and create the image

C:\IoT-ADK-AddonKit\Source-<arch>\Products\ProductA\prov.

2. Delete ProductAProv.ppkg file if present.

set SIGNTOOL_OEM_SIGN=/s my /i "Issuer" /n "Subject" /ac "CrossCertRoot" /fd SHA256

retailsign On

buildpkg all

re-signcabs.cmd <srccabdir> <dstcabdir>

buildimage ProductA Retail

1. Get a code-signing certificate. For the kernel driver signing, Standard Code signing certificate is sufficient.
You will require an EV cert to access the Device Update Center in Hardware Dev Center portal.

2. Download a Cross-Certificates for Kernel Mode Code Signing that matches the CA of the code-signing
certificate from the previous step.

3. Configure the cross-signing certificate to be used for retail signing. Edit setsignature.cmd file to set
SIGNTOOL_OEM_SIGN:

Issuer : Issuer of the code-signing certificate (see Certificate -> Details -> Issuer)

Subject : Subject in the code-signing certificate (see Certificate -> Details -> Subject)

CrossCertRoot : Full path of the Cross-Certificate file that was downloaed in step 2.

4. From the IoT Core Shell, enable retail signing.

5. Rebuild all the packages so that they are retail signed.

If the BSP drivers/packages are test signed, you need to rebuild them to have retail signature. You can re-
sign the cabs and its contents using

6. From the IoT Core Shell, create the image:

This creates the product binaries at C:\IoT-ADK-AddonKit\Build\<arch>\ProductA\Retail\Flash.FFU.

7. Start Windows IoT Core Dashboard > Setup a new device > Custom, and browse to your image. Put
the Micro SD card in the device, select it, accept the license terms, and click Install. This replaces the
previous image with our new image.

8. Put the card into the IoT device and start it up.

After a short while, the device should start automatically, and you should see your app.

Check to see if everything is working

With retail builds, you won't be able to log into the device using the SSH clients or by using the web interface.
However, any files and reg keys that your app relies on should still work.

https://docs.microsoft.com/windows-hardware/drivers/dashboard/get-a-code-signing-certificate
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing


Next steps
Lab 2: Creating your own board support package



Lab 2: Creating your own board support package
(BSP)
7/11/2018 • 2 minutes to read • Edit Online

Create a new BSP working folder

Add packages into the feature manifest

A BSP includes a set of device drivers that are specific to the components/silicon used in the board. These are
provided by the component vendors / silicon vendors, mostly in the form of .inf and associated .sys/.dll files.

Create a new Board Support Package (BSP) when:

Creating a new hardware design

Replacing a driver or component on an existing hardware design

Whether you're creating a new BSP or modifying an existing BSP, you become the owner. This lets you decide
whether to allow updates to install on your boards.

In our lab, we'll create a new BSP based on the Raspberry Pi 2, removing the existing GPIO driver and replacing it
with the sample GPIO driver : Hello, Blinky!.

newbsp MyRPi2

1. From the IoT Core Shell, create a BSP working folder that you'd like to modify.

1. Open the feature manifest file for your new BSP, \IoT-ADK-AddonKit\Source-
<arch>\BSP\MyRpi2\MyRpi2FM.xml.

In another window, open the Raspberry Pi 2 feature manifest to use as a template.

2. Add your base packages (BasePackages).

UEFI drivers for the boot partition (RASPBERRYPI.RPi2.BootFirmware.cab)

Drivers required for UpdateOS (SV.PlatExtensions.UpdateOS.cab)

Mandatory device drivers (bcm2836sdhc.cab, dwcUsbOtg.cab, rpiq.cab)

When creating your own BSP, it's typical to require a display driver and a storage driver, and
sometimes a network driver.

Device-specific customizations

3. Copy in the device layout and platform packages (DeviceLayoutPackages, OEMDevicePlatformPackages).

Note that both the OEMDevicePlatform.xml and devicelayout.xml can be packaged into one package, for
example, DeviceLayout.MBR4GB. The same package can then be specified as input in both the sections (for
example, under and ). To learn more, see Device layout.

4. Copy in features (Features).

Copy in features you want. Exclude any that don't apply to your project.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/create-a-new-bsp.md
https://developer.microsoft.com/windows/iot/samples/driverlab


Create a new product folder

Update the project's configuration files

<PackageFile Path="$(mspackageroot)\Retail\$(cputype)\$(buildtype)" Name="RASPBERRYPI.RPi2.GPIO.cab">
    <FeatureIDs>
      <FeatureID>RPI2_DRIVERS</FeatureID>
    </FeatureIDs>
</PackageFile>

    <PackageFile Path="%PKGBLD_DIR%" Name="%OEM_NAME%.Drivers.HelloBlinky.cab">
      <FeatureIDs>
        <FeatureID>RPI2_DRIVERS</FeatureID>
      </FeatureIDs>
    </PackageFile>

For example, copy in each of the drivers except the existing GPIO driver :

Note: To make grouping packages easier, you can combine them into one or more Feature IDs. For
example, all of the Raspberry Pi 2 optional drivers use the Feature ID: RPI2_DRIVERS.

5. Add the HelloBlinky driver :

newproduct ProductB MyRpi2

1. Create a new working product folder, adding your BSP name to the end.

This creates the folder : C:\IoT-ADK-AddonKit\Source-<arch>\Products\ProductB, which is linked to the
new BSP.

1. Open your product's test configuration file: C:\IoT-ADK-AddonKit\Source-
arm\Products\ProductB\TestOEMInput.xml.

2. Add FeatureIDs:

<Microsoft>
   <Feature>IOT_GENERIC_POP</Feature>
   <Feature>IOT_DISABLE_UMCI</Feature> 
   <Feature>IOT_ENABLE_TESTSIGNING</Feature> 
...
</Microsoft>

<OEM> 
   <Feature>RPI2_DRIVERS</Feature> 
   <Feature>CUSTOM_CMD</Feature> 
   <Feature>APP_MyUWPApp</Feature> 
   <Feature>CUSTOM_FileAndRegKey</Feature> 
 </OEM>

Add the FeatureID: IOT_GENERIC_POP to get OS-only updates.

Add the FeatureIDs: IOT_DISABLE_UMCI and IOT_ENABLE_TESTSIGNING to enable test binaries
and packages to work.

Optional: add the FeatureID for the other apps and test packages: APP_MyUWPApp,
CUSTOM_CMD, CUSTOM_FileAndRegKey, that you created in Lab 1.



Build and test the image

Next steps

Related topics

Build the image

createimage ProductB Test

1. From the IoT Core Shell, create the image:

This creates the product binaries at C:\IoT-ADK-AddonKit\Build\<arch>\ProductB\Flash.FFU.

2. Start Windows IoT Core Dashboard > Setup a new device > Custom, and browse to your image.

Put the Micro SD card in the device, select it, accept the license terms, and click Install. This replaces the
previous image with our new image.

3. Put the card into the IoT device and start it up.

After a short while, the device should start automatically, and you should see your app.

Check to see if your driver works

1. Use the testing procedures in the Hello, Blinky! lab to test your driver.

Congratulations, you've completed Lab 2.

Lab 3: Update apps

Device layout

https://developer.microsoft.com/windows/iot/samples/driverlab3
https://docs.microsoft.com/windows-hardware/service/iot/updating-iot-core-apps


IoT Device Layout
5/18/2018 • 2 minutes to read • Edit Online

Partition layout

Partition layout (DeviceLayout.xml)Partition layout (DeviceLayout.xml)

When modifying an IoT Core board support package (BSP), you can change the drive partitions and layout by
modifying the DeviceLayout files.

IoT Core supports UEFI (GPT) and legacy BIOS (MBR) partition layouts. Most IoT Core devices use UEFI and
GPT-style partitions, though Raspberry Pi 2 uses MBR-style partitions. To learn more about UEFI, read Boot and
UEFI and the Windows and GPT FAQ.

Sample partition layouts included in the ADK Add-Ons:

\iot-adk-addonkit\Common\Packages\DeviceLayout.GPT4GB\devicelayout.xml
\iot-adk-addonkit\Common\Packages\DeviceLayout.GPT4GB-R\devicelayout.xml
\iot-adk-addonkit\Common\Packages\DeviceLayout.MBR4GB\devicelayout.xml
\iot-adk-addonkit\Common\Packages\DeviceLayout.MBR4GB-R\devicelayout.xml

These files use three component files:

DeviceLayout..pkg.xml: Package file, creates packages for DeviceLayout and OEMDevicePlatform.xml.
DeviceLayout.xml: Specifies the device partition layout
OEMDevicePlatform.xml: Specifies the amount of free blocks available in the device and which partitions
are compressed.

IoT Core requires 3 mandatory partitions (EFIESP, MainOS and Data). You can optionally include other partitions,
for example, a CrashDump partition. Sizes are calculated in sectors, the default sector is 512 bytes.

Supported properties:

EFI: Fixed-size partition with the boot manager, boot configuration database. This partition is required for both
MBR/GPT-style devices.

Name: EFIESP

Type: For MBR, use 0x0C . For GPT, use {c12a7328-f81f-11d2-ba4b-00a0c93ec93b}

FileSystem: FAT

TotalSectors: 65536  (= 32MB)

Bootable: true

RequiredToFlash: true

MainOS: OS and OEM-preloaded apps. This partition requires a minimum number of free sectors
(MinFreeSectors) for normal operations.

Name: MainOS

Type: For MBR, use 0x07 . For GPT, use {ebd0a0a2-b9e5-4433-87c0-68b6b72699c7}

FileSystem: NTFS

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/device-layout.md
https://msdn.microsoft.com/windows/hardware/drivers/bringup/boot-and-uefi


Required fieldsRequired fields

Storage Size EstimationsStorage Size Estimations

PARTITION CONTENTS MB SECTORS REMARKS

EFIESP EFIESP 32 65536 EFIESP size

Main OS Main OS 800 1638400 MainOS (estimate)

Main OS Free space 128 262144 MainOS Headroom

MinFreeSectors: 1048576  (= 512MB)

ByteAlignment: 0x800000

ClusterSize: 0x1000  (This size is recommended to keep the partition size manageable.)

Data: User data partition, user registry hives, apps, apps data. This partition is typically set to use the remainder of
the storage space on the device. (UseAllSpace: True)

Name: Data

Type: For MBR, use 0x07 . For GPT, use {ebd0a0a2-b9e5-4433-87c0-68b6b72699c7}

FileSystem: NTFS

UseAllSpace: true

ByteAlignment: 0x800000

ClusterSize: 0x4000  (This partition tends to be larger, so 0x4000 is recommended. 0x1000 is also OK.)

Crash dump partition: Optional partition, used to collect data from crash dumps. When used, size is given in
total sectors.

Name: CrashDump

Type: For MBR, use 0x07 . For GPT, use {ebd0a0a2-b9e5-4433-87c0-68b6b72699c7}

FileSystem: FAT32

TotalSectors: 1228800  (= 600 MB)

These fields are required, the following values are supported for IoTCore:

Version: IoTUAP

SectorSize: 512

ChunkSize: 128

DefaultPartitionByteAlignment: 0x200000

The following diagrams provide an overview of two configurations.

2GB Configuration (2048MB, typically has 1843MB for storage)



Data Data 883 1808384 Expands to fill free
space

TOTAL 1843 3774464

PARTITION CONTENTS MB SECTORS REMARKS

PARTITION CONTENTS MB SECTORS REMARKS

EFIESP EFIESP 32 65536 EFIESP size

Main OS Main OS 800 1638400 MainOS (estimate)

Main OS Free space 512 1048576 MainOS Headroom

CrashDump Crash Dump 600 1228800 CrashDump Size

Data Data 1656 3391488 Expands to fill free
space

TOTAL 3600 7372800

Device platform layout (OEMDevicePlatform.xml)Device platform layout (OEMDevicePlatform.xml)

   <?xml version="1.0" encoding="utf-8"?>
   <OEMDevicePlatform xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
      <MinSectorCount>7372800</MinSectorCount>
      <DevicePlatformIDs>
        <ID>*</ID>
      </DevicePlatformIDs>
     <CompressedPartitions>
       <Name>MainOS</Name>
     </CompressedPartitions>
   </OEMDevicePlatform>

Related topics

4GB Configuration: (4096MB, typically has 3600MB available for storage)

OEMDevicePlatform.xml specifies the amount of free blocks available in the device and which partitions are
compressed. Example:

Windows 10 IoT Core BSPs

Creating your own board support package (BSP)

Boot and UEFI Windows and GPT FAQ.

https://docs.microsoft.com/windows/iot-core/build-your-image/createbsps
https://docs.microsoft.com/windows-hardware/drivers/bringup/boot-and-uefi


IoT Core feature list
8/10/2018 • 8 minutes to read • Edit Online

Retail features defined by Microsoft

FeaturesFeatures

FEATURES DESCRIPTION

IOT_EFIESP Boots the device using UEFI, required feature in all images

IOT_UAP_OOBE Includes the inbox OOBE app that is launched during the first
boot and also during installation of apps, required feature in
all images

IOT_CRT140 Adds CRT binaries, required feature in all images

IOT_UNIFIED_WRITE_FILTER Adds Unified Write Filter (UWF) to protect physical storage
media from data writes. Supported starting with Windows 10,
version 1607.

IOT_USBFN_CLASS_EXTENSION Adds USB function WDF class extension for USB function
mode support. This is new in Windows 10, version 1703.

IOT_HWN_CLASS_EXTENSION (Deprecated) Adds hardware notification WDF class extension for vibration
API support. This is new in Windows 10, version 1703.
Deprecated in Windows 10, version 1709, as this feature is
added by default

IOT_NETCMD (Deprecated) Adds the command-line tool: netcmd.exe, used for configuring
network connectivity. Deprecated in Windows 10, version
1803. The netcmd.exe will be removed when updating to
version 1803. Use Windows.Devices.WiFi.WiFiAdapter for
managing Wifi. See WiFi Connector example.

IOT_POWERSHELL Adds PowerShell

IOT_APPLICATIONS Adds Account Management host application, enables MSA
sign-in. Required for Cortana. This is new in Windows 10,
version 1703.

IOT_ALLJOYN_APP Adds the AllJoyn application, used for Headless
ZwaveAdapterAppx.

Here's the features you can add to Windows 10 IoT Core (IoT Core) images.

Add features using the OEMInput XML file. To learn more, see the IoT Core manufacturing guide.

The following table describes the Microsoft-defined features that can be used by OEMs in the Features element in
the OEMInput file for Retail build.

When creating images for your device, determine which features are required for your device.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/iot-core-feature-list.md
https://docs.microsoft.com/windows/iot-core/secure-your-device/UnifiedWriteFilter
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.wifi.wifiadapter.aspx
https://github.com/Microsoft/Windows-iotcore-samples/blob/master/Samples/WiFiConnector/CS/README.md#wifi-connector


IOT_FONTS_CHINESE_EXTENDED Adds additional Chinese fonts. This is new in Windows 10,
version 1703.

IOT_APP_TOOLKIT Adds tools required for Appx installation and management

IOT_FFU_FLASHMODE Adds flashing mode support so that the device can be flashed
using ffutool. Currently supported for arm only. This is new in
Windows 10, version 1803

IOT_MTP Adds Media transfer protocol support. See MTP. This is new in
Windows 10, version 1803

IOT_MIRACAST_RX_APP Adds Connect App that supports Miracast receive feature.
Note that the underlying hw/drivers should support Miracast
for this app to work. Currently supported for arm only. This is
new in Windows 10, version 1803

FEATURES DESCRIPTION

SettingsSettings

FEATURES DESCRIPTION

IOT_GENERIC_POP Adds the Generic device targeting info for OS only Updates.
Supported starting with Windows 10, version 1607.

IOT_POWER_SETTINGS Prevents the device from going to sleep due to inactivity.
Required for x86/amd64 platforms. This feature supports ARM
starting with Windows 10, Version 1703.

IOT_EFIESP_BCD Sets boot configuration data (BCD) for GPT-based drives.
Required for x86/amd64. MBR devices should use
IOT_EFIESP_BCD_MBR

IOT_EFIESP_BCD_MBR Sets boot configuration data (BCD) for MBR-based drives. This
is new in Windows 10, version 1703.

IOT_SHELL_HOTKEY_SUPPORT Adds support to launch default app using a hotkey: VK_LWIN
(Left Windows key). Supported starting with Windows 10,
version 1607.

IOT_SHELL_ONSCREEN_KEYBOARD Adds available on-screen keyboard. This is new in Windows
10, version 1703.

IOT_SHELL_ONSCREEN_KEYBOARD_FOLLOWFOCUS Enables on-screen keyboard to automatically appear when
input field is focused. Requires
IOT_SHELL_ONSCREEN_KEYBOARD. This is new in Windows
10, version 1703.

IOT_DISABLEBASICDISPLAYFALLBACK Disables the inbox basic render driver. This feature should only
be used with the Qualcomm DragonBoard (DB).

IOT_CRASHCONTROL_SETTINGS Configures the device to auto reboot without showing blue
screen (BSOD) when the device crashs. This also disables
crashdump. [AutoReboot = 1 ; DisplayDisabled = 1 and
CrashDumpEnabled = 0]. This is new in Windows 10, version
1803

https://docs.microsoft.com/windows/iot-core/connect-your-device/mtp
https://msdn.microsoft.com/library/windows/desktop/dd375731.aspx


IOT_SSH Enables Secure Shell (SSH) connectivity

FEATURES DESCRIPTION

Developer ToolsDeveloper Tools

IMPORTANTIMPORTANT

FEATURES DESCRIPTION

IOT_SIREP Enables SIREP service for TShell connectivity

IOT_TOOLKIT Includes developer tools such as: Kernel Debug components,
FTP, Network Diagnostics, basic device portal, and XPerf. This
also relaxes the firewall rules and enables various ports.

IOT_WEBB_EXTN Enables IOTCore-specific extensions to the Windows Device
Portal. The basic device portal is included in the IoT Toolkit.

IOT_NANORDPSERVER Adds Remote Display packages. Supported starting with
Windows 10, version 1607. Note: Remote Display is prerelease
software intended for development and training purposes
only.

IOT_CORTANA Adds Cortana feature. Requires IOT_APPLICATIONS feature.
This is new in Windows 10, version 1703.

IOT_CORTANA_OBSCURELAUNCH Enables running Cortana application on boot. This add-on
causes Cortana to run in the background resulting in better
response time for Cortana. This is new in Windows 10, version
1703.

IOT_BERTHA Adds a sample app: "Bertha". This app provides basic version
info and connectivity status.

IOT_UAP_DEFAULTAPP Adds a sample app, "Chucky". This app is similar to "Bertha".

IOT_FTSER2K_MAKERDRIVER Adds the FTDI USB-to-Serial driver.

IOT_CP210x_MAKERDRIVER Adds drivers for SiliconLabs CP210x-based USB to Serial
adapters. This is new in Windows 10, version 1703.

IOT_DMAP_DRIVER Adds DMAP drivers.

IOT_CONTAINERS Adds support for native Nano Server Containers. These are
supported only on Intel 64-bit platforms. This is new in
Windows 10, version 1709.

Speech DataSpeech Data

FEATURES DESCRIPTION

The following developer features shall not be used in Retail builds and in images for commercial devices.

https://docs.microsoft.com/windows/iot-core/manage-your-device/RemoteDisplay
https://docs.microsoft.com/virtualization/windowscontainers/deploy-containers/deploy-containers-on-server#install-base-container-images


IOT_SPEECHDATA_EN_US (Deprecated) Deprecated in Windows 10, version 1607. Do not add this
feature. The default image includes speech data for US English.

IOT_SPEECHDATA_DE_DE Adds speech data for German.

IOT_SPEECHDATA_EN_CA Adds speech data for en-CA. This is new in Windows 10,
version 1703.

IOT_SPEECHDATA_EN_GB Adds speech data for UK English.

IOT_SPEECHDATA_ES_ES Adds speech data for Spanish.

IOT_SPEECHDATA_ES_MX Adds speech data for Mexico. This is new in Windows 10,
version 1703.

IOT_SPEECHDATA_FR_FR Adds speech data for French.

IOT_SPEECHDATA_FR_CA Adds speech data for French Canadian. This is new in
Windows 10, version 1703.

IOT_SPEECHDATA_IT_IT Adds speech data for Italian.

IOT_SPEECHDATA_JA_JP Adds speech data for Japanese. Supported starting with
Windows 10, version 1607.

IOT_SPEECHDATA_ZH_CN Adds speech data for Chinese (PRC).

IOT_SPEECHDATA_ZH_HK Adds speech data for Chinese (Hong Kong S.A.R.). Supported
starting with Windows 10, version 1607.

IOT_SPEECHDATA_ZH_TW Adds speech data for Chinese (Taiwan). Supported starting
with Windows 10, version 1607.

FEATURES DESCRIPTION

Features in the IoT Core Add-OnsFeatures in the IoT Core Add-Ons

FEATURES DESCRIPTION

CUSTOM_CMD Adds scripts which support adding OEM Apps using the ADK
Add-Ons. OEM_CustomCmd is the deprecated feature ID, can
still be used for legacy builds

PROV_Auto Includes provisioning package corresponding to the product.
OEM_ProvAuto is the deprecated feature ID, can still be used
for legacy builds

Test featuresTest features

FEATURES DESCRIPTION

IOT_DISABLE_TESTSIGNING Disables runtime-installation of test-signed packages

The following table describes the Microsoft-defined test features that can be used by OEMs in the Features
element in the OEMInput file for Test builds ONLY.



IOT_DISABLE_UMCI (Deprecated) Disables the code integrity check. Deprecated in Windows 10,
version 1709

IOT_EFIESP_TEST UEFI packages required for booting test images. Should not
be used with IOT_EFIESP

IOT_ENABLE_ADMIN Enables the Administrator account with default password
'p@ssw0rd'.New in Windows 10, version 1607

IOT_ENABLE_TESTSIGNING Enables run-time installation of test-signed packages. Allows
test-signed drivers and (.appx) apps to run

IOT_KD_ON Enables Kernel Debugger

IOT_KDNETUSB_SETTINGS Includes all kernel debugger transports and enables KDNET
over USB. The default debug transport settings for this
feature are an IP address of "1.2.3.4", a port address of
"50000", and a debugger key of "4.3.2.1". To use the default IP
address of 1.2.3.4, run VirtEth.exe with the /autodebug flag.
For example, to establish a kernel debugger connection to the
phone, use the command:
Windbg -k net:port=50000,key=4.3.2.1  Note Do not

include either IOT_KDUSB_SETTINGS or
IOT_KDNETUSB_SETTINGS if you need to enable MTP or IP
over USB in the image. If the kernel debugger is enabled in
the image and the debug transports are used to connect to
the device, the kernel debugger has exclusive use of the USB
port and prevents MTP and IP over USB from working.

IOT_KDSERIAL_SETTINGS Includes all kernel debugger transports and enables KDSERIAL
with the following settings: 115200 Baud, 8 bit, no parity.
These settings apply to x86 and amd64 platforms. ARM
platforms use UEFI-defined serial transport settings.

IOT_KDUSB_SETTINGS Includes all kernel debugger transports and enables KDUSB.
The default debug transport target name for this feature is
WOATARGET. To establish a kernel debugger connection to
the phone, use the command: 
Windbg -k usb:targetname=WOATARGET . Note Do not

include either IOT_KDUSB_SETTINGS or
IOT_KDNETUSB_SETTINGS if you need to enable MTP or IP
over USB in the image. If the kernel debugger is enabled in
the image and the debug transports are used to connect to
the device, the kernel debugger has exclusive use of the USB
port and prevents MTP and IP over USB from working.

IOT_WDTF Includes components for Windows Driver Test Framework,
required for HLK validation

IOT_DIRECTX_TOOLS Adds DirectX tools

IOT_UMDFDBG_SETTINGS Includes user-mode driver framework debug settings

FEATURES DESCRIPTION

Features per release
The following tabe provides an overview of supported features per IoT Core OS release, listed in alphabetical



FEATURES 1803 (17134.X) 1709 (16299.X) 1703 (15063.X) 1607 (14393.X)

IOT_ALLJOYN_APP x x x x

IOT_APPLICATIONS x x x

IOT_APP_TOOLKIT x x x x

IOT_BERTHA x x x x

IOT_CONTAINERS x(x64) x(x64)

IOT_CORTANA x x x

IOT_CORTANA_OBS
CURELAUNCH

x x x

IOT_CP210x_MAKER
DRIVER

x x x

IOT_CRASHCONTRO
L_SETTINGS

x

IOT_CRT140 x x x x

IOT_DIRECTX_TOOL
S

x x x x

IOT_DISABLEBASICD
ISPLAYFALLBACK

x x x x

IOT_DISABLE_TESTSI
GNING

x x x x

IOT_DISABLE_UMCI
(Deprecated)

N/A N/A x x

IOT_DMAP_DRIVER x x x x

IOT_EFIESP x x x x

IOT_EFIESP_BCD x x x x

IOT_EFIESP_BCD_MB
R

x x x

IOT_EFIESP_TEST x x x x

IOT_ENABLE_ADMIN x x x x

IOT_ENABLE_TESTSI
GNING

x x x x

order.



IOT_FFU_FLASHMO
DE

x(arm)

IOT_FONTS_CHINES
E_EXTENDED

x x x

IOT_FTSER2K_MAKE
RDRIVER

x x x x

IOT_GENERIC_POP x x x x

IOT_HWN_CLASS_EXT
ENSION (Deprecated)

N/A N/A x

IOT_MIRACAST_RX_
APP

x

IOT_MTP x

IOT_KDNETUSB_SET
TINGS

x x x x

IOT_KDSERIAL_SETTI
NGS

x x x x

IOT_KDUSB_SETTIN
GS

x x x x

IOT_KD_ON x x x x

IOT_NANORDPSERV
ER

x x x x

IOT_NETCMD
(Deprecated)

N/A N/A x x

IOT_POWERSHELL x x x x

IOT_POWER_SETTIN
GS

x x x x (x86/x64)

IOT_SHELL_HOTKEY
_SUPPORT

x x x x

IOT_SHELL_ONSCRE
EN_KEYBOARD

x x x

IOT_SHELL_ONSCRE
EN_KEYBOARD_FOL
LOWFOCUS

x x x

IOT_SIREP x x x x

FEATURES 1803 (17134.X) 1709 (16299.X) 1703 (15063.X) 1607 (14393.X)



IOT_SPEECHDATA_D
E_DE

x x x x

IOT_SPEECHDATA_E
N_CA

x x x

IOT_SPEECHDATA_E
N_GB

x x x x

IOT_SPEECHDATA_EN
_US (Deprecated)

N/A N/A N/A x

IOT_SPEECHDATA_E
S_ES

x x x x

IOT_SPEECHDATA_E
S_MX

x x x

IOT_SPEECHDATA_F
R_CA

x x x

IOT_SPEECHDATA_F
R_FR

x x x x

IOT_SPEECHDATA_I
T_IT

x x x x

IOT_SPEECHDATA_J
A_JP

x x x x

IOT_SPEECHDATA_Z
H_CN

x x x x

IOT_SPEECHDATA_Z
H_HK

x x x x

IOT_SPEECHDATA_Z
H_TW

x x x x

IOT_SSH x x x x

IOT_TOOLKIT x x x x

IOT_UAP_DEFAULTA
PP

x x x x

IOT_UAP_OOBE x x x x

IOT_UMDFDBG_SETT
INGS

x x x x

IOT_UNIFIED_WRITE
_FILTER

x x x x

FEATURES 1803 (17134.X) 1709 (16299.X) 1703 (15063.X) 1607 (14393.X)



IOT_USBFN_CLASS_E
XTENSION

x x x x

IOT_WDTF x x x x

IOT_WEBB_EXTN x x x x

OEM_CustomCmd x x x x

OEM_ProvAuto x x x x

FEATURES 1803 (17134.X) 1709 (16299.X) 1703 (15063.X) 1607 (14393.X)

Related topics
What's in the Windows ADK IoT Core Add-ons

IoT Core manufacturing guides



Windows ADK IoT Core Add-ons: contents
10/18/2017 • 3 minutes to read • Edit Online

Key XML definitions

NAME FILENAME.EX T ADK TOOL BUILD COMMAND OUTPUT

Package *.wm.xml pkggen.exe buildpkg.cmd *.cab

Provisioning customizations.xml icd.exe buildprovpkg.cmd *.ppkg

Feature manifest *FM.xml featuremerger.exe

imageapp.exe

- -

Feature manifest list *FMList.xml featuremerger.exe buildfm.cmd MergerdFM/*FM.xml
, *FIP.cab

Product *OEMInputFile.xml imageapp.exe buildimage.cmd *.ffu

Code Architecture

The Windows 10 IoT Core ADK Add-Ons include OEM-specific tools to create images for your IoT Core devices
with your apps, board support packages (BSPs), settings, drivers, and features.

This kit

makes IoT Core image creation process easy and simple
enables creation of multiple images/image variants easily
provides automation support for nightly builds

The IoT Core manufacturing guide walks you through building images with these tools.

Package definitions (*.wm.xml) : defines a component package
Provisioning definitions (customizations.xml) : source file for provisioning settings
Feature manifests (*FM.xml) : defines feature composition and feature IDs
Feature manifest List (*FMList.xml) : enumerates the FM files
Product definitions (*OEMInputFile.xml) : specifies the product composition with the Microsoft features and
OEM features included in the product

Root folder

Build

Common/Packages

IoTCoreShell.cmd: Launches the IoT Core Shell command-line
README.md: Version info, links to documentation

This is the output directory where the build contents are stored. It starts as empty.

Architecture independent, platform independent packages
OEMCommonFM.xml - feature manifest file that enumerates common packages and defines common
features.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/iot-core-adk-addons.md
http://go.microsoft.com/fwlink/?LinkId=735028


Sample packages

Common PackagesCommon Packages

PACKAGE NAME DESCRIPTION

Custom.Cmd Package to include the oemcustomization cmd. This is
product-specific and picks up the input file from product
directory. This also makes an registry entry with the product
name.

Provisioning.Auto Package used to add a provisioning package to an image.
This is product specific and picks up the input ppkg file from
the product directory.

Registry.Version Package containing registry settings with product and version
information.

DeviceLayout.GPT4GB Package with GPT drive/partition layout for UEFI-based
devices with 4GB drives.

DeviceLayout.GPT8GB-R Package with GPT drive/partition layout for UEFI-based
devices with 8GB drives with recovery partition.

DeviceLayout.MBR4GB Package with MBR drive/partition layout for legacy BIOS-
based devices with 4GB drives.

Source-<arch>

Templates

Tools

Packages

BSP

Products

Architecture specific, platform independent packages
versioninfo.txt: Current version number.
OEMFM.xml - the feature manifest file that enumerates arch specific packages and defines arch
specific features.
OEMFMList.xml - enumeration of OEM FM files.

<bspname>/Packages
Architecture specific, platform specific packages
<bspname>FM.xml - feature manifest that enumerates the bsp packages and defines
supported device layouts and features
<bspname>FMList.xml - enumeration of BSP FM files.

sample oeminput files demonstrating how to use the bsp, these files are used as
templates in newproduct.cmd

<bspname>/OemInputSamples

architecture specific named products

Templates used by tools to create new bsp/product

Includes the IoT Core Add-ons command-line tools

Sample packages are provided in the iot-adk-addonkit that can be used as a reference or as is in your image, if it
meets your needs. Few of such packages are listed here.



DeviceLayout.MBR8GB-R Package with MBR drive/partition layout for legacy BIOS-
based devices with 8GB drives with recovery partition.

Settings.HotKey Sample package to demonstrate how to add a registry
setting to an image. Read Switching between apps for more
details.

Security.SecureBoot Sample package to include secure boot functionality.

Security.Bitlocker Sample package to include bitlocker functionality.

Security.DeviceGuard Sample package to include deviceguard policies.

PACKAGE NAME DESCRIPTION

NOTENOTE

Applications and Services packagesApplications and Services packages

PACKAGE NAME DESCRIPTION

Appx.IoTCoreDefaultApp Foreground apps package containing IoTCoreDefaultApp, see
description.

Appx.DigitalSign Foreground apps package containing DigitalSign, see
description.

Appx.IoTOnboardingTask Background apps package containing IoTOnboardingTask, see
description.

AzureDM.Services Service package contaiing Azure Device Management

BSPBSP

Driver packagesDriver packages

PACKAGE NAME DESCRIPTION

Drivers.GPIO Sample package for adding a driver.

ProductsProducts

PRODUCT DESCRIPTION

SampleA Product with Microsoft provided features / apps

SampleB Product using OEM Apps and OEM drivers

The security packages contain test contents and you should replace them with your own device specific content when
creating your final image. See Security, BitLocker and Deviceguard for more details.

Source files to create board support packages (BSPs).

Some BSPs are included in each folder as a start. You can create your own BSPs based on these packages.

Source file for product configurations. Use our samples (SampleA, SampleB) or create your own.

https://docs.microsoft.com/en-us/windows/iot-core/develop-your-app/iotcoreshell#switching-between-apps-with-hid-injection-keys
https://docs.microsoft.com/windows/iot-core/secure-your-device/securebootandbitlocker
https://github.com/ms-iot/samples/tree/develop/IoTCoreDefaultApp
https://developer.microsoft.com/windows/iot/samples/iotdefaultapp
https://github.com/ms-iot/samples/tree/develop/DigitalSign
https://developer.microsoft.com/windows/iot/samples/digitalsign
https://github.com/ms-iot/samples/tree/develop/IoTOnboarding
https://developer.microsoft.com/windows/iot/samples/iotonboarding


SingleLang Product with single non english language support

MultiLang Product with multiple language support

SecureSample Product using security features

RecoverySample Product using recovery mechanism

DigitalSign Sample real life product using various features Cortana,
recovery mechanism, security features, multi languages
support

PRODUCT DESCRIPTION

Related topics
IoT Core manufacturing guides

IoT Core feature list



IoT Core Add-ons command-line options
1/22/2018 • 7 minutes to read • Edit Online

appx2pkg.cmd

BuildAgent.cmd

buildbsp.cmd

buildbsp {bspname/all} [version]

PARAMETERS DESCRIPTION

BSPName Name of the build BSP directory.

All Builds all BSP directories.

Version Optional. Specifies package version. If not specified, it uses
bsp_version.

buildbsp rpi2
buildbsp rpi2 10.0.1.0
buildbsp all
buildbsp all 10.0.2.0

buildfm.cmd

buildfm {oem/bsp/all} [bspname] [version]

These tools are part of the Windows 10 IoT Core (IoT Core) ADK Add-Ons, in the \Tools folder. To learn more
about these tools, see What's in the Windows ADK IoT Core Add-ons.

Creates the folder structure and copies the template files for a new package.

Builds FFUs for all OEMInputSamples under the Addon Kit directory. Can be used to automate nightly builds.

Builds BSP packages after signing all the required binaries.

Usage:

Examples

Builds feature merger files.

Usage:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/iot-core-adk-addons-command-line-options.md
http://go.microsoft.com/fwlink/?LinkId=735028


PARAMETERS DESCRIPTION

OEM Builds OEMFM/OEMCommonFM files

BSP Builds BSP files

All Builds both OEM and BSP files

BSPName Required for BSP. Name of the BSP. Not required with OEM or
All

Version Optional. Specifies package version. If not specified, it uses
version defined in the variable %BSP_VERSION%.

buildfm oem
buildfm bsp Rpi2
buildfm all

buildimage.cmd

buildimage [ProductName]/[All]/[Clean] [BuildType] [Version]

PARAMETERS DESCRIPTION

ProductName Required, Name of the product to be built.

All All Products under the \Products directory are built.

Clean Cleans the output directory. One of the above should be
specified.

BuildType Optional, Retail/Test, if not specified both types are built.

Version Optional, Package version. If not specified, it uses version
defined in the variable %BSP_VERSION%

/? Displays this usage string.

buildimage SampleA Test
buildimage SampleA Retail
buildimage SampleA
buildimage All Test
buildimage All
buildimage Clean

Examples

Builds an image file (FFU), using the product-specific packages. Uses createimage.cmd, includes additional
options.

Usage:

Examples:



buildpkg.cmd

buildpkg [CompName.SubCompName]/[packagefile.wm.xml]/[All]/[Clean] [version]

PARAMETERS DESCRIPTION

CompName.SubCompName Use this to refer to the package by its
ComponentName.SubComponent Name.

packagefile.wm.xml Use this to refer to the package by its package definition XML
file.

All Builds all packages in the \Sources-<arch>\Packages folder.
This is the same as the BuildPkg All  command.

Clean Use this to erase everything in the \Build\<arch>\pkgs folder.
Recommended before building all packages.

version Optional, used to specify a version number. If you don't
specify one, the default is to use the version defined in the
variable %BSP_VERSION%.

buildpkg Appx.Main
buildpkg Appx.Main 10.0.1.0
buildpkg sample.wm.xml
buildpkg sample.wm.xml 10.0.1.0
buildpkg All
buildpkg All 10.0.2.0
buildpkg Clean

buildrecovery.cmd

buildrecovery <ProductName> [BuildType] [WimMode] [WimDir]

PARAMETER DESCRIPTION

ProductName Required, Name of the product to be built.

Builds a package from \Sources-<arch>\Packages.

Buildpkg saves the package in the \Build\<arch>\pkgs folder as a .cab file (example:
Contoso.Provisioning.Auto.cab).

For troubleshooting, Buildpkg saves logs at \Build\<arch>\pkgs\logs.

Usage:

Examples:

Creates a recovery image by adding required wim files to the recovery partition. See Add a recovery mechanism
to your image. This command also invokes newwinpe.cmd and buildimage.cmd if the winpe.wim and Flash.ffu
files are not present.

Usage:

https://docs.microsoft.com/windows/iot-core/build-your-image/addrecovery


BuildType Optional, Retail/Test, if not specified both types are built.

WimMode Optional, Import/Export, if import is specified, the wim files
from WimDir are used, if export is specified, the extracted wim
files are copied to WimDir.

WimDir Optional, directory to import or export wim files. Mandatory
when WimMode is specified

PARAMETER DESCRIPTION

buildrecovery RecoverySample Test

exportpkgs.cmd

exportpkgs DestDir Product BuildType [OwnerType]

PARAMETERS DESCRIPTION

DestDir Required. Destination directory to export.

Product Required. Name of the product.

Buildtype Required. Can be Retail or Test.

Owner Optional. Can be MS, OEM, or All. Default value is All.

exportpkgs C:\Temp SampleA Test OEM
exportpkgs C:\Temp SampleA Retail ALL

flashsd.cmd

flashsd product buildtype drivenr

PARAMETERS DESCRIPTION

product Name of the product.

Example:

Exports all the packages used in a product configuration to a directory.

Usage:

Examples:

Flashes an image to a specified SD card. FlashSD.cmd requires you to specify a physical drive number. Connect
your SD card to your PC, and then open diskmgr.msc to see the physical drive number of the SD card.

Usage:



buildtype Retail or Test. Specifies the buildtype.

drivenr Physical drive number of the SD card.

PARAMETERS DESCRIPTION

flashSD SampleA test 2

GetAppXInfo.exe

GetAppxInfo.exe appxfile

GetAppXInfo.exe IOTCoreDefaultApp_1.1.0.0_ARM.appx

inf2cab.cmd

inf2cab filename.inf [CompName.SubCompName]

PARAMETERS DESCRIPTION

filename.inf Required, input file for the driver.

CompName.SubCompName Optional, refers to the driver package by its
ComponentName.SubComponent Name.

inf2cab C:\test\gpiodriver.inf
inf2cab C:\test\gpiodriver.inf Drivers.GPIO

inf2pkg.cmd

Example:

Extracts appx package-related information for a given .appx or .appbundle package.

Usage:

Example:

Converts a .inf driver package to a .cab file.

Inf2cab saves the package in the \Build\<arch>\pkgs folder (example: Drivers.GPIO.cab).

Usage

Examples:

Creates the folder structure and copies the template files for a new package

Usage:



inf2pkg input.inf [CompName.SubCompName] OwnerName

PARAMETERS DESCRIPTION

input.inf Required, input .inf file

CompName.SubCompName Optional, default is Drivers.input

OwnerName Optional, default is $(OEMNAME)

/? Displays this usage string.

inf2pkg C:\test\testdriver.inf

IoTCoreShell.cmd

LaunchTool.cmd

newappxpkg.cmd

newappxpkg filename.appx [fga]/[bgt]/[none] [CompName.SubCompName] [skipcert]

PARAMETERS DESCRIPTION

filename.appx Required, input file for the Appx package.

fga/bgt/none Required, chooses the app's behavior on startup. fga-App will
be forground app. bgt-App will start in background. none-
App will not run on startup.

CompName.SubCompName Optional, creates the working folder using the name:
ComponentName.SubComponent.

Example:

  

Opens the IoT Core Shell as an administrator. (This file is in the root folder, and uses LaunchTool.cmd)

After you open IoTCoreShell, you'll be prompted to choose a default architecture (ARM or x86) for the devices
you'll be building. This sets your default starting set of system variables.

Configures the command shell with required settings.

Creates a new package folder to help you convert appx packages to .cab files. The provisioning package version
(version field in customizations.xml) is set to the appx version itself.

This command creates the working folder in the \Source-<arch>\Packages\ folder.

If you run this command without any variables, you'll also see the other working folders in the \Source-
<arch>\Packages\ folder.

Usage:



skipcert Optional, specify this to skip adding cert information.

PARAMETERS DESCRIPTION

newappxpkg C:\test\MainAppx_1.0.0.0_arm.appx fga AppX.Main

newbsp.cmd

newbsp BSPName

PARAMETER DESCRIPTION

BSPName Required, Name of the BSP to be used.

newbsp CustomRPi2

newcommonpkg.cmd

newcommonpkg CompName.SubCompName

PARAMETER DESCRIPTION

CompName.SubCompName Required, creates the working folder using the name
ComponentName.SubComponent.

newcommonpkg Registry.FilesAndRegKeys

Example:

To learn more, see Lab 1b: Add an app to your image.

Creates the folder structure and copies the template files for creating a new board support package (BSP).

Usage:

Example:

Creates a new working folder to help you add files, folders, registry keys, and provisioning packages as .cab files.
After using this command, use the buildpkg command to create your final .cab file.

This command creates the working folder in the \Common\Packages\ folder.

If you run this command without any variables, you'll also see the other working folders in the
\Common\Packages\ folder.

Usage:

Example:

To learn more, see Lab 1c: Add a file and a registry setting to an image.



newdrvpkg.cmd

newdrvpkg filename.inf [CompName.SubCompName]

PARAMETERS DESCRIPTION

filename.inf Required, input .inf file for the driver package.

CompName.SubCompName Optional, creates the working folder using the name:
ComponentName.SubComponent. The default is Drivers.
<filename>.

newdrvpkg C:\test\GPIO.inf Drivers.GPIO

newproduct.cmd

newproduct <productname> bsp

PARAMETER DESCRIPTION

productname Name of the product to be created.

bsp Name of the BSP to be used.

newproduct ProductA rpi2

newwinpe.cmd

Used to add a driver to an image. Creates a new working folder to help you convert driver packages to .cab files.
After using this command, use the buildpkg command to create your final .cab file.

This command creates the working folder in the \Source-<arch>\Packages\ folder.

If you run this command without any variables, you'll also see the other working folders in the \Source-
<arch>\Packages\ folder.

Usage:

Example:

Used to create new product configuration. Creates a new working product directory under \Products and copies
the contents from the template file.

Usage:

Example:

Creates a WinPE image for a specified bsp and a device layout (identified by the socname). See Add a recovery
mechanism to your image.

Usage:

https://docs.microsoft.com/windows/iot-core/build-your-image/addrecovery


newwinpe <bspname> <socname>

PARAMETER DESCRIPTION

bspname Name of the bsp to be used.

socname Identifier for the device layout, specified in the bspfm.xml
under devicelayout section.

newwinpe QCDB410C QC8016_R

retailsign.cmd

retailsign {On/Off}

PARAMETERS DESCRIPTION

On Enables Cross Cert for signing.

Off Disables Cross Cert for signing and enables OEM Test Signing.

retailsign On
retailsign Off

setenv.cmd

setenv {arm|x86|x64}

PARAMETER DESCRIPTION

arch Architecture to be set ( arm , x86 , or x64 ).

Example:

Toggles between using OEM cross-certificate and test certificates for signing

Usage:

Examples:

Resets your environment variables, including IOTADK_ROOT, COMMON_DIR, SRC_DIR, BLD_DIR,
PKGBLD_DIR, TOOLS_DIR, and more.

Open setenv.cmd in a text editor to see the full list of variables set.

Usage:

Example:



setenv.cmd arm

setOEM.cmd

set OEM_NAME=Fabrikam

setsignature.cmd

setversion.cmd

setversion x.y.z.a

PARAMETERS DESCRIPTION

x.y.z.a Four-part version number to be used for packages.

setversion 10.0.0.1

signbinaries.cmd

signbinaries {bsp/all/file extension} dir

PARAMETERS DESCRIPTION

bsp Signs all .sys/.dll files.

Sets your OEM company name. Edit this file with a text editor.

Example:

Where Fabrikam is the OEM company name.Only alphanumeric characters are supported in the OEM_NAME as
this is used as a prefix for various generated file names.

Sets the Cross-Certificates for kernel-mode code signing

Sets the version numbers used when creating a package with createpkg.cmd or a provisioning package with
createprovpkg.cmd.

This version information is stored in %PRJ_DIR%\versioninfo.txt and loaded back when the IoT Core Shell is
launched again. Whenever the package contents are changed, the version has to be updated and all packages need
to be recreated.

Usage:

Example:

Signs different file types in a directory

Usage:

https://docs.microsoft.com/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing
https://docs.microsoft.com/windows-hardware/service/iot/updating-iot-core-apps


all Signs all .dll, .sys, and .ppkg files.

file extension Signs all files of a specified type. For example, .cab, .dll, .sys,etc.

dir Directory with files to be signed.

PARAMETERS DESCRIPTION

signbinaries bsp %BSPSRC_DIR%
signbinaries all %BSPSRC_DIR%
signbinaries exe %BSPSRC_DIR%

Related topics

Example:

IoT Core Add-ons

IoT Core manufacturing guides



Update the time server
9/29/2017 • 2 minutes to read • Edit Online

Update the server from a command line (for example, using a tool like
PuTTY):

Update the server in an IoT Core image

By default, IoT Core devices are setup to synchronize time from time.windows.com. If you don’t have internet
connectivity or behind a firewall, then you’ll need to synchronize the system time for your IoT Core devices to a
time server reachable in your network. You can change the time server or add multiple time servers using the
information below.

W32tm.exe /stripchart /computer:time.windows.com /samples:5
W32tm.exe /stripchart /computer:NtpServer1 /samples:5
W32tm.exe /stripchart /computer:NtpServer2 /samples:5

reg add HKLM\SYSTEM\CurrentControlSet\Services\w32time\Parameters /v NtpServer /t REG_SZ /d 
"time.windows.com,0x9 NtpServer1,0x9 NtpServer2,0x9 " /f >nul 2>&1

net stop w32time
net start w32time

W32tm.exe /query /peers

1. Identify the required NTP server(s) and make sure you can reach them from your network. For example, if
time.windows.com, NTPServer1, NTPServer2 are the three desired NTP servers, make sure the following
commands succeed when run on a Windows computer on the network before using in an IoT device:

2. Modify the W32Time service configuration on the IoT device to use your NTP time server(s).

3. Restart the time service

4. Verify the time servers from which the device is currently receiving time.If you restarted the time service,
allow a minute or so before verifying the time service.

<OSComponent> 
  <RegKeys> 
     <RegKey KeyName="$(hklm.system)\CurrentControlSet\Services\w32time\Parameters">
        <RegValue Name="NtpServer" Value="time.windows.com,0x9 NtpServer1,0x9 NtpServer2,0x9" 
Type="REG_SZ"/>
    </RegKey>
  </RegKeys>
</OSComponent>

1. Create a package definition file, and add it to the image. To learn more, see Lab 1c: Add a file and a registry
setting to an image. Sample script:

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/update-the-time-server.md


Create Windows Universal OEM Packages
11/7/2017 • 5 minutes to read • Edit Online

Packages

Start by creating a new empty package

The Windows Universal OEM packaging standard is supported on Windows IoT Core, version 1709.

This new packaging schema is built to be compatible with more types of devices in the future. If you've built
packages for IoT Core devices using the legacy packaging standard (pkg.xml), and you'd like to use them on IoT
devices, you can convert them to the new packaging standard.

Packages are the logical building blocks used to create IoT Core images.

Everything you add is packaged. Every driver, library, registry setting, system file, and customization that
you add to the device is included in a package. The contents and location of each item are listed in a package
definition file (*.wm.xml).
Packages can be updated by trusted partners. Every package on your device is signed by you or a trusted
partner. This allows OEMs, ODMs, developers, and Microsoft work together to help deliver security and feature
updates to your devices without stomping on each other's work.
Packages are versioned. This helps make updates easier and makes system restores more reliable.

Packages fall into three main categories:

OS kit packages contain the core Windows operating system
SoC vendor prebuilt packages contain drivers and firmware that support the chipset
OEM packages contain device-specific drivers and customizations

Learn about how to combine these packages into images for devices.

1. Install Windows ADK for Windows 10, version 1709, as well as the other tools and test certificates
described in Get the tools needed to customize Windows IoT Core and Lab 1a: Create a basic image.

2. Use a text editor to create a new package definition file (also called a Windows Manifest file) based on the
following template. Save the file using the wm.xml extension.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/create-packages.md


Add content to a package

<?xml version='1.0' encoding='utf-8' standalone='yes'?>
<identity
    xmlns="urn:Microsoft.CompPlat/ManifestSchema.v1.00"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    name="MediaService"
    namespace="Media"
    owner="OEM"    
    >
  <files>
    <file source="$(_RELEASEDIR)\MediaService.dll"/>
  </files>
  <regKeys>
    <regKey keyName="$(hklm.software)\OEMName\MediaService">
      <regValue
          name="StringValue"
          type="REG_SZ"
          value="MediaService"
          />
      <regValue
          name="DWordValue"
          type="REG_DWORD"
          value="0x00000020"
          />
    </regKey>
  </regKeys>
</identity>

Run the pkggen.exe tool

<?xml version='1.0' encoding='utf-8' standalone='yes'?>
<identity
  xmlns="urn:Microsoft.CompPlat/ManifestSchema.v1.00"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  name="MediaService"
  namespace="Media"
  owner="OEM"
  >
</identity>

c:\oemsample>pkggen myPackage.wm.xml /universalbsp

Directory of c:\oemsample

04/03/2017  05:56 PM    <DIR>          .
04/03/2017  05:56 PM    <DIR>          ..
04/03/2017  05:43 PM               333 myPackage.wm.xml
04/03/2017  05:56 PM             8,239 OEM-Media-MediaService.cab

3. Create the empty package file (*.cab). The filename created is based on the owner, namespace, and name
from the file.

The contents of a package are organized as a list of XML elements in the package definition file.

The following example demonstrates how to add some files and registry settings to a package. This example
defines a variable (_RELEASEDIR) that can be updated each time you generate the package.



  [project]··········· Full path to input file : .wm.xml, .pkg.xml, .man
                       Values:<Free Text> Default=NULL

  [universalbsp]······ Convert wm.xml BSP package to cab
                       Values:<true | false> Default=False

  [variables]········· Additional variables used in the project file,syntax:<name>=<value>;<name>=<value>;....
                       Values:<Free Text> Default=NULL

  [cpu]··············· CPU type. Values: (x86|arm|arm64|amd64)
                       Values:<Free Text> Default="arm"

  [languages]········· Supported language identifier list, separated by ';'
                       Values:<Free Text> Default=NULL

  [version]··········· Version string in the form of <major>.<minor>.<qfe>.<build>
                       Values:<Free Text> Default="1.0.0.0"

  [output]············ Output directory for the CAB(s).
                       Values:<Free Text> Default="CurrentDir"

c:\oemsample>pkggen myPackage.wm.xml /universalbsp /variables:"_RELEASEDIR=c:\release"

Add a driver component

  <drivers>
    <driver>
      <inf source="$(_RELEASEDIR)\Media.inf"/>
    </driver>
  </drivers>

  <drivers>
    <driver defaultImportPath="$(_RELEASEDIR)">
      <inf source="Media.inf"/>
    </driver>
  </drivers>

PkgGen.exe [project] /universalbsp ...

Example:

In the package definition file, use the driver element to inject drivers. We recommend using relative paths, as it's
typically the simplest way to describe the INF source path.

If the default file import path is not equal to the INF source path, you can use the defaultImportPath attribute. In
the following example, the INF is in the current directory, but the files to be imported are relative to
$(_RELEASEDIR).

If files to be imported are not relative to how they are defined in the INF, file overrides can be applied. This is not
recommended, but is available for special cases.



  <drivers>
    <driver>
      <inf source="Media.inf"/>
      <files>
         <file name="mdr.sys" source="$(_RELEASEDIR)\path1\mdr.sys" />
         <file name="mdr.dll" source="$(_RELEASEDIR)\path2\mdr.dll" />
      </files>
    </driver>
  </drivers>

Add a service component

   <service
      dependOnService="AudioSrv;AccountProvSvc"
      description="@%SystemRoot%\system32\MediaService.dll,-201"
      displayName="@%SystemRoot%\system32\MediaService.dll,-200"
      errorControl="normal"
      imagePath="%SystemRoot%\system32\svchost.exe -k netsvcs"
      name="MediaService"
      objectName="LocalSystem"
      requiredPrivileges="SeChangeNotifyPrivilege,SeCreateGlobalPrivilege"
      sidType="unrestricted"
      start="delayedAuto"
      startAfterInstall="none"
      type="win32UserShareProcess"
      >

Build and Filter WOW Packages

<identity
    xmlns="urn:Microsoft.CompPlat/ManifestSchema.v1.00"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    name="MediaService"
    namespace="Media"
    owner="OEM"
    buildWow="true"
    >

04/05/2017  07:59 AM            11,870 OEM-Media-MediaService.cab
04/05/2017  07:59 AM            10,021 OEM-Media-MediaService_Wow_arm64.arm.cab

In the package definition file, use the service element (and its child elements and attributes) to define and package
a system service.

To build Guest or WOW packages (32 bit packages to run on 64 bit devices) add the buildWow="true" attribute
to myPackage.wm.wml

Running PkgGen.exe with now generate one WOW package for each host package.

Typically, the 64 bit device will get its Host 64 bit package and either its Guest 32 bit or WOW package, both
generated from myPackage.wm.xml. To avoid resource conflicts between the two packages, use build filters:



 

  <regKeys buildFilter="not build.isWow and build.arch = arm" >
    <regKey keyName="$(hklm.software)\OEMName\MediaService">
      <regValue
          name="StringValue"
          type="REG_SZ"
          value="MediaService"
          />
    </regKey>

[cpu]··············· CPU type. Values: (x86|arm|arm64|amd64)
                     Values:<Free Text> Default="arm"

Converting Windows Universal OEM Packages

Convert your package filesConvert your package files

pkggen.exe "filename.pkg.xml" /convert:pkg2wm

convertpkg.cmd MyPackage.pkg.xml
buildpkg.cmd MyPackage.pkg.xml

buildpkg.cmd MyPackage.wm.xml

Regenerate your app packagesRegenerate your app packages

newAppxPkg 
"C:\DefaultApp\IoTCoreDefaultApp_1.2.0.0_ARM_Debug_Test\IoTCoreDefaultApp_1.2.0.0_ARM_Debug_Test.appx" fga 
Appx.MyUWPApp

In this case, the registry keys are exclusive to the Host 32 bit ARM package. The CPU switch is used to set
build.arch, and build.isWow is set by PkgGen to false when building the 32 bit Host Package, then true when
building the 32 bit Guest or WOW package.

If you've created packages using the pkg.xml packaging model, and you want to use them on Windows IoT Core,
version 1709, you'll need to either recreate your packages, or convert them using the pkggen.exe tool.

After you convert the packages, you may need to modify the wm.xml file to make sure that it follows the schema.

IoT Core Add-ons v4.x support the new Windows Universal OEM Packages standard (wm.xml). This new
packaging schema is built to be compatible with more types of devices in the future.

To convert your existing packages created in the legacy phone packaging format (pkg.xml) to the new wm.xml
format:

Or, from the IoTCoreShell prompt, convert using either convertpkg or buildpkg. The output wm.xml files are saved
to the same folder.

Review and test the wm.xml packages with buildpkg.

After you’ve converted the files to wm.xml format, it’s safe to delete the pkg.xml files.

Use the newAppxPkg with the same component name. This regenerates the customizations.xml file. The version
number of the appx is retained as the version number for ppkg.

Learn more: Add apps.

https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/create-packages


Adding files: watch out for zero-sized files, relative pathsAdding files: watch out for zero-sized files, relative paths

<BinaryPartition ImageSource=".\uefi.mbn" />

Update your provisioning package customization.xml fileUpdate your provisioning package customization.xml file

    <Customizations>
      <Common>
        <Policies>
          <ApplicationManagement>
            <AllowAppStoreAutoUpdate>Allowed</AllowAppStoreAutoUpdate>
            <AllowAllTrustedApps>Yes</AllowAllTrustedApps>
          </ApplicationManagement>

Zero-sized files are not supported in wm.xml. To work around this, add an empty space in the file, making it non-
zero size file.

Paths: When you’re adding files that are in the current directory, you’ll need to explicitly add the .\ prefix to the file
name.

Learn more: Add files

In ADK version 1709, you’ll need to update the customizations.xml file:

In your product\prov folder, manually move Common/ApplicationManagement to
Common/Policies/ApplicationManagement

Provisioning packages (PPKG) now support four-part versioning similar to the package versioning. So with this
change, version 1.19 > 1.2. Previous versions used character-based sorting, so version 1.19 was considered earlier
than 1.2.

Learn more: Add provisioning files

https://github.com/ms-iot/iot-adk-addonkit/blob/master/Templates/customizations.xml


Windows Universal OEM Package Schema
10/5/2017 • 2 minutes to read • Edit Online

Schema

identityidentity

ATTRIBUTE TYPE REQUIRED MACRO NOTES

owner string *

name string * *

namespace string *

buildWow boolean Default = false, set to
true to generate
WOW packages

legacyName string * Uses the specified
name as the package
name overriding the
default name (owner-
namespace-
name.cab).

<identity name="FeatureName" namespace="FeatureArea" owner="OEM" buildWow="false"/>

onecorePackageInfoonecorePackageInfo

ATTRIBUTE TYPE REQUIRED MACRO NOTES

targetPartition MainOS Data
UpdateOS EFIESP
PLAT

* If onecorePackageInfo
is not specified,
Default = MainOS

releaseType Production Test If onecorePackageInfo
is not specified,
Default = Production

<onecorePackageInfo targetPartition="MainOS" releaseType="Production"/>

filefile

You can manually edit your packages using the Universal OEM Package Schema.

Creating Windows Universal OEM Packages

Only the common elements and attributes are documented here.

To get the full schema run "pkggen /universalbsp /wmxsd:.", then open WM0.XSD with Visual Studio.

https://github.com/MicrosoftDocs/commercialization-public/blob/master/manufacture/iot/package-schema.md


ATTRIBUTE TYPE REQUIRED MACRO NOTES

source string * *

destinationDir string * destinationDir must
start with one of the
following built in
runtime macros
below.

name string used to rename the
source file

buildFilter string

<file buildFilter="(not build.isWow) and (build.arch = arm)" name="output.dll" 
source="$(_RELEASEDIR)\input.dll" destinationDir="$(runtime.system32)"/>

destinationDir must start with:

$(runtime.bootDrive)
$(runtime.systemDrive)
$(runtime.systemRoot)
$(runtime.windows)
$(runtime.system32)
$(runtime.system)
$(runtime.drivers)
$(runtime.help)
$(runtime.inf)
$(runtime.fonts)
$(runtime.wbem)
$(runtime.appPatch)
$(runtime.sysWow64)
$(runtime.mui)
$(runtime.commonFiles)
$(runtime.commonFilesX86)
$(runtime.programFiles)
$(runtime.programFilesX86)
$(runtime.programData)
$(runtime.userProfile)
$(runtime.startMenu)
$(runtime.documentSettings)
$(runtime.sharedData)
$(runtime.apps)
$(runtime.clipAppLicenseInstall)
If not specifed, the default is $(runtime.system32)

To see the directories that map to these locations, see C:\Program Files (x86)\Windows
Kits\10\tools\bin\i386\pkggen.cfg.xml.



regKeyregKey

ATTRIBUTE TYPE REQUIRED MACRO NOTES

keyName string * * keyName must start
with $(hklm.system),
$(hklm.software),
$(hklm.hardware),
$(hklm.sam),
$(hklm.security),
$(hklm.bcd),
$(hklm.drivers),
$(hklm.svchost),
$(hklm.policies),
$(hklm.microsoft),
$(hklm.windows),
$(hklm.windowsnt),
$(hklm.currentcontrol
set), $(hklm.services),
$(hklm.control),
$(hklm.autologger),
$(hklm.enum),
$(hkcr.root),
$(hkcr.classes),
$(hkcu.root),
$(hkuser.default)

buildFilter string

<regKey buildFilter="buildFilter1" keyName="keyName1">
  <regValue buildFilter="buildFilter1" name="name1" value="value1" type="REG_SZ" />
</regKey>

regValueregValue

ATTRIBUTE TYPE REQUIRED MACRO NOTES

name string Name of the value
you are specifying. If
not specified, the
Default value in the
key will be over-
written

type string * type must be one of
these: REG_SZ,
REG_MULTI_SZ,
REG_DWORD,
REG_QWORD,
REG_BINARY,
REG_EXPAND_SZ

value string

buildFilter string

To see the registry keys that map to these locations, see C:\Program Files (x86)\Windows
Kits\10\tools\bin\i386\pkggen.cfg.xml.



<regKey buildFilter="buildFilter1" keyName="keyName1">
  <regValue buildFilter="buildFilter1" name="name1" value="value1" type="REG_SZ" />
  <regValue buildFilter="buildFilter2" name="name2" value="value1,value2" type="REG_MULTI_SZ" />
  <regValue buildFilter="buildFilter3" name="name3" value="00000000FFFFFFFF" type="REG_QWORD" />
  <regValue buildFilter="buildFilter4" name="name4" value="FFFFFFFF" type="REG_DWORD" />
  <regValue buildFilter="buildFilter5" name="name5" value="0AFB2" type="REG_BINARY" />
  <regValue buildFilter="buildFilter6" name="name6" 
value="&quot;%ProgramFiles%\MediaPlayer\wmplayer.exe&quot;" type="REG_EXPAND_SZ" />
</regKey>


	Cover Page
	Manufacture
	Desktop manufacturing
	Deployment guides and walkthroughs
	OEM deployment of Windows 10 for desktop editions
	Plan your Windows deployment
	Get the tools you need for this lab
	OEM deployment lab
	Sample scripts

	System builder deployment of Windows 10 for desktop editions
	OEM Windows Desktop Deployment and Imaging Lab
	Planning images for different audiences
	Get the tools needed to customize Windows
	Lab 1: Install Windows PE
	Lab 2: Deploy Windows using a script
	Lab 3: Add device drivers (.inf-style)
	Lab 4: Add languages
	Lab 5: Add updates and upgrade the edition
	Lab 6: Add universal Windows apps
	Lab 7: Change settings, product keys, scripts with an answer file
	Lab 8: Add branding and license agreements (OOBE.xml)
	Lab 9: Make changes from Windows (audit mode)
	Lab 10: Add desktop apps with siloed provisioning packages
	Lab 11: Add Start tiles and taskbar pins
	Lab 12: Update the recovery image
	Lab 13: Shrink your image size

	Manufacturing Windows Engineering Guide
	Windows 10 in S mode
	Planning a Windows 10 in S mode deployment
	Manufacturing environment
	Manufacturing mode
	Enable S mode
	Windows 10 in S mode deployment lab


	Work with Windows images
	WIM vs. VHD  vs. FFU: comparing image file formats
	Windows Full Flash Update (FFU) images
	Capture and apply an image
	Create and Manage a Windows Image Using DISM
	Capture Images of Hard Disk Partitions Using DISM
	Create a WIM for Multiple Architecture Types Using DISM
	Split a Windows image file (.wim) to span across multiple DVDs
	Append a Volume Image to an Existing Image Using DISM
	Create a Data Image Using DISM
	Apply Images Using DISM
	Capture and Apply Windows, System, and Recovery Partitions

	Modify an image
	Service a Windows image using DISM
	Mount and Modify a Windows Image Using DISM
	Repair a Windows Image
	Configure a Windows Repair Source



	Prepare a PC
	Hard Drives and Partitions
	UEFI/GPT-based hard drive partitions
	BIOS/MBR-based hard drive partitions
	Configure More than Four Partitions on a BIOS/MBR-Based Hard Disk
	Configure Multiple Hard Drives
	BitLocker Drive Encryption
	Hard Disk Location Path Format
	Windows and GPT FAQ

	Secure Boot
	Windows Secure Boot Key Creation and Management Guidance
	Secure Boot Key Generation and Signing Using HSM (Example)
	UEFI Validation Option ROM Validation Guidance
	Disabling Secure Boot
	Secure Boot isn't configured correctly: troubleshooting
	BCD System Store Settings for UEFI
	Validating Windows UEFI Firmware Update Platform Functionality


	Boot and Install Windows
	Boot to WinPE
	Download WinPE (Windows PE)
	Create bootable WinPE media
	WinPE: Install on a Hard Drive (Flat Boot or Non-RAM)

	Boot to UEFI Mode or Legacy BIOS mode
	Windows Setup: Installing using the MBR or GPT partition style
	Boot from a DVD
	Install Windows from a USB Flash Drive
	Deploy a Custom Image
	Deploy Windows with a VHD (Native Boot)
	Boot to VHD (Native Boot): Add a Virtual Hard Disk to the Boot Menu

	Windows Setup Installation Process
	Install Windows 10 using a previous version of Windows PE
	Windows Setup Automation Overview
	Automate Windows Setup
	Run custom actions during a feature update
	Add a Custom Script to Windows Setup


	Customize
	Understanding Servicing Strategies
	Audit Mode
	Run Audit Mode in the Factory
	Boot Windows to Audit Mode or OOBE
	Enable and Disable the Built-in Administrator Account
	Sysprep
	Sysprep Process Overview
	Sysprep (Generalize) a Windows installation
	Use Answer Files with Sysprep
	Sysprep Command-Line Options
	Sysprep Support for Server Roles


	Apps
	Siloed provisioning packages (SPPs)
	Create a provisioning package with Windows desktop applications
	Sideload Apps with DISM
	Preinstall Apps Using DISM
	Export or Import Default Application Associations
	Microsoft .NET Framework 3.5 Deployment Considerations
	Deploy .NET Framework 3.5 by using Group Policy Feature on Demand setting
	Deploy .NET Framework 3.5 by using Deployment Image Servicing and Management (DISM)
	Enable .NET Framework 3.5 by using Windows PowerShell
	Enable .NET Framework 3.5 by using the Add Roles and Features Wizard
	.NET Framework 3.5 deployment errors and resolution steps


	Drivers
	Maintain Driver Configurations when Capturing a Windows Image
	Add a Driver Online in Audit Mode
	Add and Remove Drivers to an Offline Windows Image
	Add Device Drivers to Windows During Windows Setup

	Configuration and settings
	Customize the Default User Profile by Using CopyProfile
	Work with Product Keys and Activation
	Change the Windows Image to a Higher Edition Using DISM

	High DPI Support for IT Professionals
	High DPI and Windows 8.1
	Fixing blurry text in Windows 8.1 for IT Professionals
	High DPI projection and multi-monitor configurations
	DPI-related APIs and registry settings


	Features
	Features On Demand
	Available Features on Demand
	Language and Region Features on Demand

	Enable or Disable Windows Features Using DISM
	Configure a Trusted Image Identifier for Windows Defender
	Configure Windows System Assessment Test Scores
	Add or Remove Packages Offline Using DISM

	OOBE
	Oobe.xml Settings
	How Oobe.xml Works


	Localize
	Language Packs
	Available Language Packs for Windows
	Add Language Packs to Windows
	Add and Remove Language Packs Offline Using DISM
	Add and Remove Language Packs on a Running Windows Installation
	Add Language Interface Packs to Windows

	Multilingual Windows Image Creation
	Configure International Settings in Windows
	Add Multilingual Support to a Windows Distribution
	Add Multilingual Support to Windows Setup
	Default Input Profiles (Input Locales) in Windows
	Default Time Zones
	Keyboard Identifiers and Input Method Editors for Windows
	Where is lp.cab?

	Optimize
	Compact OS, single-instancing, and image optimization
	Manage the Component Store
	Determine the Actual Size of the WinSxS Folder
	Clean Up the WinSxS Folder
	Reduce the Size of the Component Store in an Offline Windows Image
	Take Inventory of an Image or Component Using DISM

	Battery Life
	Managing Battery Life and Power Consumption Overview
	Set the Default Power Plan
	Create a Custom Power Plan
	Fine-Tune a Custom Power Plan
	Test Battery Life and Power Consumption


	Windows Recovery Environment (Windows RE)
	Customize Windows RE
	Add a custom tool to the Windows RE boot options menu
	Add a hardware recovery button to start Windows RE
	Deploy Windows RE
	Push-button reset
	How push-button reset features work
	Recovery components
	Deploy push-button reset features
	Add a script to push-button reset features
	Bare metal reset/recovery: create recovery media while deploying new devices
	Bare metal reset/recovery: enable your users to create recovery media
	Push-button reset frequently-asked questions (FAQ)

	REAgentC command-line options
	ResetConfig XML reference
	WinREConfig XML reference
	Windows RE troubleshooting features

	Deployment Tools Reference
	DISM - Deployment Image Servicing and Management
	What is DISM?
	Use DISM in Windows PowerShell
	DISM Command-Line Options
	DISM Image Management Command-Line Options
	DISM Global Options for Command-Line Syntax
	DISM Operating System Package (.cab or .msu) Servicing Command-Line Options
	DISM Provisioning Package (.ppkg) Command-Line Options
	DISM App Package (.appx or .appxbundle) Servicing Command-Line Options
	DISM Application Servicing (.msp) Command-Line Options
	DISM Default Application Association Servicing Command-Line Options
	DISM Languages and International Servicing Command-Line Options
	DISM Capabilities Package Servicing Command-Line Options
	DISM Windows Edition-Servicing Command-Line Options
	DISM Driver Servicing (.inf) Command-Line Options
	DISM Unattended Servicing Command-Line Options
	DISM Windows PE Servicing Command-Line Options
	DISM Operating System Uninstall Command-Line Options

	DISM Reference (Deployment Image Servicing and Management)
	DISM Configuration List and WimScript.ini Files
	Deployment Image Servicing and Management (DISM) Best Practices
	DISM Supported Platforms

	DISM API

	Windows PE (WinPE)
	What's New in Windows PE
	WinPE: Add packages (Optional Components Reference)
	WinPE: Mount and Customize
	WinPE: Adding PowerShell support to Windows PE
	WinPE: Store or split images to deploy Windows using a single USB key
	WinPE: Identify drive letters with a script
	WinPE: Storage Area Network (SAN) Policy
	WinPE Network Drivers: Initializing and adding drivers
	WinPE: Create Apps
	WinPE: Debug Apps
	Copype Command-Line Options
	Makewinpemedia Command-Line Options
	Drvload Command-Line Options
	Winpeshl.ini Reference: Launching an app when WinPE starts
	Wpeinit and Startnet.cmd: Using WinPE Startup Scripts
	Wpeutil Command-Line Options

	Windows Setup
	Windows Setup Supported Platforms and Cross-Platform Deployments
	Windows Setup Scenarios and Best Practices
	Windows Setup Command-Line Options
	Windows Setup States
	Windows Setup Edition Configuration and Product ID Files (EI.cfg and PID.txt)
	Windows Setup Log Files and Event Logs
	Windows Setup Configuration Passes
	How Configuration Passes Work
	auditSystem
	auditUser
	generalize
	offlineServicing
	oobeSystem
	specialize
	windowsPE

	Deployment Troubleshooting and Log Files

	Command-Line Tools
	BCDBoot Command-Line Options
	Repair the boot menu on a dual-boot PC

	BCDEdit Command-Line Options
	Bootsect Command-Line Options
	Oscdimg Command-Line Options



	Mobile manufacturing
	Mobile deployment and imaging
	Prepare for Windows mobile development
	Create mobile packages
	Adding mobile packages
	Primary elements and attributes of a package project file
	Specifying components in a package project file
	Specifying files and registry entries in a package project file
	Command-line arguments for package generator
	Merging packages before imaging
	Merging packages using FeatureMerger
	Windows Standard Packaging Configuration (WSPC) requirements for retail images

	Configure the Start layout
	Part 1: Classic mobile deployment
	Configure customization settings
	Add a package to an OEM manifest file
	Configure the OEMInput file
	Build a mobile image using ImgGen
	Sign a mobile image
	Flash an image to a mobile device

	Part 2: Mobile deployment using Windows Provisioning
	Use the Windows ICD UI to customize and build a mobile image
	Use the Windows ICD CLI to customize and build a mobile image


	Manufacturing Mode
	Create a custom manufacturing profile package
	Create a custom manufacturing profile package with USBFN settings
	Define a service that only runs in Manufacturing Mode
	Create a full operating system manufacturing profile
	Detect Manufacturing Mode
	Enable or Disable Manufacturing Mode
	Optional features for Manufacturing Mode
	Boot mode management UEFI protocol
	EFI_BOOT_MODE_INFO enumeration
	EFI_BOOT_MODE_MGMT_PROTOCOL.GetBootModeInfo
	EFI_BOOT_MODE_MGMT_PROTOCOL.SetBootModeInfo


	Microsoft Manufacturing OS
	MMOS image definition
	Flash MMOS to the device
	Working with WIM MMOS images
	Creating a secure MMOS WIM image
	Develop MMOS test applications
	Deploy and test a user-mode test application in MMOS
	Determine if MMOS is running
	Manufacturing test environment supported APIs
	Manufacturing Mode Phone Call Testing APIs
	MfgPhoneDial
	MfgPhoneEndCall
	MfgPhoneGetSimLineCount
	MfgPhoneGetSimLineDetail
	MfgPhoneGetSpeaker
	MfgPhoneInitialize
	MfgPhoneSetSimLineEventNotifyCallback
	MfgPhoneSetSpeaker
	MfgPhoneUninitialize
	MFGPHONE_CALLSTATUS
	MFGPHONE_LINESYSTEMTYPE
	MFGPHONE_REGISTRATIONSTATE
	MFGPHONE_SIMLINEDETAIL
	MFGPHONE_SIMSTATE

	Access the touch interface in MMOS
	Calling SetScreenOff to enter connected standby
	Resetting a device during manufacturing
	Wi-Fi manufacturing API
	WlanMTEEnumAdapters
	WlanMTEOpenHandle
	WlanMTECloseHandle
	WlanMTERegisterCallbackHandler
	WlanMTEDeRegisterCallbackHandler
	WlanMTEGetVendorInfo
	WlanMTEResetAdapter
	WlanMTEQueryMacAddress
	WlanMTEQueryPhyTypes
	WlanMTEStartSelfTest
	WlanMTEQuerySelfTestResult
	WlanMTERxSignal
	WlanMTETxSignal
	WlanMTEQueryADC
	WlanMTESetData
	WlanMTEQueryData
	WlanMTESleep
	WlanMTEAwake

	Adding Wi-Fi manufacturing test support to the OID interface
	Reporting operating mode capabilities
	Supporting updated OID behavior in manufacturing mode
	Supporting existing OID commands in manufacturing mode
	Supporting new OID commands for manufacturing mode
	Supporting new callbacks for manufacturing mode



	Flashing tools
	Developing custom OEM flashing tools
	Flashing security requirements
	FFU image format
	Implementing image integrity validation in custom flashing tools
	Field service scenarios

	Using a host PC to reboot a device to flashing mode and get version information
	Disabling the initial setup process
	Reset protection
	Building and flashing mobile images
	Build a mobile image using Windows ICD
	Build a mobile image using ImgGen.cmd
	Build a mobile image using a hybrid method
	Define the image using OEMInput and feature manifest files
	OEMInput file contents
	Optional features for building mobile images
	Feature manifest file contents
	Create a feature and include it in an image
	Adding a driver to a test image
	Feature groupings and constraints
	Set device platform information

	Sign a full flash update (FFU) image
	Use the flashing tools provided by Microsoft
	IUTool.exe: Update packages on a device
	IUTool error codes

	Update packages on a device and get package update logs
	Update packages in an .FFU image file


	IoT Core manufacturing
	IoT Core manufacturing guide
	Get the tools needed to customize Windows IoT Core
	Lab 1a: Create a basic image
	Lab 1b: Add an app to your image
	Install an appx file on an IoT device

	Lab 1c: Add a file and a registry setting to an image
	Lab 1d: Add a provisioning package to an image
	Lab 1e: Add a driver to an image
	Lab 1f: Build a retail image
	Lab 2: Creating your own board support package
	IoT Device Layout


	IoT Core feature list
	IoT Core Add-ons
	IoT Core Add-ons command-line options
	Update the time server
	Create Windows Universal OEM Packages
	Windows Universal OEM Package Schema




